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Abstract— In this paper we investigate the diversity order of
single-carrier frequency domain equalizers (SC-FDE). Specifi-
cally, we look at minimum mean square error (MMSE) linear
equalizers utilizing block-transmission and cyclic prefix. It is
shown that the diversity order in these systems depends on
data transmission rate, channel memory length, as well as
transmission block length. Analyses reveal that with memory
length ν and transmission block length L, for the rates R ≤ log L

ν
full diversity of ν+1 is achievable. For higher rates the achievable
diversity order is degraded and is equal to �2−RL�+1. Therefore
MMSE SC-FDE has a diversity that varies between 1 and ν +1,
and achieves full diversity only for a limited range of data rates.

I. INTRODUCTION

In this paper we analyze the diversity of single-carrier
frequency domain equalization. To begin with, we briefly
review some of the previous results on the diversity of various
classes of equalizers. For symbol-by-symbol equalization, it
has been shown that full diversity can be achieved, therefore
the only penalty with respect to maximum likelihood detection
is a coding gain. This is true for both minimum mean square
error (MMSE) decision feedback equalization [1] as well as
MMSE linear equalizers [2].

On a different front, orthogonal frequency division mul-
tiplexing (OFDM) [3] and single-carrier frequency domain
equalization (SC-FDE) [4] have emerged as popular schemes
for broadband communication. These techniques process data
in blocks that include a cyclic prefix. The advantage of
SC-DFE over OFDM is that it does not suffer from peak-
to-average ratio problem and high sensitivity to frequency
synchronization.

While the diversity order of OFDM has been well studied
(e.g. in [5], [6]), that of SC-FDE still needs more investi-
gation. Hedayat et. al. in [7] have studied MMSE SC-FDE
and have shown the achievability of full diversity for very
low rates (R � log ν+1

ν ) and diversity one for high rates
(R � log ν+1

ν ). In this study, the transmission block length is
assumed to be fixed and equal to the number of channel taps.

In this paper we analytically show the dependence of
diversity order on the data rate and transmission block length
for all rates and all transmission block lengths. We find the
tradeoff between data rate and diversity and demonstrate show
that transmission block length shapes this tradeoff.

Our proofs consist of two steps. First we fix the transmission
block length to be equal to the degrees of freedom, i.e. L =
ν + 1 and find ν + 1 rate intervals for which diversity orders
{1, . . . , ν+1} are achievable. Then we generalize the results to
the case of arbitrary transmission block length and show how
increasing this length affects the rate intervals we previously
found.

II. SYSTEM MODEL AND DEFINITIONS

We consider a single carrier system with white Gaussian
noise and frequency selective wireless quasi-static fading
channel. The channel in the D domain is modeled as

H(D) = h0 + h1D + · · · + hνDν

where ν shows the channel memory length and hi’s are
zero mean, unit variance complex Gaussian random variables.
Assuming transmission block length L and exploiting the
cyclic-prefix (CP) guard intervals, the inter-block interferences
are removed and the system is governed by

yL×1 = HL×LxL×1 + nL×1 (1)

where H is a circulant matrix and the channel coefficients are
assumed to remain unchanged during each block transmission
period.

H =




h0 h1 . . . hν−1 hν 0 . . . 0
0 h0 h1 . . . hν−1 hν . . . 0
...

...
...

...
...

...
...

h1 h2 . . . hν 0 0 . . . h0




Definition 1: We denote the diversity order of a system with
channel memory length ν, block transmission length L and
data rate R by d(R, ν, L).

Definition 2: We say that f(ρ) is exponentially equal to ρd,
f(ρ) � ρd when

lim
ρ→∞

log(f(ρ))
log ρ

= d

◦≤ and
◦≥ are defined similarly.

Throughout the analysis, otherwise mentioned, by log we
always mean a base 2 logarithm.
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III. MMSE LINEAR SC-FDE

Minimum mean-square error (MMSE) linear equalizers
do not cancel the interference completely but rather bal-
ance a reduction in inter-symbol interference (ISI) and
noise/interference power. For the transmission model of Equa-
tion (1), the MMSE SC-FDE has the matrix form of

W = (HHH + ρ−1I)−1HH

where ρ is the transmission signal to noise ratio. Consequently
the transformed received signal is

ŷ = (HHH + ρ−1I)−1HHHx + ñ

It’s been shown that the unbiased decision-point SNR of
MMSE linear block equalizers is (see e.g. [7], [8])

γ =
1

1
L

L∑
k=1

1
1+ρ|λk|2

− 1 (2)

where λk’s are the eigenvalues of matrix H. It is noteworthy
that for the circulant matrix H, the eigenvalues are

λk =
ν∑

i=0

hiω
i
k k = 1, . . . , ν + 1 (3)

where ωk’s are the L’th roots of 1, i.e. ωL
k = 1. The sequence

of the eigenvalues of matrix H, {λk} , is also the discrete
Fourier transform of the sequence {h0, . . . , hν , 0, . . . , 0}1×L

which is the first row of matrix H. The eigenvalues λk’s are
linear combinations of channel coefficients hi’s and therefore
have zero mean complex Gaussian distribution.

Remark 1: For the case of L = ν +1, it can be shown that
E[λiλj ] = 0 for ∀i �= j and due to their Gaussian distribution
it is concluded that all the eigenvalues are independent.

IV. DIVERSITY ORDER ANALYSIS

In this section we analytically find the diversity order
achieved by MMSE linear frequency domain equalizers. As the
analysis reveal, for a frequency selective channel, the diversity
order depends on the data rate, channel memory length and
block transmission length.

First we investigate the special case that transmission block
length L = ν + 1 and then we generalize the results to the
general case of arbitrary transmission block length.

Lemma 1: For independent exponentially distributed ran-
dom variables x1, . . . , xn with mean 1

λ we have:

lim
λ→∞

P (
n∑

i=1

xi > n) = ne−nλ (4)

Proof: Since the xi’s are exponentially distributed,
∑

xi

has Gamma distribution.
n∑

i=1

xi ∼ Gamma(n, 1/λ)

Therefore,

P (
n∑

i=1

xi > n) =
∫ ∞

n

xn−1e−xλλn

Γ(n)
dx

=
1

(n − 1)!

∫ ∞

nλ

xn−1e−x dx

=
1

(n − 1)!
Γ(n, nλ)

=
n−1∑
i=0

(nλ)i

i! enλ
(5)

Where, Γ(n) and Γ(n, nλ) are Gamma and upper incomplete
Gamma functions respectively. Equation (5) is derived from
the expansion of incomplete upper Gamma functions for
integer values of n. Therefore we find the limit as follows.

lim
λ→∞

P (
n∑

i=1

xi > n) =
n−1∑
i=0

lim
λ→∞

(nλ)i

i! enλ

a=
n−1∑
i=0

lim
λ→∞

1
enλ

= ne−nλ (6)

Equation (a) is derived by applying L’Hospital’s rule i times
on the term (nλ)i

i!enλ for i = 0, . . . , n − 1.

Remark 2: For λ = ln ρ, lim
ρ→∞P (

∑n
i=1 xi > n) � ρ−n.

Lemma 2: For i.i.d. complex Gaussian random variables
λ1, . . . , λn and real value m ∈ (0, n), we have:

lim
ρ→∞P

( n∑
k=1

1
1 + ρ|λk|2 > m

)
� ρ−(�m�+1) (7)

where 	m
 denotes the greatest integer less than or equal to
m.

Proof: For a complex Gaussian random variable λ and
a certain value ρ we define x � − log |λ|2

log ρ . It can be readily
verified that

lim
ρ→∞pX(x) = (ln ρ)ρ−x

which shows x is exponentially distributed with mean 1
ln ρ .

Now for all k’s we define

xk � − log |λk|2
log ρ

for 1 ≤ k ≤ n (8)

Since λk’s are i.i.d, so are xk’s. We also define

u(m) � δ(m − 	m
)
where δ(·) is Dirac’s delta function and therefore u(m) has
only non-zero values for integer values of m. By expanding
the LHS of Equation (7) and ordering the terms on the two
sides of the inequality such that all the coefficients of ρ are
strictly positive we have

lim
ρ→∞P

( n∑
k=1

1
1 + ρ|λk|2 > m

)
=
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lim
ρ→∞P

( n∑
k=n−�m�−u(m)

(m + k − n)ρk
∑

A⊂{1,...,n}
|A|=k

∏
j∈A

|λj |2 <

n−�m�−1∑
k=1

(n − k − m)ρk
∑

A⊂{1,...,n}
|A|=k

∏
j∈A

|λj |2 + (n − m)
)

Remark 3: For positive and fixed values of values of {ai}
and {bi} and positive random variables {ui} and {vi}:

lim
ρ→∞P (

∑
i

aiρ
ui <

∑
i

biρ
vi) = P (max

i
ui < max

i
vi)

The terms of the inequality inside P (·) have been ordered such
that all ρk’s have strictly positive coefficients. Now by using
the definition in Equation (8), considering the remark above
and without loss of generality assuming x1 ≤ · · · ≤ xn we
have

lim
ρ→∞P

( n∑
k=1

1
1 + ρ|λk|2 > m

)

= P

(
max

0≤i≤�m�−u(m)

n−i∑
k=1

(1 − xk) < max
�m�+1≤i≤n

n−i∑
k=1

(1 − xk)
)

=
n−�m�−u(m)∑

j=1

P (xj ≥ 1, xj−1 < 1)

× P

( n−�m�∑
k=j

xk > n − 	m
 − j + 1
)

+
n∑

j=n−�m�+1

P (xj ≥ 1, xj−1 < 1)

× P

( j−1∑
k=n−�m�

xk > j + 	m
 − n

)

b=
n−�m�−u(m)∑

j=1

(e− log ρ)(n−j+1)

× (n − 	m
 − j + 1)e−(n−�m�−j+1) log ρ

+
n∑

j=n−�m�+1

(e− log ρ)(n−j+1)

× (n − 	m
 − j + 1)e−(j+�m�−n) log ρ

� lim
ρ→∞

n−�m�−u(m)∑
j=1

ρ−(n−j+1)ρ−(n−j−�m�+1) (9)

+ lim
ρ→∞

n+1∑
j=n−�m�+1

ρ−(n−j+1)ρ−(j+�m�−n)

� lim
ρ→∞ ρ−(�m�+2+2u(m)) + ρ−(�m�+1) (10)

� lim
ρ→∞ ρ−(�m�+1) (11)

Equation (b) holds due to the exponential distribution of xi’s
with mean 1

ln ρ and the result of Lemma 1. For any arbitrary
order of xi’s via the same approach the same results can be

obtained and therefore the result is independent of the order
of xi’s.

Now by using the results of lemmas 1 and 2, the main
contribution of this paper is provided in the following theorem.

Theorem 1: For a frequency selective channel with (ν +1)
taps, cyclic-prefix block transmission of length L = ν + 1,
linear MMSE frequency domain equalization and data trans-
mission rate R, the achievable diversity order is

d(R, ν, ν + 1) = 	2−R(ν + 1)
 + 1 (12)

Proof: Given the unbiased decision point SNR in Equa-
tion (2) the outage probability is

P (O) = P (log(1 + γ) < R)

= P

( ν+1∑
k=1

1
1 + ρ|λk|2 > 2−R(ν + 1)

)

Since for R > 0 we have 2−R(ν + 1) < ν + 1 and as
mentioned earlier in Remark 1, λk’s are iid with complex
Gaussian distribution, the necessary conditions of Lemma 2
are satisfied, therefore

lim
ρ→∞P (O) � ρ−(�2−R(ν+1)�+1) (13)

which shows that the diversity order achieved for data trans-
mission rate R and L = ν + 1 is

d(R, ν, ν + 1) = 	2−R(ν + 1)
 + 1

and this concludes the theorem.

Figure 1 illustrates numerical results for the case of ν = 3
and L = 4. It is shown that by changing the data transmission
rate the diversity order varies between 1 and 4 and as stated
in Equation (12).

Now we analyze the case that transmission block length
exceeds (ν + 1) and find its diversity order. For this purpose
we first provide the following lemma which has a key role in
linking the cases of L = ν + 1 and arbitrary L.

Lemma 3: For two sequences h1×L and h′
1×L′ of the form

{h0, . . . , hν , 0, . . . , 0} and discrete Fourier transforms {λk}
and {λ′

k} respectively, we have

lim
ρ→∞P (

L∑
k=1

1
1 + ρ|λk|2 > m) � lim

ρ→∞P (
L′∑

k=1

1
1 + ρ|λ′

k|2
> m)

(14)

Proof: For the purpose of brevity, we provide a sketch
of the approach to the proof of this lemma and omit the
unnecessary justification details.

The two sequences h and h′ only differ in the number of
zeros padded, therefore according to Parseval’s theorem we
have:

E � 1
L

L∑
k=1

|λk|2 =
1
L′

L′∑
k=1

|λ′
k|2 =

ν∑
k=0

|hk|2 (15)
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Fig. 1. Diversity order achieved by MMSE-SC-FDE in a channel with
memory length ν = 3 and block transmission L = 4.

Using the arithmetic-harmonic inequality provides

1
L

L∑
k=1

1
1 + ρ|λk|2 ≥ 1

1 + ρE (16)

By defining |λmin|2 � mini |λi|2 and |λ′
min|2 � mini |λ′

i|2 it
can be readily shown that

L′∑
k=1

1
1 + ρ|λ′

k|2
≤ 1/ρ + E

|λ′
min|2

· L′

L

L∑
k=1

1
1 + ρ|λk|2 (17)

We also assume that

lim
ρ→∞P

( L∑
k=1

1
1 + ρ|λk|2 > m

)
� ρ−d (18)

Now we define the random variable U = L|λ′
min|2

L′E which is a
function of the channel coefficients hi’s. Also we define the
event A � {|λmin| �= 0 & |λ′

min| �= 0}. Considering that
λk’s and λ′

k’s have complex Gaussian distribution we have
P (A) = 1.

By exploiting the inequality in Equation (17) we get

lim
ρ→∞P

( L′∑
k=1

1
1 + ρ|λ′

k|2
> m

)
≤

lim
ρ→∞P

(
L|λ′

min|2
L′E

L∑
k=1

1
1 + ρ|λk|2 > m

)
=

lim
ρ→∞P

(
1
U

L∑
k=1

1
ρ|λk|2 > m|A

)
=

lim
ρ→∞

∫
u

P

( L∑
k=1

1
Uρ|λk|2 > m|A, U = u

)
P (u)du (19)

Since the two probability terms inside the integral in Equa-
tion (19) are dominated by the function g(u) = 1, according

to dominated convergence theorem, the limit and integral are
interchangeable. Therefore,

lim
ρ→∞P

( L′∑
k=1

1
1 + ρ|λ′

k|2
> m

)

≤
∫

u

lim
ρ→∞P

( L∑
k=1

1
1 + Uρ|λk|2 > m|A, U = u

)
P (u)du

≤
∫

u

lim
ρ→∞(ρu)−dp(u)du = lim

ρ→∞ ρ−d

∫
u

u−dp(u)du

�ρ−d (20)

Which shows that

lim
ρ→∞P (

L′∑
k=1

1
1 + ρ|λ′

k|2
> m)

◦≤ lim
ρ→∞P (

L∑
k=1

1
1 + ρ|λk|2 > m)

(21)
Similarly it can be demonstrated that

lim
ρ→∞P (

L∑
k=1

1
1 + ρ|λk|2 > m)

◦≤ lim
ρ→∞P (

L′∑
k=1

1
1 + ρ|λ′

k|2
> m)

(22)
Equations (21) and (22) prove that the LHS and RHS of the
Equation (14) are exponentially equal and thus concludes the
proof Lemma 3.

Figure 2 provides numerical simulation when ν = 3 and
compares two different cases of L = 6 and L = 7 for different
values of m = 0.5, 1.5, 2.5, 3.5. Numerical results support the
exponential equality in Equation (14).

Theorem 2: In a frequency selective channel with cyclic-
prefix linear MMSE frequency domain equalization, increasing
the block equalization length expands the rate interval for
which a certain diversity order d is achievable:

d(R, ν, L) = d(R + log
L′

L
, ν, L′)

Proof:

lim
ρ→∞P

(
1
L

L∑
k=1

1
1 + ρ|λk|2 > 2−R

)
(23)

= lim
ρ→∞P

( L∑
k=1

1
1 + ρ|λk|2 > L2−R

)

� lim
ρ→∞P

( L′∑
k=1

1
1 + ρ|λ′

k|2
> L2−R

)
(24)

= lim
ρ→∞P

(
1
L′

L′∑
k=1

1
1 + ρ|λ′

k|2
>

L

L′ 2
−R

)

= lim
ρ→∞P

(
1
L′

L′∑
k=1

1
1 + ρ|λ′

k|2
> 2−(log L′

L +R)

)
(25)

Equation (24) holds according to Lemma (3) for m = L2−R.
Exponential equality of equations (23) and (25) proves the
theorem.
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Fig. 2. Numerical simulation for the case ν = 3 and L = 6, 7. Solid lines
and dashed lines correspond to the case L = 6 and L = 7 respectively. The
plots from top to bottom correspond to m = 0.5, 1.5, 2.5, 3.5.

So far in Theorem 1 we have demonstrated that when L =
ν + 1, how increasing the data rate can force the diversity
order change between 1 and ν + 1 and then in Theorem 2 we
have analyzed the effect of transmission block length. Putting
these results together leads to the following statement.

Corollary 1: In a frequency selective fading channel with
memory length ν + 1 and MMSE frequency domain linear
equalization and transmission block length L, for data trans-
mission rate R the achievable diversity order is:

d(R, ν, L) =




ν + 1 R ≤ log L
ν

	2−RL
 + 1 o.w.
(26)

As stated above, for data transmission rate below log L
ν

achieving full diversity is guaranteed and as the rate increases
the diversity order is degraded. Specifically the diversity order

for the rates lying in the interval [log L
i , log L

i−1 ) is i for
i = 1, . . . , ν.

V. CONCLUSION

In this paper we show that unlike symbol-by-symbol
equalization, single-carrier frequency domain equalizers with
cyclic-prefix block transmission may not fully capture the
diversity inherent in the frequency-selective channels. We
prove that the diversity order is affected by data rate as well
as transmission block length. The results show that at high
rates and low block-lengths, only diversity 1 is achieved, but
by increasing the transmission block length and/or decreasing
data rate, diversity order can be increased up to a maximum
level of ν + 1. We characterize the dependence on these two
parameters in our results.
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