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Abstract— Aloha and its slotted variation are commonly de-
ployed Medium Access Control (MAC) protocols in environments
where multiple transmitting devices compete for a medium, yet
may have difficulty sensing each other’s presence (the “hidden
terminal problem”). Competing 802.11 gateways, as well as most
modern digital cellular systems, like GSM, are examples. This pa-
per models and evaluates the throughput that can be achieved in
a system where nodes compete for bandwidth using a generalized
version of slotted-Aloha protocols. The protocol is implemented
as a two-state system, where the probability that a node transmits
in a given slot depends on whether the node’s prior transmission
attempt was successful. Using Markov Models, we evaluate the
channel utilization and fairness of this class of protocols for
a variety of node objectives, including maximizing aggregate
throughput of the channel, each node selfishly maximizing its own
throughput, and attacker nodes attempting to jam the channel. If
all nodes are selfish and strategically attempt to maximize their
own throughput, a situation similar to the traditional Prisoner’s
Dilemma arises. Our results reveal that under heavy loads, a
greedy strategy reduces the utilization, and that attackers cannot
do much better than attacking during randomly selected slots.

Index Terms— slotted-Aloha, short-term fairness, Markovian
decision, Prisoner’s Dilemma, Stackelberg Game, MAC protocols.

I. Introduction
In many communication networks, the communication

medium is often shared by multiple users who must compete
for access. In Ethernet [1], nodes use CSMA/CD [2], [3] as a
MAC protocol. In order to reduce the probability of collisions,
each node implements CSMA/CD, sensing the medium to
ensure the medium is available prior to transmitting. However,
for wireless ad-hoc networks or sensor networks, carrier
sensing may not be effective. This is because nodes may not be
able to sense one another’s presence, yet their transmissions
may still interfere. Ad hoc networks, sensor networks, and
competing “hotspot” 802.11 gateways are examples where this
so-called “hidden terminal problem” occurs.

The Aloha protocol [4] is a fully decentralized medium
access control protocol that does not perform carrier sensing.
The subsequent slotted-Aloha protocol [5] was introduced to
improve the utilization of the shared medium by synchronizing
the transmission of devices within time-slots. Today, various
forms of slotted-Aloha protocols are widely used in most of
the current digital cellular networks, such as the Global System
for Mobile communications (GSM)1.

In this work, we consider a generalization of the slotted-
Aloha protocol. Like slotted-Aloha, the decision to transmit
within a slot has a random component. However, in traditional

1In the GSM network, the control channels of the TDM channels use
slotted-Aloha.

slotted-Aloha, the user continues transmission in subsequent
slots until a collision occurs. In our generalized version,
the user may cease transmitting with some fixed (non-zero)
probability. We model a system of N users implementing
this generalized protocol with tunable parameters via Markov
Models that allow us to measure the rate at which nodes
attempt to transmit packets (cost), and their rates of success
(throughput). In parts, we impose budget constraints that
restrict the nodes’ costs, such that the fraction of slots within
which a node attempts transmissions is bounded. In practice,
these additional constraints may be due to energy constraints,
or bandwidth limitations.

This generalized version of slotted-Aloha is worth studying
for several reasons. First, it is derived from a protocol that is
commonly used today. Second, introducing additional states
to capture backlog or number of successive collisions more
closely emulates binary exponential backoff protocols, e.g., the
802.11 family of MAC protocols; however, this generalized
version of slotted-Aloha retains the simplicity and elegance
of the original Aloha approach. Third, we will show that the
generalized versions can outperform the original version, both
in terms of aggregate throughput, as well as the ability to
cope with malicious users. Fourth, by using this generalized
slotted-Aloha protocol, we provide a framework to study the
user behaviors in cooperative, competitive and adversarial
environments.

We begin by exploring an environment where N users
cooperate and set the protocol parameters to maximize the
total system throughput while sharing the bandwidth evenly.
We find that the throughput is bounded by N/(2N − 1) and
that to achieve this utilization, users who gain access to the
channel must transmit over a large number of consecutive
slots. We then explore how throughput decreases as “short-
term fairness” is more strictly enforced, reducing the expected
number of consecutive slots.

Next, we consider selfish users who wish to maximize their
own throughput, perhaps at the expense of the nodes against
whom they compete for medium access. We fist identify a
Nash equilibrium for short-sighted selfish users where the
aggregate throughput is zero. We then formulate a Stackelberg
game, where a leader node strategically chooses its parameters
and a follower node subsequently modifies its parameters
in response to short-sightedly maximize its own throughput.
Under this model, we find that performance of the protocol
depends on nodes’ budgets, and takes on three distinct types
of behavior. When nodes’ budgets are low, the aggressive
strategy is optimal. When nodes’ budgets fall within a medium
range, all nodes achieve the same throughput in a unique
equilibrium, but the throughput is less than what would be
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obtained in a cooperative setting. When nodes’ budgets fall
within the highest range, the leader node obtains much higher
throughput than the follower node. We further model two
strategic selfish nodes using a simultaneous move game, where
multiple equilibria exhibit that the Prisoner’s Dilemma can
occur. We develop an additional enhancement to the protocol
that can be implemented by cooperative nodes which will
encourage selfish users to tune their protocol parameters to
match those of a cooperative node, maximizing the aggregate
throughput.

Last, we consider an attacking node that, with a limited
budget, seeks to minimize the throughput of the other nodes
in the system. We show that when the attacker’s budget is
small, selecting random slots (i.e., via a Bernoulli process) is
optimal. When the budget is large, the optimal strategy is to
mimic a greedy user. Our analysis provides insights on the
limits of success a jammer can have in disrupting a slotted-
Aloha like network.

We summarize the main contributions of this paper as
follows:

1) We formulate different user behaviors under a general-
ized slotted-Aloha protocol where users make transmis-
sion decisions using a two-state system.

2) We identify throughput bounds for a system of coop-
erative users and explore the trade-off between user
throughput and short-term fairness.

3) Under selfish behavior of the users, we identify a Pris-
oner’s Dilemma phenomenon and propose methods to
detect and prevent nodes from acting selfishly without
regard for other nodes’ throughput.

4) Under adversarial behavior of one user, we measure the
maximum possible deterioration of the system and try
to understand the behavior of an attacker.

We organize our paper as follows. In Section II, we review
related work. In Section III, we motivate the protocol and
construct a Markov Model for the generalized slotted-Aloha
protocol. In Section IV, we measure the system throughput
in a cooperative environment where users want to maximize
the total throughput of the system. In Section V and VI,
we evaluate both the aggregate and individual user through-
put where selfish users exist in the system. We formulate
a Stackelberg game [6] and identify a Prisoner’s Dilemma
situation in Section V, and in Section VI present strategies
that cooperative nodes can implement to detect and prevent
selfish user behaviors. In section VII, we explore a system
in which an attacker tries to minimize the throughput of the
remaining nodes. Section VIII concludes.

II. Related Work
The Aloha protocol and its slotted version have been studied

for decades. Because slotted-Aloha exhibits an instability
as the number of transmitting nodes increases [7], [8], [9],
[10], [11], [12], early research focused on stabilization [12],
[13]. For instance, Rivest [13] proposed a pseudo-Bayesian
algorithm, which utilizes feedback to estimate the number of
current backlogged nodes in the system. Subsequent studies
utilized dynamic controls [14], [9] to stabilize the systems.

However, today’s networks avoid stabilization challenges by
implementing an admission control procedure that limits the
number of simultaneous users in the system.

In this work, we focus on the performance of stable slotted-
Aloha type systems, where only a finite number of users
will access the shared medium simultaneously. Early work on
slotted Aloha with finite number of users can be found in [7].
Not only does our work evaluate the throughput bounds for
a finite slotted-Aloha type system, but it also considers the
performance of individual users under different types of user
behavior. Many prior works [15], [16] show that users always
have incentive not to follow the designed protocol (i.e., not
backoff) in order to achieve higher throughput. Consequently,
game-theoretic analysis can be applied [6], [17].

Recent work using Game Theory to analyze user behavior in
MAC protocols and wireless ad-hoc networks can be found in
[18], [19], [15] and [20], [21] respectively. More specifically,
game-theoretical analysis of the Aloha protocols can be found
in [22], [23], [24], [25], [26], [27].

MakKenzie and Wicker’s work [24], [25] discussed the
stability of slotted-Aloha with selfish user behavior and per-
fect information. Our work is different in three ways. First,
we focus on performance (attainable throughput) instead of
stability. In terms of data backlog at the users, we consider
scenarios of elastic transfers, where users always have data to
send and utilize whatever bandwidth is available, and hence
classical stability results do not apply to our analysis. Second,
we assume that nodes do not know the number of transmitting
nodes a particular slot a priori, and know only whether or
not their transmission succeeded after the fact. Third, we
consider cooperative and attacking strategies in addition to
selfish strategies.

Jin and Kesidis’s work [26] discusses the equilibria of a non-
cooperative game for Aloha protocols. In their non-cooperative
game formulation, each user only uses one transmitting prob-
ability (i.e., always in a backlogged state). Moreover, utility
functions and payments are specified for each user. Our
work, on the other hand, formulates generalized slotted-Aloha
protocol that considers the Markovian decisions depending on
whether the most recent transmission is a success (in a Free
State) or a failure (in a Backlogged State). Also, we do not
impose payments.

Altman et al. [27] analyze slotted-Aloha systems as both
cooperative and non-cooperative games with partial infor-
mation. Their work assumes that there are a finite number
of bufferless sources. The arrival of packets to each source
follows a Bernoulli process. As in typical slotted-Aloha, users
only control the backlog probability in both systems. In our
work, we assume saturated arrivals (elastic transfer) where
each user always has packets to transmit. Our users’ strategies
are more broad, because users are permitted to choose a non-
zero probability to back off even their previous transmissions
are successful. In addition, we analyze an adversarial game
where an attacker wants to minimize other users’ throughput.

III. Protocol Description and Model
In this section, we describe a generalized slotted-Aloha

MAC protocol and construct a Markov Model from which
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its throughput can be analyzed. We first overview the original
slotted-Aloha protocol:

1) Time is divided into slots, and each node can attempt to
send one packet in each time-slot.

2) If a node has a new packet to send, it attempts trans-
mission during the next time-slot.

3) If a node successfully transmits one packet, it can
transmit a new packet in the next time-slot.

4) If a node detects a collision, it retransmits the old packet
in each subsequent time-slot with a pre-determined prob-
ability, p, until the packet is successfully transmitted.
Returning to step 3 after a successful transmission.

The slotted-Aloha protocol described above can be imple-
mented as a two-state system, where the state maintains the
outcome of the previously attempted transmission. A node is
in its Free State if the most recent transmission from that
node is a success; otherwise, the node is in its Backlogged
State. In the Free State, a node transmits during the next slot
with probability 1, and in the Backlogged State, it transmits
during the next slot with probability p. Our generalization of
the above protocol is to allow a node to vary the probability
with which a node transmits a packet when it resides within the
Free State. Later, we will see that this generalization enables
us to model selfish as well as malicious behaviors of users.

Our evaluation will consider a network of N contentious
nodes, which always have a backlog of data packets to transfer.
We assume that data packets are fragmented into lengths which
can be transmitted within a time-slot, and that nodes are able
to coordinate slot transmission times and can estimate the
number of nodes N with which they compete for bandwidth.
However, because nodes’ transmissions may interfere but
cannot be recovered, methods to prevent slot contention that
require explicit communication and coordination among the
competing members (e.g., TDMA, RTS-CTS) cannot be used.
In practice, many real systems implement admission control
mechanisms which constraint the number of users in the
system. In practice, a system can often rely on a centralized
authority to broadcast the number of competing users (e.g.,
this information can be embedded in beacon messages).

Each node x can tune its protocol using two parameters:
px
1 , the transmitting probability in the Free State, and px

2 , the
transmitting probability in the Backlogged State. Given N and
the transmitting probabilities for each of the nodes in each of
the states, we can compute the following performance metrics:

• Tx, the throughput of node x, which is the fraction of
slots within which x successfully completes a transmis-
sion and is the only device to attempt transmission.

• Cx, the cost for node x, which is the fraction of slots
within which x attempts transmission (regardless of
whether the transmission fails or succeeds).

Each node’s decision to transmit within a particular slot
depends only on the outcome of its previous attempt (success
or failure), and does not depend on the state of other nodes.
Hence, this protocol can be easily implemented in a distributed
manner. Moreover, each node’s decision is Markovian, as it
depends only on its previous attempt’s outcome.
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Fig. 1. Two-node Markov Chain.

Figure 1 shows the state transition diagram for a two-node
system with node x and y. Fx and Gx represent that node
x is in a Free State and a Backlogged State respectively. A
system for N nodes is easily modeled by as a Markov Model
where the chain would consist of 2N states. By numbering the
states (Fx, Fy), (Fx, Gy), (Fy, Gx), (Gx, Gy) to be 1, 2, 3, 4,
the transition matrix for a two-node Markov Model is:

P =




1− px
1py

1 0 0 px
1py

1;
(1− px

1)py
2 1− py

2 0 px
1py

2;
(1− py

1)p
x
2 0 1− px

2 py
1p

x
2 ;

0 px
2(1− py

2) py
2(1− px

2) p44




where p44 = px
2py

2 + (1− px
2)(1− py

2).
If px

1 , py
1, p

x
2 , py

2 > 0, the Markov Model is positive-
recurrent. The steady state distribution is the following:

~π =




π1

π2
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π4


 =

1
k1 + k2 + k3 + k4
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
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

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2)py
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1(p
x
2)2(1− py

2)
px
1py

1(p
y
2)

2(1− px
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1py
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x
2py

2


 (1)

The corresponding throughput and cost of node x are:

Tx = π1(px
1)(1− py

1) + π2(px
1)(1− py

2)+
π3(px

2)(1− py
1) + π4(px

2)(1− py
2).

(2)

Cx = π1(px
1) + π2(px

1) + π3(px
2) + π4(px

2). (3)

Nodes may have physical limitations (e.g. power consump-
tion constraints or application throughput constraints) that
may bound its cost function. We bound allowed cost by a
budget, Bx, such that a node’s parameters must produce a
cost Cx ≤ Bx.

When we consider cooperative nodes that seek to maximize
throughput, we are also interested in system fairness: all nodes
should get an equal share of the aggregate throughput. In
addition, we assume that it is undesirable for any one node
to “capture” the medium for an extended number of slots -
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a long-term capture can be thought of as unfair over a short
duration. Koksal’s work [28] gives an analysis of the short-
term fairness of MAC protocols. It provides some insight into
why MAC protocols exhibit bad short-term fairness using two
different fairness indexes. In this paper, we measure short-
term fairness via a more fundamental quantity defined as the
following:

Definition 1: Let Dx be the number of consecutive slots
following an initially successful transmission over which node
x successfully transmits packets (i.e., if there are k successful
consecutive transmissions, then Dx = k − 1). The system is
said to be M -short-term fair to all nodes if E[Dx] ≤ M
for all nodes x.

Remark: By definition, if a system is M -short-term fair, it is
also N -short-term fair for any N > M . If short-term fairness
is enforced, then a node cannot “capture” the channel for an
excessive amount of time, i.e., that the medium is shared more
evenly on smaller time scales.

IV. Cooperative Performance Analysis

In this section, we assume that nodes cooperate to fairly
(i.e., equally) share the available bandwidth and to maxi-
mize the aggregate system throughput. By doing so, each
node achieves the maximum throughput possible in a fair
allocation when limited to protocols that cannot sense the
wireless medium. Clearly, if it were permissible to bias the
allocation toward one of the nodes, the system could achieve
full utilization by allowing only one node to always transmit.
If a centralized scheduler or carrier sensing mechanism were
permitted, we could also make fair share of the medium
with almost 100% utilization. Here, we seek an unbiased and
distributed solution for all nodes such that nodes will achieve
the same average throughputs.

Our goal in this section is to answer the following questions:
1) What are the values of px

1 and px
2 for each node x that

maximize the total throughput of the system?
2) What is this maximum achievable throughput of the

system?
3) What is the short-term fairness of the optimal allocation,

and how can that short-term fairness be improved?
Theorem 1: For two homogeneous nodes with px

1 = py
1 =

p1 and px
2 = py

2 = p2, sup{Tx + Ty} = 2/3.
Proof: Substitute all the transmitting probabilities with p1 and
p2 into Equation (1) and (2), we have

~k =




2p2(1− p2)(1− p1)
(1− p2)p2

1

(1− p2)p2
1

p2
1


 ,

and

Tx = π1p1(1− p1) + π2p1(1− p2)
+π3p2(1− p1) + π4p2(1− p2)

= βp1(p2
1 − αp1 + α)/(p2

1 − αβp1 + αβ),

where
α = 2p2, β = (1− p2)/(3− 2p2).

When p1 = 1, Tx = β = (1− p2)/(3− 2p2) and β → 1/3
as p2 → 0. By symmetry, Tx + Ty → 2/3 as p2 → 0.

Next, we want to show Tx < 1/3 for all p1, p2 ∈ (0, 1]. It
is equivalent to show the following:

βp1(p2
1 − αp1 + α)/(p2

1 − αβp1 + αβ) < 1/3
⇐⇒ 3βp1(p2

1 − αp1 + α) < p2
1 − αβp1 + αβ

⇐⇒ 3βp3
1 − (3αβ + 1)p2

1 + 4αβp1 − αβ < 0.

We define f(p1) = 3βp3
1 − (3αβ + 1)p2

1 + 4αβp1 − αβ.
Two boundary conditions are f(0) = −αβ < 0 and f(1) =
3β−1 < 0. Since f(p1) is a cubic function of p1, it is sufficient
to show that the local maximum is less than zero, so as to prove
that for any p1 ∈ (0, 1], f(p1) < 0. At the local maximum,

f
′
(p∗1) = 9β(p∗1)

2 − 2(3αβ + 1)p∗1 + 4αβ = 0.

Using the above condition, it is equivalent to show

f(p∗1) = −(1/3)(3αβ + 1)(p∗1)
2 + (8/3)αβp∗1 − αβ < 0.

The maximum of the above function is

[(4/3)(3αβ + 1)αβ − ((8/3)αβ)2]/[−(4/3)(3αβ + 1)].

The denominator is negative, while the numerator is positive
because

(4/3)(3αβ + 1)αβ − ((8/3)αβ)2 > 0
⇐⇒ (4/3)(3αβ + 1)− (64/9)αβ > 0
⇐⇒ αβ < 3/7
⇐⇒ 2p2(1− p2)/(3− 2p2) < 3/7
⇐⇒ 14p2

2 − 20p2 + 9 > 0.

Finally, because the local maximum f(p∗1) < 0, we conclude
that f(p1) < 0 for all p1 ∈ [0, 1).
Theorem 1 upper-bounds the maximum fair throughput at 2/3,
which is achieved in the limit as both nodes choose {p1 = 1,
p2 → 0}. This solution is intuitive: collisions are less likely
to occur in a carrier-sense free environment when nodes are
very unlikely to start transmitting, but hold the medium until
a subsequent collision.

Theorem 2: For N homogeneous nodes with p1 = 1, p2 →
0, the total throughput approaches N

2N−1 .
Proof: Consider in each time-slot, the whole system is in
certain state. We aggregate all the system states into the
following two states. One state is the “Busy” state where only
one of the nodes is transmitting in the time-slot. The other state
is the “Idle or Collision” state where no node or more than
one node are transmitting in the time-slot. The state transition
diagram is shown in Figure 2.

pa

pb

pb

paBusy State
Collision
Idle or

1−

1−

Fig. 2. N-node Markov Chain with {p1 = 1, p2 → 0}.

We define the transition probabilities as pb = (1− p2)N−1

and pa = Np2(1−p2)N−1. pb indicates the probability that all
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Fig. 3. Aggregate throughput for fixed p2.

of the N − 1 backlogged nodes do not transmit. pa indicates
the probability that only one of the N nodes transmits. The
system utilization becomes

ρ = πbusy = pa/(1− pb + pa)
= Np2(1−p2)

N−1

1−(1−p2)N−1+Np2(1−p2)N−1

= N/( 1
p2

1−(1−p2)
N−1

(1−p2)N−1 + N)

= N/( 1+(1−p2)+(1−p2)
2+···+(1−p2)

N−2

(1−p2)N−1 + N).

Therefore, ρ → N
2N−1 as p2 → 0.

Intuitively, when the number of nodes increases in the sys-
tem, with higher probability, the channel is jammed with more
than one node transmitting at the same time. Consequently, the
aggregate system throughput decreases. However, Theorem 2
shows that the throughput does not drop to zero: even when
the number of nodes tends to infinity, the aggregate throughput
remains larger than one half. Note that this result differs
from the traditional performance bound (1/e) of slotted-Aloha
because our generalized model permits the capture of the
resource. This allows a node to use the channel for very long
but bounded intervals (given a fixed and non-zero value of p2)
of slots while all other nodes back off. An alternative analysis
of this capture phenomenon can be found in [7].

Both Theorem 1 and Theorem 2 focus on the class of

solutions where p1 = 1 and p2 → 0. For N = 2, we
proved in Theorem 1 that the optimal throughput is achieved
at {p1 = 1, p2 → 0}. Nevertheless, the maximum throughput
is also achieved at {p1 = 1, p2 → 0} for N > 2. The
formal proof can be found in our technical report [29]. Here,
we present some evidence which shows the optimality of
{p1 = 1, p2 → 0}. We start with the following observation.

Theorem 3: For N homogeneous nodes, the solutions
{p1 = p2 = 1/N} and {p1 = 1, p2 = 1/N} both achieve
the throughput (1− 1/N)N−1.
Proof: When {p1 = p2 = 1/N}, each node tries to transmit at
each time-slot independently with probability 1/N . Therefore,
the throughput is just the probability that if and only if one of
the N nodes transmits:

ρ =
(

N

1

)
(1/N)(1− 1/N)N−1 = (1− 1/N)N−1.

When p1 = 1 and p2 = 1/N , we can adopt the Markov
Chain in Figure 2. We have the transition probabilities: pb =
(1− p2)N−1 = (1− 1/N)N−1 and pa = Np2(1− p2)N−1 =
(1− 1/N)N−1. The throughput is

ρ = πbusy = pa/(1− pb + pa) = pa = (1− 1/N)N−1.

Theorem 3 provides a reference point to divide the solution
space into groups. Figure 3 plots the throughput for systems
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Fig. 4. Aggregate throughput.

of N = 2, 5, 10 and 20. In each subplot, p1 varies along the x-
axis, and different curves plot different values for p2. For any
N , we use the curve p2 = 1/N ( from Theorem 3, we know
the exact value when p1 = 1 or p1 = 1/N ) as a reference to
divide solutions into two groups: p2 < 1/N and p2 > 1/N .
We plot the curve p2 = 1/N in solid lines. We compare the
solution within each group and across groups, and make the
following observations:
• When the value of p2 increases from 1/N , the throughput

decreases. The curve of p2 = 1/N is above all curves of
p2 > 1/N .

• When the value of p2 decreases from 1/N , the throughput
curve becomes lower in the region p1 ∈ (0, 1/N), but
the maximum of each curve is at p1 = 1. This maximum
increases when p2 decreases.

In Figure 4, we plot the surface of throughput for systems
with various number of nodes. In each subplot, p1 varies along
the x-axis (on the right); p2 varies along the y-axis (on the
left). By increasing of the number of nodes N in system, the
surfaces bend down dramatically in the region of small p1 and
large p2 (left corner). The high throughput is reached in the
region of large p1 and small p2 (right corner). In particular,
the maximum is achieved at p1 = 1, p2 → 0.

Although the solution {p1 = 1, p2 → 0} might maximize
throughput, it is not short-term fair, in which a single trans-
mitter gains exclusive access of the medium for a long time.
As p2 → 0, we have E[Dx] → ∞. We now consider how to
enforce short-term fairness:

Theorem 4: For N homogeneous nodes with p1 = 1 and
p2 ≥ 1− N−1

√
1− 1/M , the system is M -short-term fair2 to

all nodes.
Proof: Because Dx is a geometric random variable with
parameter 1− pb, we have

E[Dx] =
1

1− (1− p2)N−1
.

Since p2 ≥ 1 − N−1
√

1− 1/M , we have E[Dx] ≤ M . By
definition, the system is M -short-term fair to all nodes.
Theorem 4 quantifies how to select p2 to achieve a certain
short-term fairness. In particular, in order to achieve M -short-
term fairness, we can choose the following value of p2:

p2 = 1− N−1
√

1− 1/M. (4)

2see Definition 1
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The total throughput becomes a function of M :

ρ =
Np2(1− p2)N−1

1 + (Np2 − 1)(1− p2)N−1
(5)

=⇒ ρ =
N(M − 1)

N(M − 1) + 1

1− N−1
√

1− 1
M

. (6)
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Fig. 5. Throughput under different fairness conditions.

Figure 5 plots the total throughput under different short-term
fairness constraints (M) as the number of nodes, N , varies
along the x-axis. This figure shows the tradeoff between short-
term fairness and throughput. However, without sacrificing
much throughput, the system achieves desirable short-term
fairness. For example, if we want the system to be 8-short-
term fair, which means each node can successfully transmit
no more than 8 consecutive slots on average when it captures
the channel, we can achieve a total throughput close to 1/2
even for large N . In fact, when N →∞, the total throughput
does not collapse to zero. We will discuss the throughput limits
in the next theorem.

Lemma 1: For any constant M > 0, if p2 = 1 −
N−1

√
1− 1/M , then Np2 is monotonically decreasing with

N .
Proof: Let α = 1− 1/M and β = α

1
N−1 . We have

p2 = 1− N−1
√

1− 1/M = 1− α
1

N−1 = 1− β.

First, p2 is strictly decreasing in N , because dp2/dN =
ln α β

(N−1)2 < 0. We define f(N) = (N − 1)p2.

df(N)/dN = (N − 1)[ln α β
(N−1)2 ] + 1− β

= ((N − 1)−1 ln α− 1)β + 1
= (ln β − 1)β + 1
= β ln β − β + 1 < ln β − β + 1 < 0.

The last inequality holds because of the following. We define
g(β) = ln β − β + 1. g(β) is a strictly concave function,
because g′(β) = 1/β − 1 and g′′(β) = −1/β2. Since g(1) =
0, g′(1) = 0 and g′′(1) = −1 < 0, we see g(β) attains its
maximum value 0 at β = 1. β < 1 holds under our context;
therefore, the last inequality holds.

Finally, Np2 = (N − 1)p2 + p2, and consequently,
dNp2/dN = df(N)/dN + dp2/dN < 0.

Theorem 5: Under any short-term fairness condition
E[Dx] = M , the total throughput, ρ, is lower-bounded by
−(M−1) ln(1− 1

M )

1−(M−1) ln(1− 1
M )

.
Proof: We choose the value of p2 in Equation (4) to satisfy
the short-term fairness condition. Accordingly, from Equation
(6), we have

1
M − 1

1
1
ρ − 1

=

(
1− N−1

√
1− 1

M

)
N =

1− N−1

√
1− 1

M

1
N

.

The right hand side is of the form 0
0 as N → ∞. By

L’hospital’s rule,

lim
N→∞

ln(1− 1
M ) N−1

√
1− 1

M (N − 1)−2

−N−2
= − ln

(
1− 1

M

)

∴ lim
N→∞

1
M − 1

1
1
ρ − 1

= − ln
(

1− 1
M

)

⇒ lim
N→∞

ρ =
−(M − 1) ln(1− 1

M )
1− (M − 1) ln(1− 1

M )
.

On the other hand,

1
M − 1

1
1
ρ − 1

= (1− N−1

√
1− 1

M
)N = Np2.

Thus, by Lemma 1, ρ is monotonically decreasing in N
(as well as in Np2). Therefore, ρ is lower-bounded by
−(M−1) ln(1− 1

M )

1−(M−1) ln(1− 1
M )

.
Theorem 5 provides the lower bounds for the curves in Figure
5. We draw the limits of the throughput in dotted lines under
each throughput curve. We see, for M to be reasonably large
(e.g. M = 8), the throughput lower limit is close to 1/2.
Indeed, when M tends to infinity, this limit also tends to
1/2. In practice, a fairness requirement M can be achieved
by choosing a suitable p2 for all users. Like the information
of the number of users (N), we suggest that the p2 value
can be broadcasted in the beacon messages by the system
infrastructure.

V. Competitive Performance Analysis
In the previous section, we identified the lower bounds

of the obtainable throughput among cooperative nodes, ad-
ditionally considering short-term fairness constraints. In this
section, we assume that each node is autonomous and sets
its protocol parameters to maximize its own throughput. We
start from a short-sighted selfish strategy that maximizes one’s
own throughput given any fixed parameters of other nodes. We
show that this strategy induces a zero-throughput Nash equilib-
rium in the system. After that, we construct a Stackelberg game
[6] by formulating a constrained optimization problem for each
node. In particular, the leader player in the Stackelberg game
strategically sets the parameters by taking the other node’s
reaction into account. Last, we form a simultaneous move
game where nodes all strategically set parameters, and reveal
that a Prisoner’s Dilemma [6] phenomenon can occur.
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A. Short-sighted Selfish Behavior

Suppose N nodes are originally cooperative and use p1 = 1
and p2 = 1− N−1

√
1− 1/M to achieve the maximum M -short-

term fair aggregate throughput. In this system, each node x
obtains throughput:

Tx = ρ/N = (M − 1)/[N(M − 1) + 1/p2].

If one node deviates from this cooperative solution and sets
p2 = 1 instead, its throughput increases to

T ′x = pb = (1− p2)N−1 = 1− 1/M.

Its throughput now equals the probability that no other node
is transmitting in each time-slot. Comparing the above two
equalities, we have:

T ′x
Tx

=
N(M − 1) + 1/p2

M
= N +

1−Np2

Mp2
.

Hence, by unilaterally changing p2 to be 1, a selfish node
can usually increase its throughput at least N times (if
Np2 < 1). This selfish behavior sacrifices the throughput
of all other nodes, because they can no longer obtain any
throughput. In fact, given all other nodes’ parameters fixed, to
set p1 = p2 = 1 is always the best strategy to maximize one’s
own throughput. However, unfortunately, this implies a Nash
equilibrium of the system with zero aggregate throughput.

B. Stackelberg Game

As shown above, multiple short-sighted selfish users can
drive the system throughput to zero. Here, we extend this
selfish behavior into a more sophisticated strategy which
takes other nodes’ short-sighted selfish behavior into account.
We formulate a Stackelberg game [6], which enables one of
the nodes (the leader) to anticipate the short-sighted selfish
behavior of the other node (the follower) and to choose its
optimal parameters. Stackelberg games have been applied to
different areas of networking protocols (e.g. routing strategies
[30], [31]) in order to achieve efficient equilibria.

In this Stackelberg game, we consider a network that
consists only of two selfish nodes x and y, each of which
wants to maximize its own throughput. In addition, we assume
that each has budget constraints Cx ≤ Bx and Cy ≤ By

respectively. Cx and Cy are the costs of both nodes as defined
in Equation (3). Bx, By ∈ (0, 1] are two budget constants that
physically restrict the average number of packets the node can
transmit in each time-slot. We impose these budget constraints
in order to model the nodes in a wireless ad-hoc network
or a sensor network. Because nodes in these networks are
very sensitive to power consumption, and transmitting packets
consumes a lot of battery power. Consequently, the behavior
of nodes may largely depend on their budget constraints.

We formally describe the Stackelberg game as follows:

Players: The leader node x and the follower node y.
Strategy: Sx = {px

1 , px
2} for x; Sy = {py

1, p
y
2} for y.

Payoff: Tx and Ty for x and y respectively.
Game rule: Given any x’s strategy {px

1 , px
2}, y chooses

the best response {py
1, p

y
2} accordingly.

Follower’s Problem:
In the Stackelberg competition, the follower y is modeled as

a short-sighted selfish node that always tunes its parameters,
responding to the other node’s parameters, to maximize its own
throughput. Formally, for any given S̃x, the follower node y
solves:

Ŝy(S̃x) = arg max Ty(S̃x, Ŝy)
Subject to : Cy(S̃x, Ŝy) ≤ By.

Leader’s Problem:
In the Stackelberg competition, the leader x applies the

strategy that takes the follower’s behavior into account. It
maximizes its own throughput by anticipating the short-sighted
strategy of the follower. Formally, the leader node x solves:

Ŝx = arg max Tx(Ŝx, Ŝy(Ŝx))
Subject to : Cx(Ŝx, Ŝy(Ŝx)) ≤ Bx.

In practice, users might not know one anothers’ strategies.
The Stackelberg game assumes that the follower will adjust
its parameters to maximize its throughput given any fixed
parameters of the leader, x, and will maintain fixed parameters
so long as x does as well. Both the leader and the follower
are not necessarily very different; however, the leader is
more strategically sophisticated and the follower is simply a
throughput maximizer.

To solve this Stackelberg game mathematically, we first
solve the follower’s problem for every possible strategy taken
by node x. Thus, we obtain the best response strategy of y as a
function of node x’s strategy. After that, the leader decides its
optimal strategy according to node y’s best response strategy.
This procedure is often referred to as backwards induction3

[17]. The corresponding game solution is often referred to as
a Stackelberg equilibrium. We derive numerical results based
on Equation (2) and (3).

C. Three Stackelberg Equilibrium Regions

We solve the above Stackelberg game for nodes who have
the same budget constraints, i.e., Bx = By.

Figure 6 and Figure 7 show the throughput and costs of both
players in the Stackelberg equilibrium. The x-axis represents
the budget constraint for both players. The change in the
throughput as a function of the budget behaves differently in
three different solution regions:

1) When the budget is less than 1/3, both players achieve
the same throughput, and they both use up their budgets.
Within this region, an increase of budget improves the
achieved throughput. The throughput is mainly limited
by the budget constraints rather than the competition
between these two players.

2) When the budget is between 1/3 and 2/3, both players
again achieve similar throughput and use up their bud-
gets. However, an increase of budget deteriorates each
player’s throughput. In this region, competition between
these two players further reduces the throughput as well.

3Backward induction is actually a more general procedure to identify the
Subgame Perfect Nash Equilibria in any finite dynamic game with perfect
information.
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Fig. 6. Throughput in the Stackelberg equilibrium.
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Fig. 7. Cost in the Stackelberg equilibrium.

3) When the budget is more than 2/3, the leader can select
parameters that give it a larger fraction of the through-
put. As the budget increases, this unfair allocation of
throughput exacerbates and the follower, still wishing
to maximize its own throughput, actually becomes less
aggressive and uses a partial budget. In this region, the
Stackelberg game benefits the leader by sacrificing the
throughput of the follower.

Figure 8 plots values of p1 and p2, revealing the strategies
of both players in Stackelberg equilibrium. In the first two
solution regions, both players use similar strategies. As a
result, it does not matter (to a node) whether it is the leader or
the follower, because both players achieve similar throughput.
In particular, when the budgets are close to 1/3, the strate-
gies selected by the players are similar to what would be
selected by cooperative players, and the aggregate throughput
approaches 2/3. As the budgets are further increased, the
nodes’ additional contention on the medium and the rate of
interference become significant.

When the budgets exceed 2/3, the leader’s strategy changes
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Fig. 8. Strategies in Stackelberg equilibrium.

dramatically. Instead of setting p1 = 1, it sets p2 = 1.
This implies that if a transmission fails in a slot, it will
attempt to retransmit during the next slot. This makes sense
intuitively because the follower, attempting to maximize its
own throughput with its confined budget, must back off with
high probability after a collision, and the “safest” time for the
follower to transmit will be following a previous successful
transmission. Because the leader uses p2 = 1, the follower
can only successfully transmit when the leader is in the Free
State. Therefore, the follower must not fully use its budget,
since it has to reduce the collision probability that leads the
leader to a Backlogged State.

Note that at around a budget of 0.55, where the leader starts
to set p2 = 1, the follower’s strategy begins to mimic the
leader’s strategy to maximize its own throughput. When the
budget in further increased, the follower cannot use the same
aggressive strategy to maximize its own throughput.

D. Simultaneous Move Game and Prisoner’s Dilemma

The Stackelberg game assumes that the leader is strate-
gically more sophisticated that the follower. To relax this
bias, we now assume that both nodes, not being able to
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anticipate the other party’s strategy, will decide their strategies
simultaneously. This models situations in wireless network
where users do not know other users’ backoff rates, which can
be any strategy of p1 and p2, in advance. We focus on three
representative budget scenarios and the corresponding strate-
gies (from Figure 8) that would be played in the Stackelberg
game:
• Low budget region: Bx = By = 0.34. Strategy SC =

Sx = Sy = {p1 = 0.98, p2 = 0.02}.
• Medium budget region: Bx = By = 0.5. Strategy SM =

Sx = Sy = {p1 = 1, p2 = 0.28}.
• High budget region: Bx = By = 0.8. Strategy SL =

Sx = {p1 = 0.64, p2 = 1}, and SF = Sy = {p1 =
1, p2 = 0.5}.

Strategy SC in the lower budget region is similar to the
strategy played by the nodes in a cooperative environment.
Strategy SM , more aggressive than SC , is played by both the
leader and the follower in the medium budget region. Finally,
SL and SF are the strategies of the leader and the follower in
the high budget region.

We consider two simultaneous move games, where two
nodes must choose their parameters to maximize their individ-
ual throughput without knowing what their opponent chooses
to do. Each game models a budget scenario where nodes are
confined to use some of representative strategies above.
To be “cooperative” or to be “greedy”?

First, we consider a game in which two nodes, each with
a budget of 0.5, must decide whether they will perform a
cooperative-type of strategy or behave in a greedy manner
(i.e., should the node set its parameters according to SC or
SM ?) We evaluate Equation (2) for both nodes, and list the
throughput in the following table.

SC SM

SC (0.3246,0.3246) (0.0034,0.9288)
SM (0.9288,0.0034) (0.2951,0.2951)

Here, we see a typical Prisoner’s Dilemma [6]. Although
from a global perspective, both players know the best solution
is (SC , SC), from any hypothetical local point, strategy SM

should always be played. This is because, for any fixed strategy
by the opponent, choosing SM is always better than choosing
SC . Strategy SM is called the dominating strategy [6] for
both players and the solution (SM , SM ) is the unique Nash
equilibrium [6] solution of this game.
To be “aggressive” or to be “mild”?

In the second game, we assume that nodes have budgets in
the third region. As in the Stackelberg game, the leader player
is better off by playing an aggressive strategy; however, now
the nodes must also decide whether to choose the leader-type
of strategy or the follower-type of strategy, without knowing
the other player’s response in advance. Notice that there is
no actual leader or follower in the simultaneous move game.
Here, nodes are restricted to the strategies SL and SF used
by the leader and the follower in the Stackelberg game.

SF SL

SF (0.25,0.25) (0.1233,0.3595)
SL (0.3595,0.1233) (0,0)

Here, a node’s best strategy is not clear. A node is always
better off choosing the opposing strategy of its competi-
tor. Choosing the follower strategy is more conservative. A
throughput of at least 0.1233 is ensured, but the throughput
can be at most 0.25. If the leader strategy is chosen, throughput
of 0.3595 is possible, but throughput of 0 is also a possible
outcome. Interestingly, this game has two symmetric Nash
equilibrium solutions, i.e., (SF , SL) and (SL, SF ).

From the results of the above two simultaneous move
games, we can further explain the three solution regions of the
Stackelberg game in figure 6. When the budget is between 1/3
and 2/3, both nodes are afford to use classes of cooperative
(e.g. SC) or competitive (e.g. SM ) strategies. The uniqueness
of the Nash equilibrium solution implies that nodes would
similar strategies regardless it is the leader player or the follow
player. As the budget increases, it is affordable for the nodes
to use any strategy. From the symmetric Nash equilibria in the
simultaneous move game, the leader player can always take
advantage to choose a favorable equilibrium in the Stackelberg
game.

VI. Selfish Behavior Detection and Prevention
In the previous section, we used non-cooperative games

of two nodes to show that selfish behavior of nodes deteri-
orates the overall throughput obtained across the transmission
medium, as well as that of the individual nodes. In this section,
we discuss how cooperative nodes can identify and prevent
selfish behavior in a general N -node system.

A. Transmitting is a Dominating Strategy

Consider any node i at any time-slot t. If it attempts to
transmit, the probability of success is

Πj 6=i(1− pj),

where pj is the probability (pj
1 or pj

2 depending on j’s state)
that node j transmits in that time-slot. Without any budget
constraint, node i can achieve the highest throughput by trans-
mitting a packet during every time-slot. However, if node i
transmits a packet in every time-slot, other nodes transmission
attempts will always fail. Over time, this phenomenon can be
easily observed. Here, we consider how cooperative nodes can
alter their parameters if their perceived success rates are too
small in such a way that selfish nodes become “encouraged”
to set their parameters to mimic the behavior of cooperative
nodes.

B. Selfish Behavior Detection

Theorem 6: For an M -short-term fair cooperative envi-
ronment, where each node uses p1 = 1 and p2 = 1 −
N−1

√
1− 1/M , the success rate defined by Tx/Cx for any

node x is lower-bounded by (M−1)(M−2)
(M−1)(M−2)+1 .

Proof:
Tx

Cx
=

NTx

NCx
=

ρ

NCx
,

where NCx is equal to the total average cost for all nodes.
Suppose all N nodes are in backlogged state. Let Q be the
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number of nodes that decide to transmit in a time-slot. Then
Pr{Q = i} = qi =

(
N
i

)
pi
2(1−p2)N−i, where Q is a binomial

random variable with parameters p2 and N .

NCx = ρ + (1− ρ)
∑N

j=2 jqj/(1− q1)
= ρ + (1− ρ)(E[Q]− q1)/(1− q1)
= ρ + (1− ρ)(Np2 − q1)/(1− q1).

Since q1 = Np2(1 − p2)N−1 = Np2(1 − 1
M ) and 1

ρ − 1 =
1

M−1
1

Np2
, we obtain

Tx/Cx = ρ/[ρ + (1− ρ)(Np2 − q1)/(1− q1)]
⇐⇒ 1

Tx/Cx
− 1 = ( 1

ρ − 1)(Np2 − q1)/(1− q1)
⇐⇒ 1

Tx/Cx
− 1 = 1

M−1
1

Np2
(Np2 −Np2(1− 1

M ))/(1− q1)
⇐⇒ 1

Tx/Cx
− 1 = 1

M−1 ( 1
M )/(1− q1)

⇐⇒ 1
Tx/Cx

− 1 = 1
M−1 ( 1

M )/(1−Np2(1− 1
M )).

By Lemma 1, Np2 is monotonically decreasing in N . When
N = 2, Np2 = 2/M is the maximum for N > 1. Substituting
Np2 with 2/M , we have

1
Tx/Cx

− 1 = 1
M−1 ( 1

M )/(1−Np2(1− 1
M ))

=⇒ 1
Tx/Cx

− 1 ≤ 1
M−1 ( 1

M )/(1− 2
M (1− 1

M ))
=⇒ 1

Tx/Cx
− 1 ≤ 1

M−1/(M − 2(1− 1
M )) < 1

M−1
1

M−2

=⇒ Tx/Cx > [(M − 1)(M − 2)]/[(M − 1)(M − 2) + 1].

Theorem 6 provides a guideline for how cooperative nodes
can, in a distributed fashion, detect the existence of any selfish
node. A fraction of at least (M−1)(M−2)

(M−1)(M−2)+1 of a cooperative
node’s transmissions should be successful. For instance, when
M equals 8, this average success rate lower-bound is 42

43 .
When M is larger, the success rate is even higher. Notice
that this success rate is different from the throughput that a
node achieves. With the increase of the number of nodes, each
node’s throughput decreases however the success rate lower-
bound remains the same. In practice, each node can measure
this quantity to infer if there is any selfish node in the system.

C. Selfish Behavior Prevention
In order to prevent selfish behavior in the system, each

cooperative node can implement a new strategy when they
detect selfish nodes. The new strategy uses a p′2(> p2) that
reduces the throughput of the selfish node to a level below
what it would have achieved if p2 were used by all cooperative
nodes. Knowing that such a reduction will occur, selfish nodes
have the necessary incentive to remain cooperative.

Suppose after all cooperative nodes activate the new strategy
p′2, the selfish node obtains throughput T ′x. T ′x has to be less
than ρ/N , which is the fair share throughput gained in a
cooperative environment:

T ′x = (1− p′2)
N−1 < ρ/N

⇐⇒ 1− p′2 < N−1
√

ρ/N

⇐⇒ p′2 > 1− N−1
√

ρ/N.

From Theorem 2, we know that ρ is lower-bounded by 1/2.
Hence, we can substitute in 1/2 for ρ when calculating the
lower-bound of p′2 as an approximation.

Figure 9 shows the cooperative strategy p2 and the selfish
prevention strategy p′2. We see 1 − N−1

√
1/2N is a good

approximation for the lower-bound for p′2.
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Fig. 9. Cooperative p2, selfish preventive p′2 and its approximation.

VII. Adversarial Model Analysis

All previous scenarios assume that each node, whether
cooperative or selfish, is interested in maximizing its own
throughput. In this section, we consider an attacking node
whose goal is to use its restricted budget to minimize the
throughput of the other nodes in the system, i.e., to cause as
many of its packets to collide with what would otherwise be
successful transmissions. We first discuss how much damage
an adversary node can inflict if it uses a random (stateless)
attack. Next, we formulate this attack model as another Stack-
elberg game.

A. Pure Random (Stateless) Attack

If an attacking node is able to transmit a packet in every
time-slot, it can clearly jam all transmissions. We assume that
the adversary node has a budget B ∈ (0, 1], allowing it to
transmit in at most a fraction B of the slots. This budget
represents as the highest frequency of transmission under
which an attack cannot be detected.

Definition 2: An adversary node is said to use a p-pure
random attack if it transmits a packet in each time-slot
independently with probability p.

By Definition 2, an adversary node with a budget B can use
a p-pure random attack for any p ≤ B. We can imagine that a
p-pure random attack for a communication channel is identical
to a lossy channel where a packet is lost with probability p.

Theorem 7: Suppose there are two nodes x and y in the
system. If node x is an adversary node that uses a p-pure
random attack, then regardless of the strategy of player y, y’s
throughput Ty is equal to (1− p)Cy .
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Proof: Substitute px
1 and px

2 with p in the corresponding
throughput for y as in Equation (2). We have

Ty = (π1, π3, π2, π4)




py
1(1− px

1)
py
1(1− px

2)
py
2(1− px

1)
py
2(1− px

2)




= (1− p)(π1, π3, π2, π4)




py
1

py
1

py
2

py
2


 .

Since the corresponding cost function for y as in Equation (3),
we have

Cy = (π1, π3, π2, π4)




py
1

py
1

py
2

py
2


 .

Therefore, Ty = (1− p)Cy .
Theorem 7 formalizes the intuitive result that a p-pure random
attack reduces the capacity to be 1−p of the original capacity.
Interestingly and counter-intuitively, if we have more than one
cooperative node, the damage caused by a p-pure random
attack is often larger than a factor of 1− p.

Theorem 8: Suppose originally there are N homogeneous
nodes that use p1 = 1 and p2 < 1/N in the system. They
achieve an aggregate throughput ρ. If an adversary node joins
the system and uses p-pure random attack, then the aggregate
throughput of the N cooperative node is less than (1− p)ρ.
Proof: Before the adversary node comes into the system,
we can model the system as in Figure 2. The transition
probabilities are pb = (1−p2)N−1 and pa = Np2(1−p2)N−1.
After the adversary node comes, we define the corresponding
transition probabilities to be p′b and p′a. Because a successful
packet from a normal node happens only if the adversary node
does not transmit, we have p′b = (1−p)pb and p′a = (1−p)pa.
From Equation (5), we obtain

ρ =
Np2(1− p2)N−1

1 + (Np2 − 1)(1− p2)N−1
.

The new throughput ρ′ is

ρ′ =
p′a

1− p′b + p′a
=

Np2(1− p2)N−1

1
1−p + (Np2 − 1)(1− p2)N−1

.

Therefore,

ρ′

ρ
=

1 + (Np2 − 1)(1− p2)N−1

1
1−p + (Np2 − 1)(1− p2)N−1

< 1− p.

The last inequality holds if p2 < 1/N .
An explanation of this result is that as more nodes participate
in the cooperative process, the expected number of slots be-
tween transmissions in the Backlogged State grows at a faster
rate than the expected number of slots between transmissions
in the Free State. A random seeding of losses forces more
nodes to spend increased time in the Backlogged State, and
as a result, each node attempts fewer transmissions over time,
yet still loses a fraction p of the attempts to the random loss
process.

B. Adversary Stackelberg Game

Now, we compute the reduction in throughput caused by an
adversary node when it maximizes its attack power under a
two-state system. As in Section V-B, we model this system
as a Stackelberg game. The difference between the previous
model and this model is that we assume the leader node x is
the attacker and its sole objective is to minimize the throughput
of node y. Because the leader has an advantage over the
follower, making the adversary node the leader maximizes
its potential for damage. We still assume that node x and y
have budget constraints: Cx ≤ Bx and Cy ≤ By respectively.
The adversary Stackelberg game can be formally described as
follows:

Player: The leader node x and the follower node y.
Strategy: Sx = {px

1 , px
2} for x; Sy = {py

1, p
y
2} for y.

Payoff: −Ty and Ty for x and y respectively.
Game rule: Given any x’s strategy {px

1 , px
2}, y chooses

the best response {py
1, p

y
2} accordingly.

Follower’s Problem:
For any given S̃x, the follower node y solves:

Ŝy(S̃x) = arg max Ty(S̃x, Ŝy)
Subject to : Cy(S̃x, Ŝy) ≤ By.

Leader’s Problem:
The leader node x solves:

Ŝx = arg min Ty(Ŝx, Ŝy(Ŝx))
Subject to : Cx(Ŝx, Ŝy(Ŝx)) ≤ Bx.

C. Two Stackelberg Equilibrium Regions

By backward induction, we solve the above adversary Stack-
elberg game for nodes who have the same budget constraints,
i.e., Bx = By.
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Fig. 10. Throughput in (adversary) Stackelberg equilibrium.

Figure 10 plots the throughput of the follower (non-
attacking) node y when x chooses the optimal attacking
strategy of the Stackelberg game. It also plots the curve
By(1−Bx), which gives the throughput of node y when the
attacker uses a p-pure random attack with p = Bx. Figure
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Fig. 11. Cost in (adversary) Stackelberg equilibrium.

11 shows the costs incurred by both players. We identify two
regions in the Stackelberg equilibrium solutions:

1) When the budget is less than 2/3, both players use
up their budgets. Player y achieves identical throughput
when attacked by the adversarial leader player and by a
p-pure random attacker.

2) When the budget is larger than 2/3, player y achieves
slightly but observably lower throughput when attacked
by the adversarial leader player than attacked by the p-
pure attacker.

Intuitively, the attacking node will always use up its budget
to attack. But surprisingly, a strategic, two-state attack cannot
do better than pure random attack if the adversary node does
not have a budget larger than 2/3. When the budget is larger
than 2/3, the two-state attack is only slightly more effective.

D. Random Attack Vs. Strategic Attack

We show the strategy solutions of both players in Figure 12.
We find that the strategies played in the two budget regions
are quite different.

Not surprisingly, when the budget is less than 2/3, the
attacking node uses the pure random strategy px

1 = px
2 = Bx.

Theorem 7 explains why the throughput Ty is so close to curve
By(1−Bx) in the lower budget region. It turns out that player
y has multiple strategies to maximize its throughput, but all of
these strategies use up the budget By. Therefore, although the
strategies played by node y seem to be irregular, node y always
gains a throughput that is close to By(1 − Bx). Notice that
when the budget is very small (e.g. N ≤ 0.2), the probability
of a collision is extremely small. Therefore, there are multiple
optimal strategies that can maximize throughput. Of course,
px
1 = px

2 = Bx should be one of the optimal strategies that
maximizes throughput.

After comparing the strategies played by both nodes in the
larger budget region with those used by two non-cooperative,
non-attacking nodes in Figure 8, we notice that they are strik-
ingly similar. This means that an adversary node x chooses a
strategy very similar to what is chosen by a node who wishes
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Fig. 12. Strategies in Stackelberg equilibrium.

to selfishly maximize its own throughput. Of course, node y
would therefore use the same response strategy.

In conclusion, if bandwidth requirements/capabilities are
low, an attacker cannot do much better than attacking at
random points in time. If the bandwidth requirements and
capabilities are high, then an attacker behaves similarly to a
node seeking to maximize its own throughput.

VIII. CONCLUSION

In this paper, we generalize the slotted-Aloha protocol to
a two-state protocol and construct its Markov Model. We
find that if all nodes cooperate in an effort to maximize the
aggregate throughput, an aggregate throughput of at least one
half (ρ > 1/2) can be achieved regardless of the number of
nodes competing for bandwidth. If all nodes are selfish and
attempt to maximize their own individual throughput, both
the aggregate throughput and system fairness will be com-
promised. In a Stackelberg game, a leader node can achieve
much higher throughput than a follower node with large
budget limits. In a simultaneous move game, where nodes
both strategically choose parameters, a situation similar to the
traditional Prisoner’s Dilemma arises. Finally, we showed that
adversary nodes with limited budgets can do little better than
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a random attack, and nodes with large budgets should behave
like their selfish counterparts.

The generalized slotted-Aloha provides a framework to
analyze different behavior of autonomous nodes in system.
Some analytical observations from different behavioral mod-
elings provide guidelines for building robust and efficient
media access protocols, from which systems can obtain higher
aggregate throughput, as well as the ability to cope with selfish
and malicious users.
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