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Abstract—We consider decentralized multiantenna cognitive
radio networks where the secondary (cognitive) users are granted
simultaneous spectrum access along with the license-holding
(primary) users. We treat the problem of distributed beamforming
and rate allocation for the secondary users such that the minimum
weighted secondary rate is maximized. Such an optimization is
subject to 1) a limited weighted sum-power budget for the sec-
ondary users and 2) guaranteed protection for the primary users
in the sense that the interference level imposed on each primary
receiver does not exceed a specified level. Based on the decoding
method deployed by the secondary receivers, we consider three
scenarios for solving this problem. In the first scenario, each
secondary receiver decodes only its designated transmitter while
suppressing the rest as Gaussian interferers (single-user decoding).
In the second case, each secondary receiver employs the max-
imum likelihood decoder (MLD) to jointly decode all secondary
transmissions. In the third one, each secondary receiver uses the
unconstrained group decoder (UGD). By deploying the UGD,
each secondary user is allowed to decode any arbitrary subset of
users (which contains its designated user) after suppressing or
canceling the remaining users. We offer an optimal distributed
algorithm for designing the beamformers and allocating rates in
the first scenario (i.e., with single-user decoding). We also provide
explicit formulations of the optimization problems for the latter
two scenarios (with the MLD and the UGD, respectively), which,
however are nonconvex. While we provide a suboptimal central-
ized algorithm for the case with MLD, neither of the two scenarios
can be solved efficiently in a decentralized setup. As a remedy, we
offer two-stage suboptimal distributed algorithms for solving the
problem for the MLD and UGD scenarios. In the first stage, the
beamformers and rates are determined in a distributed fashion
after assuming single user decoding at each secondary receiver.
By using these beamformer designs, MLD often and UGD always
allow for supporting rates higher than those achieved in the first
stage. Based on this observation, we construct the second stage by
offering optimal distributed low-complexity algorithms to allocate
excess rates to the secondary users such that a notion of fairness
is maintained. Analytical and empirical results demonstrate the
gains yielded by the proposed rate allocation and the beamformer
design algorithms.

Index Terms—Beamforming, cognitive radio, fairness, rate allo-
cation, successive group decoder.
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I. INTRODUCTION

I N classical cognitive radio systems, the secondary users can
only transmit in “white spaces,” which denote the frequency

bands (or time intervals) where the primary (or licensed) users
are silent [1]. On the other hand, in generalized cognitive radio
systems, the secondary users can also transmit simultaneously
with primary users, as long as certain coexistence constraints are
satisfied [2], [3]. Clearly, the latter systems can achieve higher
spectral efficiencies but at the expense of additional side-in-
formation at the secondary users and increased signaling over-
head. We consider decentralized multiantenna cognitive radio
networks where secondary transceivers can coexist with pri-
mary ones. However, in our setup, no secondary transmitter
has access to any primary user’s codebook. Instead, each sec-
ondary transmitter employs beamforming to communicate with
its desired receiver while ensuring that the aggregate interfer-
ence seen by each primary receiver does not exceed a specified
level (interference margin).

Our goal is to design optimal beamformers for the secondary
users and assign rates to them in a distributed fashion in order
to maximize the smallest weighted rate among secondary users.
This optimization is subject to a weighted sum-power constraint
on the secondary users as well as the interference margin con-
straints imposed by the primary users. Based on the decoding
scheme deployed by the secondary users, we consider three sce-
narios for solving this problem. In the first one, each secondary
receiver employs a minimum mean-squared error (MMSE) de-
coder and attempts to decode only the signal transmitted by its
designated transmitter after suppressing the remaining signals
via linear filtering (a.k.a., single-user decoding). We propose
an efficient distributed algorithm that yields a globally optimal
set of beamformers. The resulting beamformers are optimal for
networks that do not support exchange of codebooks among
secondary transceivers or where more advanced decoding at
the secondary receivers is not feasible due to complexity con-
straints. In this context, we note that [4] has optimally solved
the linear transmit beamforming problem in a multiple-input
single-output (MISO) cognitive radio network1 with a single
secondary transceiver. A variation of the beamforming problem
has also been optimally solved in [5] for a MISO cognitive radio
network with a single secondary and a single primary trans-
ceiver but where the channel vector from the secondary trans-
mitter to the primary receiver is imperfectly known to the sec-
ondary user. Other related works include [6], which is a compre-
hensive work on precoder design in MISO point-to-multipoint
channels; and [7], which proposes a distributed beamforming

1A cognitive radio network where all the receivers have a single receive an-
tenna is referred to here as a MISO cognitive radio network.
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algorithm to minimize the weighted sum power subject to
constraints in the downlink MISO multicell network.

In the second scenario, we assume that each secondary re-
ceiver is equipped with a maximum likelihood decoder (MLD),
which is used to jointly decode all secondary transmissions. We
show that in this scenario, the beamforming design problem can
be posed as a nonconvex optimization problem with a quadratic
objective and indefinite quadratic constraints. Solving such a
problem optimally in its general form is intractable [8]. Nev-
ertheless, after a convex relaxation, it can be converted to a
semidefinite program (SDP). This design procedure for MLD
requires central processing and does not seem practical for de-
centralized cognitive networks.

In the third scenario, we assume that each secondary receiver
uses the unconstrained group decoder (UGD) [9] and is allowed
to jointly decode any subset of secondary users containing its
desired user, after suppressing or canceling the rest of users.
We provide an explicit formulation of the optimization problem
for this scenario. The resulting problem is nonconvex and hence
cannot be efficiently solved even in a centralized setup.

As a remedy for the MLD and UGD, we adopt a two-step
suboptimal approach. In the first step, we obtain a set of beam-
formers that is optimal under MMSE decoding at each receiver.
In the second step, in order to boost the spectral efficiency, we
exploit the fact that the secondary users by employing more ad-
vanced decoders can support higher data rates. Therefore, we
propose allocating excess rates to the secondary users beyond
their minimum acceptable rates, such that 1) weighted max-min
fairness is maintained, 2) all the secondary users remain decod-
able at their respective receivers, and 3) the rate assignment is
pareto-optimal. A key feature of our proposed distributed rate
allocation algorithms is that the complexity at each secondary
receiver is only polynomial in the number of secondary users. In
this context, we note that efficient rate allocation in a single-an-
tenna interference channel (IC) with single-codebook and fixed
power per user has been recently investigated in [10] and [11].
In particular, [11] considers a -user IC where each user em-
ploys the successive interference cancellation (SIC)-based de-
coder and obtains a max-min fair decentralized rate allocation
algorithm. Reference [10] considers a -user Gaussian IC and
solves the problem of maximizing the desired user’s rate at
a particular receiver given the transmission rates of the other
users. In addition, [10] also proposes sequential and iterative
rate allocation algorithms, which yield pareto-optimal rate-vec-
tors albeit without a fairness guarantee.

The remainder of this paper is organized as follows. The model
of the multiantenna cognitive network is provided in Section II,
and the statements of the beamforming and rate optimization
problems are formalized in Section III. The design of the beam-
formers for the MMSE, ML, and UGD receivers are discussed
in Section IV, where we also provide a distributed algorithm for
optimally solving the problem for MMSE receivers. Leveraging
this beamforming design procedure, in Section V we consider the
MLD and the UGD and provide distributed weighted max-min
fair rate allocation algorithms for further boosting the rates
of the secondary users. The simulation results are provided in
Section VI. Section VII concludes this paper. To enhance the flow
of this paper, most of the proofs are confined to Appendixes I–V.

II. SYSTEM MODEL

We consider a decentralized cognitive network comprising
secondary transmitter–receiver pairs coexisting with

primary transceiver pairs via concurrent spectrum access. The
secondary transceivers form a multiantenna Gaussian inter-
ference channel (GIC) where transmitters, each equipped
with transmit antennas, communicate with their desig-
nated single-antenna receivers. The primary transmitters and
receivers have and one transmit and receive antennas,
respectively. We assume quasi-static flat fading channels and
denote the channels from the th secondary transmitter to the
th secondary and primary receivers by and

, respectively, and denote the channels from
the th primary transmitter to the th secondary and primary
receivers by and , respectively.

Let and be scalar complex-valued random variables

with unit power, i.e., , representing
the information symbols of the th secondary and primary trans-
mitters, respectively; and let and de-
note their respective beamforming vectors. The received signals
at the th secondary and primary receivers are given by

for

(1)

for

(2)

where are the additive white Gaussian noise terms
with variances and , respectively. No primary (secondary)
receiver tries to decode the signal intended for any secondary
(primary) user.

III. PROBLEM STATEMENT

We denote the rate assigned to the th secondary user by
and will say that, for the given channel realization, choice

of transmit beamformers, and decoders employed by the sec-
ondary receivers, the rate vector is decod-
able (strictly decodable) if, for any rate vector
and any arbitrarily fixed , there exists a set of codes
such that each secondary receiver can decode its desired user
(secondary transmitter) with a probability of error no greater
than . The interference level seen by the th primary receiver
due to secondary transmissions is denoted by and is given by

for (3)

The th primary receiver specifies a parameter , which is the
maximum interference it can tolerate from secondary transmis-
sions. Let and define the interference margin
vector . We are interested in solving the fol-
lowing rate optimization problem.

For the given set of channel coefficients, choice of pri-
mary transmit beamformers, and decoders employed by the
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secondary receivers, we seek to maximize the worst case
secondary weighted rate such that the secondary weighted
sum-power is below and the interference seen by the th
primary receiver does not exceed , i.e.,

such that

is decodable

(4)

where and are all positive and account for
weighting the individual rates and powers of the secondary
users, respectively. Note that by definition, if is decodable,
then any rate vector , where , is also decod-
able. Furthermore, the optimization problem in (4) is always
feasible. We show that solving the rate optimization problem
corresponding to can often be facilitated by alternatively
solving a power optimization problem given by

such that
Rate is decodable

(5)

where . Note that the optimization problem
in (5) is not necessarily always feasible, and we adopt the con-
vention when the problem is infeasible. It can be
readily verified that is continuous and nondecreasing in

. Moreover, is also continuous and increasing in
at any strictly feasible rate , i.e., at any strictly decod-

able rate vector for which the margin constraints in (5) are
satisfied with strict inequality. The connection between the rate
and power optimization problems is provided in the following
theorem.

Theorem 1: For any arbitrary set of , , , the rate and power
optimization problems corresponding to and are
related as follows:

(6)

and if (5) is feasible, then

Proof: See Appendix I.
Thus, the rate and power optimization problems can be

deemed as complementary. It is noteworthy that the inequality
in (6) becomes equality only if the weighted sum-power
constraint in the rate optimization problem corresponding to

holds with equality at each one of its optimal solutions.
Also, for each choice of decoders considered in the sequel,
strict inequality holds in (6) only if at least one of the margin
constraints in the power optimization problem corresponding
to is active at each of its optimal solutions. This
follows from the fact that, for any given set of beamformers,
wherein all secondary beamforming vectors are nonzero, we

can strictly increase the rates of all secondary users by scaling
their powers identically.

IV. BEAMFORMER DESIGN

A. MMSE Receivers

In this section, we assume that each secondary receiver uses
the MMSE single-user decoder, which only decodes its desired
user and treats the other users as Gaussian interferers. Then, for
a given set of channel coefficients and choice of beamformers,
the rate that can be achieved for the th user is

, where denotes the signal-to-(interference plus
noise) ratio at the th secondary receiver and is given by

(7)

We first provide a distributed algorithm for solving . Then,
by exploiting the connection between the problems and

, as established in Theorem 1, we use this algorithm to
obtain another distributed algorithm for solving . By
defining and , the optimization
problem in (5) becomes equivalent to the problem

such that , for
(8)

For solving the problem , we start off by investigating the
feasibility of this problem. Next, we show that the problem can
be solved efficiently as a second-order cone program (SOCP)
and then propose a distributed algorithm that finds its glob-
ally optimal solution while abstaining from requiring a central
controller.

For any set of channel realizations , , , and
given , , , we define

and for

for and

and for (9)

Therefore, we can rewrite problem as shown in (10) at the
bottom of the next page.

Keeping the interference to the primary users as well as
other secondary users low suggests using beamforming vectors
with small transmit powers. On the other hand, for small
transmit powers, the secondary receivers may violate their

constraints. Due to this tension, it is not always possible
to have feasible solutions for . Therefore, we first provide
a necessary condition for examining the feasibility of .
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For this purpose, we first define for
and

...
...

...
...

...
...

...
...

...
...

...
...

and

. . .
...

...
...

...
...

...
...

...
...

. . .

Therefore, we can rewrite the constraints of (10) as

(11)

where .
Lemma 1: Problem is feasible only if the channel real-

izations are such that

rank

Proof: See Appendix II.
A simple sufficient condition for feasibility is given next. It

uses the fact that if each secondary transmitter can employ a
beamformer that causes zero interference to all unintended re-
ceivers but yields a positive signal strength at the intended re-
ceiver, then any given set of s are achievable. Let , ,
be the 1 matrix whose rows are the outgoing
channel vectors of the th secondary transmitter corresponding
to all its unintended receivers.

Lemma 2: Problem is feasible for any finite if
the channel realizations are such that for each secondary
transmitter

In the subsequent analysis, we assume that the optimization
problem is strictly feasible. Note that the optimization

problem is not convex in its direct form. Nevertheless, we
can show that strong duality holds for this problem by arguing
that this problem can be transformed to an SOCP, which has a
linear objective function and second-order cone constraints and
is convex. The same idea has been employed for precoder de-
sign in downlink MISO point-to-multipoint channels [6].

Lemma 3: Strong duality holds for , i.e., it has zero du-
ality gap with its Lagrangian dual.

Proof: See Appendix III.
When all the channels are known to a central agent, as shown

in Appendix I, the problem can be solved efficiently as an
SOCP. In a distributed network, however, each secondary trans-
mitter has access only to limited channel state information. Here,
we do not assume global channel state information at each sec-
ondary user. Instead, we assume that primary users have no side-
information about the secondary channel states, and each sec-
ondary user only knows its outgoing (forward) channels to all
the secondary and the primary receivers. In addition, each sec-
ondary user also knows all the incoming channel vectors seen by
its intended receiver from other secondary users as well as the
effective noise variance (i.e., thermal noise variance plus the in-
terference due to primary transmissions) at its intended receiver.
Lack of complete knowledge of channel state information at the
secondary transmitters necessitates developing distributed algo-
rithms to be run by the secondary users in a decentralized fashion
with limited message passing among themselves. In the sequel,
we develop a distributed scheme that yields the global optimal
solution of by solving its Lagrangian dual problem.

We construct the partial Lagrangian function of the problem
givenin(10)bydualizingonlythe interferencemargins.For

a nonnegative set of multipliers , associated
with the interferencemargins, theLagrangianfunction isgivenby

It is easy to verify that is positive
definite for all ; and by the Cholesky decomposition, we

such that for

for

(10)
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know that there exists an invertible triangular matrix such
that

(12)

where , although not explicitly shown, depends on .
Therefore, since we have incorporated only the interference
constraints in formulating the Lagrangian function, the La-
grange dual function is given by (13) at the bottom of the page
where we have defined

for (14)

By further defining and , we get
(15) as shown at the bottom of the page. Note that for any given
set of , the term is constant and the problem in

(15) is equivalent to minimizing . It can now
be verified that the problem in (15) is equivalent to the op-
timization problem in [7], which considers beamforming de-
sign over downlink MISO multicell networks. In particular, [7]
aims to minimize the weighted sum power subject to con-
straints for the users in different cells and proposes an algorithm
for solving this problem in a distributed way (the base stations
do not collaborate for designing their beamformers). The un-
derlying idea of this distributed algorithm is to exploit the up-
link–downlink duality in multiantenna transmissions. By lever-
aging the approach in [7], we can show that, for any given set
of , can be computed in a distributed way.

On the other hand, according to Lemma 3 which indicates
that strong duality holds for , we know that

(16)

Next, for solving , we utilize the subgradient
method, which provides a simple algorithm for minimizing
such convex problems with possibly nondifferentiable objec-
tive function [12]. We apply the subgradient method on

(which is convex). According to the subgradient
method, we use the following iterative procedure to minimize

:

where is any subgradient of at . Recall that a sub-
gradient of at is any vector that satisfies

, , and is the th step
size. Since the subgradient method is not a descent method, at
each iteration we need to keep track of the best point found thus
far, i.e.,

The subgradient method is guaranteed to converge to the
optimal value for nonsummable diminishing step sizes, i.e.,

and [12]. Hence, to be able to
use the subgradient method, we need to find a valid subgradient
and a step size. We select , which is a nonsummable
diminishing step size. Also we argue that for any point ,

, such that

for

where (17)

is a valid subgradient since,

(18)

such that for
(13)

such that for
(15)
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Therefore, by the aforementioned choices for and , the
subgradient method is guaranteed to converge to the optimal
value and, thus, yields the minimum of or the maximum
of , which is the optimal value of . Algorithm 1 sum-
marizes the steps involved in obtaining .

Algorithm 1—Solving

1: Input , , , and , , ,

2: Define , as specified in (9)

3: Initialize and

4: repeat

5: Construct as in (12); obtain

6: Solve using the distributed algorithm of [7] and find

7: Obtain using transformation

8: Calculate the subgradient as in (17)

9: Update and

10: until convergence

11: Output and

In practice, for implementing Algorithm 1, we allow a spec-
ified maximum number of iterations. If no convergence is ob-
served, we declare the power minimization problem to be infea-
sible and set .

Finally, in order to solve the optimization problem ,
we exploit the relationship between and given in
Theorem 1. In Algorithm 2, by using Algorithm 1 along with a
bisection search, we provide the steps for solving . For
initializing the algorithm, we need lower and upper bounds on
the (optimal) , which we denote by and , re-
spectively. For both bounds, we use beamforming vectors ob-
tained via channel matching, i.e., we set to be a scalar mul-
tiple of . In particular, for obtaining , we

set , , where is the largest posi-
tive scalar such that the power and margin constraints are satis-
fied. For obtaining , we assume the presence of a genie that
ensures the transmission intended for any particular secondary
receiver causes no interference to any other receiver and can
use all the available power, so that the optimal secondary beam-
formers are . Note that Algorithm 2

always returns a feasible and .

Algorithm 2—Solving

1: Input , , and , , ,

2: Initialize

and

3: ,

4: repeat

5: Solve using Algorithm 1

6: if

7: ; update

8: else

9:

10: end if

11: and

12: until

13: Output and

B. Maximum Likelihood Decoders

In this setup, each secondary receiver deploys the MLD that
jointly decodes all transmitted secondary codewords and is op-
timal only with respect to the joint error probability. Recall
that each secondary receiver is interested in recovering only the
codeword transmitted by its designated secondary transmitter.
Therefore, the th receiver secondary will declare an error if and
only if it fails to decode the codeword of its desired secondary
user .

For each user , we define the sets , for ,
to be all possible subsets of that contain , i.e.,

, . In the following lemma, we provide a sufficient
condition for a rate vector to be decodable. This condition
explicitly incorporates the effect of the channel coefficients and
beamforming vectors on the decodability of rate vector .

Lemma 4: When all secondary receivers employ MLD, a suf-
ficient condition for a rate vector to be decodable is

for (19)

Proof: See Appendix IV.
Note that the usual achievable rate region for the MLD is

obtained under the restriction that all codewords can be reliably
decoded. In particular, this region is the set of all rate vectors
that for all non-empty satisfy

(20)

The condition we derived in (19) is more relaxed compared to
the one in (20), since we only need the th user to be decodable
at the th receiver. While we do not prove that the condition in
(19) is also necessary, we note that, using the approach in [13],
it can be argued that a decoding error for user at receiver is
very likely if the condition in (19) is not satisfied.

Next, we define the vector .

Also, corresponding to each subset , we construct an
square matrix that consists of square submatrices

each of dimension . The th submatrix in for
each is and other submatrices are .
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Further, for a rate vector corresponding to each , we define
the scalar

Therefore, the conditions in (19) can be rewritten as
, . The primary interference margin constraints

can also be restated as , where consists
of square submatrices each of dimension , such
that the th submatrix, for , is
and other submatrices are .

By defining , the power mini-
mization problem is given by

such that (21)

The problem in (21) is a nonconvex problem with a quadratic
objective and indefinite quadratic constraints, which in its gen-
eral form is an NP-hard problem [8]. Several approaches have
been developed for solving this problem suboptimally, including
a convex relaxation approach that converts the problem to a
semidefinite program (SDP) described as follows.

By defining , we obtain the problem

such that (22)

By relaxing the constraint and replacing it with the
convex constraint , the problem becomes an SDP that
is a convex problem and can be solved efficiently. We denote
the solution of the SDP by . Note that a feasible solution for
(22) should be a rank-1 matrix, which is not necessarily true for
the solution of the SDP. There are several methods to recover a
rank-1 solution (see [14], where such methods are discussed in
the context of multicast beamforming). Here we adopt a simple
approach and first determine the dominant eigenvector of and

denote it by . Then for finding a

feasible , we set , where and
are positive scaling factors that can be found by solving

a linear program (LP) that minimizes the weighted sum power
under the constraints that the rate and margin constraints are
satisfied. In case either the SDP or the LP is infeasible, we de-
clare the power minimization problem to be infeasible. Finally,
in order to solve the rate optimization problem, we can exploit
the relationship between and given in Theorem
1 and use the aforementioned power minimization technique
along with a bisection search similar to the one provided for the
MMSE receiver in the previous section. While such a method
provides a suboptimal design of the beamforming vectors for
the MLD, a drawback is that it cannot be implemented in a dis-
tributed way.

C. Unconstrained Group Decoders

In this section, we assume that each secondary receiver is
equipped with a UGD [9]. Note that a drawback of the MLD
is that it decodes all secondary users, which entails a high de-
coding complexity and can degrade performance in cases when
some of the other users are best treated as noise. In fact, a rate
vector decodable using the MMSE decoder at each receiver need
not necessarily be decodable upon using the MLD at each re-
ceiver. The UGD, on the other hand, may decode the designated
user jointly with any arbitrary subset of other secondary users,
after suppressing or canceling any other subsets. As a result, any
rate vector that is decodable by MMSE or ML decoders is also
decodable by the UGD. In the following remark, we first state a
sufficient condition for a subset of users to be decodable when
the UGD is deployed at each secondary receiver.

Remark 1: A subset of users is decod-
able at the th receiver under the rate assignment if, for all
nonempty sets , we have

(23)

Moreover, if for an ordered partition of any subset
, the set , where , is decodable at

the th receiver after expurgating users in , i.e.,

(24)

then we have that the set is also decodable.
As a result, a sufficient condition for user to be decodable at

the th receiver when the UGD is deployed is that there exists a
decodable subset containing . It is informative to notice here
that the worst case decoding complexity of the UGD is equal to
the decoding complexity of the MLD. Also, suppose no subset
containing satisfies the condition in (23). In this case, using the
results from [9], we can conclude that user belongs to a unique
undecodable set at receiver , so that a decoding error for user
is very likely if we attempt to decode using the UGD.

For the purpose of making the optimization formulation more
intuitive, we assume identical rate weighting for all secondary
users, i.e., for all users, we set . As a result, the optimal
design assigns identical rates to all users so that , .
Generalization to an arbitrary weight vector is possible by
following the same approach. The following remark is helpful
in identifying a decodable subset (if any) at receiver containing
user .
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Remark 2: If the th secondary user is decodable at receiver ,
then all users such that
are also decodable at the th receiver.

The remark above conveys that for finding a decodable subset
containing , we need to only consider those subsets that contain

as well as all such that . Let be a
permutation operator on the indexes of the users such that

(25)

By using Remarks 1 and 2 and some simple manipulations, we
can compactly express the sufficient condition for user to be
decodable as follows.

Remark 3: User is decodable if
, where is defined in (26) at the bottom of the

page. Also, according to the above remark, the optimal
decoding set containing the th user that supports the
largest worst case rate is the set , where

. Then, the rate optimization
problem is given by

such that

This beamforming optimization problem for UGDs is a non-
linear nonconvex problem for which an optimal solution cannot
be guaranteed even in a centralized setup. Note that in the case
that are not identical, the problem is even more involved.

V. DISTRIBUTED WEIGHTED MAX-MIN FAIR RATE

ALLOCATION

As shown in Section IV-B and IV-C, solving the beamforming
and rate optimization problems for the MLD and UGD, respec-
tively, are nonlinear nonconvex problems for which even cen-
tralized algorithms are not guaranteed to yield globally optimal
solutions. Motivated by this fact and, more importantly, by the
necessity for having a distributed algorithm, we propose an al-
ternative two-stage suboptimal approach. We first obtain the
beamforming vectors via Algorithms 1 and 2, which provide
the optimal beamformers for the MMSE receivers. In the second

stage, for the given choice of beamformers, we exploit the fact
that MLD and UGD can support higher data rates and allocate
excess rates to secondary users in a distributed fashion.

We denote the optimal beamforming vectors yielded by Algo-
rithm 2 by . We use to denote the combined
effect of beamforming vectors and channel coefficients

. Thus

for

Further, in all rate allocation algorithms proposed in the sequel,
we will guarantee that each user receives at least a minimum
rate, and the vector of minimum rates is denoted by . Such
minimum rate vector, for instance, can be the vector of rates
achieved by using MMSE decoders.

We define as the vector of information
symbols transmitted by all secondary transmitters and also de-
fine . Therefore, the signal received by
the th secondary receiver is , where ac-
counts for the Gaussian noise as well as the interference seen
from the primary users. Without loss of generality, we assume

. As before, we assume that , the informa-
tion symbol of the th user, has unit power and is drawn from a
Gaussian alphabet.

We use to refer to the set of all secondary
users and construct the vector having the scalars

, where , as its elements. denotes the rate vector of
the users with indexes in . For any two disjoint subsets
and of , let denote an instantaneous achievable
rate region for the users in , that are jointly decoded while
treating (suppressing) the users in as Gaussian interferers.

is given by (27) as shown at the bottom of the page.
Let also denote a partition of such that the users

in are jointly decoded after treating those in as noise.
Therefore, a rate vector is decodable using the UGD if there
exist sets such that , , and

for (28)

It is informative to compare the decodability condition for
the UGD derived in (28) with that for the ML decoder in (19).
Note that if we take in (28), we obtain the
condition in (20) rather than the one in (19). In fact, for any two

(26)

(27)
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disjoint subsets and of such that , by defining (29)
as shown at the bottom of the page, we could instead say that

is decodable (using the UGD at each secondary receiver) if
there exist sets such that

for (30)

However, using the fact that the UGD allows us to jointly decode
any subset of such that , it can be shown that the
conditions in (28) and (30) are identical and hence (28) is more
relaxed compared to the one derived for the ML decoder in (19).

A. Unconstrained Group Decoders

We consider increasing the rates of all users beyond a given
decodable rate vector , based on
some predetermined priority. We assign different priorities to
the secondary users through the factors . By
denoting the excess rate to be assigned to the th user by , our
objective is to maximize such that remains
decodable where . For any secondary receiver

and any two nonempty disjoint subsets , of , we define

such that
(31)

which picks a rate vector within the rate region and
achieves weighted max-min fairness for the users in . To solve
(31), we note that the region can be shown to be a
polymatroid [15, Lemma 3.4] with the rank function

(32)
The following lemma is readily verified using the properties of
a polymatroid.

Lemma 5: can be computed using

where

Therefore, the maximum rate increment factor for sustaining
weighted max-min fairness such that the th user is decodable
is given by

(33)

Based on (33), a direct (naive) way to compute is to ex-
haustively search all the partitions for which .
Such an exhaustive search has a complexity that scales expo-
nentially as . Our contribution is to propose an efficient
algorithm that finds for each user (along with an optimal
partition), with a complexity that is polynomial in . Before
we proceed further, we note that has the following proper-
ties. For any disjoint sets and

(34)
and for any

(35)

Now for the th secondary receiver, we introduce rate
increments , where is the rate increment
for the th user such that the th user remains decodable at
receiver and weighted max-min fairness is sustained, i.e.,

. Algorithm 3, provided in the sequel,
is a computationally efficient scheme for finding the set of
rate increments for each given user . We note
that since the function is submodular, using submodular
function minimization techniques [16], we can compute in
step 3 of Algorithm 3 with a complexity that is polynomial in

. Consequently, since the number of loops in Algorithm 3
can be no greater than , Algorithm 3 itself has a complexity
that is polynomial in . We now prove the optimality of
Algorithm 3.

Algorithm 3—Rate increment recommendations by individual
receivers

1: Initialize and and and ,

2: repeat

3: Find and

If

there are multiple choices for pick any one such that

4: if or

5: for all and and
and and

7: else

8: for all , and ,

9: end if

10: until

11: Output and

(29)
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Theorem 2: If for a given rate vector , the th user is
decodable at receiver , then it is also decodable under the rate
vector , where is yielded by Algorithm
3. Further

where is any other rate increment vector for
which the th user is decodable at receiver under the rates

.
Proof: See [17, Th. 2].

In Algorithm 3, user makes rate increment suggestions for
all users (including itself) denoted by such that
the updated rate vector remains decodable at receiver . Based
on such rate increment suggestions by all users, we construct
Algorithm 4 to determine the rate increment for each secondary
user. Algorithm 4 is an iterative algorithm, and in each iteration,
each user receives rate increment suggestions from all
users, which are denoted by . After receiving all
such rate increment suggestions, the th user picks the smallest
rate increment suggested for it, i.e., . In the fol-
lowing theorem, we prove the optimality properties of Algo-
rithm 4.

Algorithm 4—Distributed Weighted Max-Min Fair Rate
Allocation

1: Initialize and

2: repeat

3: for do

4: Run Algorithm 3

5: end for

6: Update and
and

7: until converges

8: Output and

Theorem 3: The distributed (iterative) weighted max-min fair
rate allocation algorithm has the following properties.

1) It is monotonic in the sense that and is
convergent.

2) At each iteration the vector, is max-min optimal, i.e.,
for any other arbitrary decodable rate vector ,
we have

3) The rate allocation yielded by Algorithm 4 is also
pareto-optimal, i.e., for any arbitrary decodable rate vector

such that for some , we must
have that .
Proof: See Appendix V

Note that after one iteration of Algorithm 4, we can obtain
another optimal rate allocation that satisfies a stricter notion of

fairness. In particular, letting
with , we have that is decodable and satisfies

where is any decodable rate vector such that
for some .

B. Maximum Likelihood Decoders

In order to address the case when the MLD is employed at
each secondary receiver, we provide Algorithm 4MLD, which
can be initialized with any rate vector that is decodable
when the MLD is employed at each receiver. The optimality of
Algorithm 4MLD is stated in the following theorem. The proof
of the theorem follows along similar lines as the one given for
Theorem 3 and hence is skipped for brevity.

Algorithm 4MLD—Distributed Weighted Max-Min Fair Rate
Allocation for MLD

1: Initialize and

2: repeat

3: for do

4: Initialize

5: repeat

6: Find

7:

8: for all

9:

10: until

11: end for

12: Update and
and

13: until converges

14: Output

Theorem 4: The distributed (iterative) weighted max-min fair
rate allocation algorithm for the MLD has the following prop-
erties.

1) It is monotonic in the sense that and is
convergent.

2) At each iteration, the vector is max-min optimal, i.e.,
for any other arbitrary rate vector that is decod-
able using the MLD at each receiver, we have

3) The rate allocation yielded by Algorithm 4MLD is
also pareto-optimal, i.e., for any arbitrary rate vector

decodable using the MLD at each receiver, such that
for some , we must have that
.
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Fig. 1. UGD versus MMSE: the normalized minimum rates achieved with the
sum-power constraint 20 dB.

Fig. 2. UGD versus MMSE: the normalized sum-rates achieved with the sum-
power constraint 20 dB.

VI. SIMULATION RESULTS

In this section, we provide simulation results to assess the
performance of different beamforming designs and rate alloca-
tion schemes. For convenience, throughout all the simulations,
we consider the setting (so that ) for

, with for .
In Figs. 1 and 2, we examine the rate optimization problem

for the MMSE and the UGD receivers. For this
purpose, we consider a cognitive radio network with three
secondary transceivers and two primary transceivers

. Each primary and secondary user has three transmit
and one receive antenna, respectively. The

sum power available for all secondary transmitters is taken
to be dB. We first obtain the optimal beamforming
vectors using Algorithm 2. We then implement Algorithm 4
(with four iterations and identical priorities for all users) after
initializing it with to obtain the optimal rate
increments. In Fig. 1, we consider 20 channel realizations
(generated assuming all fading coefficients to be independent

Fig. 3. MMSE receiver: sum-power required by Algorithm 1 versus channel
matching for achieving � �� � �.

identically distributed complex Gaussian); and for each realiza-
tion, we plot the normalized minimum secondary rate obtained
using the optimal beam vectors and the MMSE decoder at each
secondary receiver, where the minimum rate is normalized by
the minimum rate obtained after Algorithm 4. We also compare
these results with the performance of MMSE receivers when
the beamformers are obtained through channel matching, that
is, the beamforming vector used by each secondary transmitter
is aligned with channel direction to its intended receiver. The
results for the latter case are also normalized by the minimum
rates obtained after deploying Algorithm 4 with the optimized
beamformers. Fig. 2 considers the same setup but instead shows
the normalized sum-rates. These two plots demonstrate that
designing the beamformers through Algorithm 2 brings about
considerable improvement in the minimum-rate and sum-rate
when compared against the channel matching design. Further
rate gains are achievable at the expense of additional signaling
overhead and advanced decoding at each receiver.

In Fig. 3, we consider the power optimization problem
for the MMSE receivers. With the constraints of achieving

, we compare the sum-power required when
the beamformers are obtained through Algorithm 1 and when
they are obtained through channel matching. In particular, we
assume a cognitive radio network with four primary trans-
ceivers and three secondary transceivers ,
each equipped with four transmit and one receive antenna. For
each realization, we plot the secondary sum power when the
secondary transmitters employ optimal beams obtained using
Algorithm 1. Also plotted is the secondary sum power when the
secondary transmitters employ beams that are matched to the
forward channel vectors to their respective intended receivers
and are then scaled subject to the and margin constraints.
Note that a careful design of the beamforming vectors can
result in substantial power savings.

In Fig. 4, we consider the rate optimization problem
when each secondary receiver employs ML decoding. We as-
sume the same network setup as that in Fig. 3 and set the sec-
ondary sum power budget to be 10 dB. For each realization, we
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Fig. 4. ML receiver: normalized minimum rates achieved using optimized
beamformers (Section IV-B) versus channel matching with the sum-power
constraint of 10 dB.

plot the minimum secondary rates when the secondary trans-
mitters employ optimized beams obtained using the method de-
scribed in Section IV-B. As a comparison baseline, we have also
plotted the minimum secondary rates when the secondary trans-
mitters employ beamformers obtained via channel matching.
The gains yielded by the optimized beamforming design are ev-
ident from the figure.

Lastly, in Figs. 5 and 6, we demonstrate the relative gains
of the different rate allocation algorithms and the tradeoff be-
tween system efficiency and fairness. We assume that a set of
beam vectors based on the channel matching scheme is given for
each channel realization. In Fig. 5, we plot the normalized min-
imum secondary rates obtained when each secondary receiver
employs the MMSE decoder, the ML decoder, and the UGD,
respectively. The minimum rates for the ML decoder and the
UGD were determined using Algorithms 4MLD and 4, respec-
tively. The Algorithm 4MLD is initialized by setting .
For initializing Algorithm 4, we have considered two cases with

and , where is the vector
of rates yielded by the MMSE receivers. All rates are normal-
ized by that obtained for the UGD with . Note that the
minimum rate yielded by the UGD with is provably
larger than those achieved by the ML and MMSE decoders as
well as the one yielded by the UGD but with .
Thus the minimum rate yielded by the UGD with
is max-min optimal. Further, the minimum rate achieved by the
ML decoder is seen to be sometimes smaller (albeit not always)
than the one obtained by MMSE decoder.

In Fig. 6, we plot the corresponding normalized sum rates. In
particular, we plot the normalized sum rates obtained for the ML
decoder and the UGD (denoted by UGD-sym) under the stricter
notion of fairness that all users are assigned identical rate. We
remark that even under this notion of fairness, the rate vector
obtained for the UGD has better efficiency than the one obtained
for the ML decoder. The rates are normalized using the sum-rate
obtained for the UGD using Algorithm 4 (denoted by UGD),
with four iterations and after initializing it with . Note
that the latter rate vector has an identical value of its minimum

Fig. 5. Comparing the normalized minimum rate yielded by different receivers
for a given beamformer design.

Fig. 6. Comparing the normalized sum-rate yielded by different receivers for
a given beamformer design.

element but a larger sum compared to the one corresponding
to UGD-sym, since we do not insist that all elements have an
identical value. Finally, also plotted is the normalized sum-rate
obtained for the UGD using Algorithm 4 (denoted by UGD-
MMSE), again with four iterations but after initializing it with

. Note that the rate vectors corresponding to
UGD and UGD-sym, respectively, have a larger minimum rate
than the one corresponding to UGD-MMSE, but the latter one
significantly improves the sum-rate (efficiency).

VII. CONCLUSION

Our focus was on decentralized multiantenna cognitive radio
networks where secondary transceivers coexist with primary
ones. We devised distributed algorithms for optimal beam-
forming and rate allocation in such networks. We formulated
the optimization problems for the cases when the secondary
receivers employ single-user decoders, maximum likelihood
decoders, and unconstrained group decoders. An optimal dis-
tributed algorithm is obtained for the case when each secondary
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receiver employs single-user decoding. The algorithm is op-
timal in the sense that it maximizes the minimum weighted rate
subject to a weighted sum power budget for the secondary users
and interference margin constraints imposed by the primary
users. We also obtained a centralized suboptimal algorithm for
the case when each secondary receiver employs the maximum
likelihood decoder. Lastly, for advanced decoders at the sec-
ondary receivers, we proposed distributed low-complexity fair
rate allocation algorithms to boost the system efficiency and
maintain a notion of fairness.

APPENDIX I
PROOF OF THEOREM 1

Note that since the optimization problem corresponding to
is always feasible, we conclude that there exists a set of

beamformers such that the rate vector is decodable,
the margin constraints are satisfied, and the weighted sum
power does not exceed . Consequently, we conclude that

. Next, suppose the optimization problem
corresponding to is feasible and let be the optimal
set of beamformers with . Then, since
for the beamformer design the rate vector is decodable
and the margin constraints are satisfied, we must have that

. On the other hand, cannot exceed
one. If it does, using the fact that is continuous and
nondecreasing in , we can conclude that there exists a set
of beamformers with and
at the same time . This means that is decodable
and the margin constraints are satisfied, which contradicts the
optimality of , and hence we must have .

APPENDIX II
PROOF OF LEMMA 2

We first find an upper bound on the term in (11) as follows:

(36)

Assuming the singular value decomposition
such that and are the th rows of the unitary matrices
and , respectively, we get

(37)

where denotes the pseudoinverse operator and the inequality
above holds due to Cauchy–Schwartz inequality. Considering
(36) and (37) and using the harmonic mean-arithmetic mean
inequality, we get

(38)

Therefore, to satisfy all the constraints, it is necessary that

rank .

APPENDIX III
PROOF OF LEMMA 3

By rearranging the constraints in (11) and using the defini-
tions of and , we have

for

where is a column vector of length with its th ele-
ment one and the rest zero. As the angular rotation of the beam-
forming vectors with any arbitrary phase does not affect either
the objective or any of the constraints of , therefore we con-
fine the solution to satisfy for . Also
note that for , is a fixed value. Hence, is
equivalent to

such that , for

(39)
Since for we have , the con-
straints in (39) are all second-order cones. Therefore, since the
objective function is convex, (39) is a convex problem for which
strong duality holds and the primal and the Lagrangian dual
problems achieve the same optimal value. The Lagrangian dual
of (39) is given by

(40)

Authorized licensed use limited to: Columbia University. Downloaded on December 15, 2009 at 16:37 from IEEE Xplore.  Restrictions apply. 



TAJER et al.: BEAMFORMING AND RATE ALLOCATION IN MISO COGNITIVE RADIO NETWORKS 375

where and the Lagrangian dual
objective function is

(41)

Because of the convexity of (39), we have
. Defining

(42)

along with some manipulations on yields (43) as shown
at the bottom of the page. Note that the as defined in (42)
are strictly positive. As a result, we may replace the Lagrangian
coefficients with for . Upon
rewriting (43), we can readily verify it to be identical to the La-
grangian dual of (10) having the dual variables . Therefore,
by taking into account that (10) and (39) are equivalent and their
Lagrangian duals are the same, they should exhibit identical du-
ality gap. On the other hand, (39) is convex and satisfies Slater’s
condition, and thus has a zero duality gap. As a result, (10) ex-
hibits a zero duality gap too.

APPENDIX IV
PROOF OF LEMMA 4

Consider any rate vector satisfying the condition in (19).
Let be arbitrarily fixed and let be the ensemble of
multiuser codebooks corresponding to any rate vector .
Define any multiuser codebook (i.e., a set of codes, one
for each secondary user) by and define as
the error event for user (at its designated receiver) when
the multiuser codebook is employed. We assume that the
multiuser codebooks are picked using the product Gaussian
measure, i.e., each coordinate of each codeword of each user
is generated independently using a Gaussian distribution with
zero mean and unit variance. Our objective is to show that
there exists at least one multiuser codebook for which

.
For this purpose, we consider the term

, where the outer proba-

bility is over the set and the inner probability is over the set
of all noise realizations. We obtain the following bound:

(44)

Using Markov’s inequality, we obtain

Next, at any receiver , the event is the union of
disjoint events, where the th event is the event that errors
occur only for all users in the set , for ,
respectively. Then since the rate vector satisfies the con-
dition in (19), it can be verified using the random coding
upper bounds and the techniques developed in [13] that the
terms can be made arbitrarily small.
Thus, for sufficiently long codeword lengths, the term

is bounded away from zero,
and hence we can conclude that exists at least one multiuser
codebook satisfying the power constraints, for which

.

APPENDIX V
PROOF OF THEOREM 3

Claim 1: Since is decodable, as a straightforward
application of Theorem 2, we find that is also decodable
and . In general, at the th iteration for finding
the rate vector , we have set ; and again
by using Theorem 2, we conclude that is decodable and

. Finally, as the set of rate vectors is
monotonically increasing and the set of decodable rate vectors
is bounded, the convergence is guaranteed.

Claim 2: By invoking from the first
part, we get

(45)

(43)
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Now, for the given rate vector , let us define
for . By noting that

, where are the rate recommendations
made after the first iteration, we get

(46)

(47)

where (46) holds due to Theorem 2. By putting together (45)
and (47), the desired result is established.

Claim 3: We consider the output of Algorithm 4 and show
that for this rate allocation, any increase in the rate of any user
will incur a decrease in the rate of some other user and thus is
the pareto-optimal solution. For this purpose, we investigate the
possibility of increasing the rate of a specific user while keeping
those of the others’ unchanged. Without loss of generality, we
examine whether the rate vector
is decodable for some .

At each iteration, each specific user receives rate increment
suggestions by all other users among which the user with the
lowest rate increment suggestion identifies the rate increment
for that specific user. At the final iteration, let us assume
that the lowest rate increment recommendation for user 1 is
made by the th receiver, i.e., . Also, let

denote the sets found at the th
receiver by Algorithm 3 in the last iteration of Algorithm 4,
using as the minimum rate vector, and denote their re-
spective corresponding values by .
Suppose , and since the th user must be decodable,
we must have . Using the arguments employed in the
proof of [18, Th. 2], we can show that .
Based on this observation, we can deduce the following prop-
erties for the sets and .

1) : Clearly when , we must
have . Now suppose
so that . Assume .
Then, since

, it can be shown
that . This is a con-
tradiction since it implies that in Algorithm 3, line 3,
we could have chosen instead of . Thus,

.
2) : First, for since otherwise the th

user would recommend , which is a contradic-
tion. On the other hand, if for , then the
th user would recommend the rate increment ,

which is also a contradiction.

3) : Since , due to ’s being the con-
vergence point, cannot be greater than zero, as oth-
erwise it leads to a higher rate for the first user. By taking
into account that , we get .

Recall that we have . Now, define
such that and and
construct the sets

and

and

Also recall that . Consequently, it follows that no
user with index in can be decoded at receiver under the
rate assignment . Thus, the users in must be treated as
Gaussian interferers. Next, since the rates of the users in
remain unaltered, these users are decodable using the partition

under the rate assignment .
Thus, without loss of optimality, we can assume that these users
have been perfectly decoded and expurgated.

Let us focus on any arbitrary partitioning of users
, such that . Our objective is to

show that user is not decodable under the rate assignment
using any such partition. First consider the case . For user

to be decodable, we must have
. Using the fact that ,

we can conclude that . How-
ever, since , we must have that both

and are equal
to zero. Again, using the fact that , we can conclude
that . However, since
both and are
zero, we must have that

This yields us the desired contradiction since the set
does not contain but was not se-

lected instead of in step 3 of Algorithm 3. Consequently,
we can conclude that is not decodable using
under rate assignment and hence under rate assignment

. Finally, we need to rule out partitions
such that . For user to be decodable, we must have

. Using the facts that
and , we can conclude that .
These facts together provide that . How-
ever, this is a contradiction since and

with .
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