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Summary 

TRECVID Multimedia Event Detection offers an interesting but very challenging task in detecting high-
level complex events (Figure 1) in user-generated videos. In this paper, we will present an overview and 
comparative analysis of our results, which achieved top performance among all 45 submissions in 
TRECVID 2010.  

Our aim is to answer the following questions. What kind of feature is more effective for multimedia event 
detection? Are features from different feature modalities (e.g., audio and visual) complementary for event 
detection? Can we benefit from generic concept detection of background scenes, human actions, and audio 
concepts? Are sequence matching and event-specific object detectors critical? 

Our findings indicate that spatial-temporal feature is very effective for event detection, and it’s also very 
complementary to other features such as static SIFT and audio features. As a result, our baseline run 
combining these three features already achieves very impressive results, with a mean minimal normalized 
cost (MNC) of 0.586. Incorporating the generic concept detectors using a graph diffusion algorithm 
provides marginal gains (mean MNC 0.579). Sequence matching with Earth Mover’s Distance (EMD) 
further improves the results (mean MNC 0.565). The event-specific detector (“batter”), however, didn’t 
prove useful from our current re-ranking tests. We conclude that it is important to combine strong 
complementary features from multiple modalities for multimedia event detection, and cross-frame 
matching is helpful in coping with temporal order variation. Leveraging contextual concept detectors and 
foreground activities remains a very attractive direction requiring further research.  

Description of Submitted Runs 

Run6 Baseline – average fusion of 3 SVM classification results for each event using 3 feature 
modalities: 1) spatial-temporal interest points, 2) SIFT, and 3) bag of MFCC audio words. 

Run5 Contextual diffusion of Run6 using scene and audio concept detectors. 

Run4 Contextual diffusion of Run6 using scene, audio and human action concept detectors. 

Run3 Linear fusion of Run6 with a SVM classification result using temporal EMD kernel. 

Run2 Contextual diffusion of Run3 using scene, audio and human action concept detectors. 

Run1 Re-ranking of event “batting in run” from Run2 using an event-specific “batter” detector. 

 
1. Introduction 
 

Automatic detection of complex events in unconstrained videos has great potential for many applications, 
such as web video indexing, consumer content management, and open-source intelligence analysis. It is a 
challenging task due to large content variation and uncontrolled capturing conditions (cf. Figure 1). 
However, due to the explosive growth of the user generated videos on the Internet, this problem has 
received a lot of interest from the research community and funding programs [1, 2, 3, 13, 14]. 
 



In TRECVID 2010, a new Multimedia Event Detection (MED) task is established to advance research and 
development in this area. The aim of MED is to develop systems that can automatically find video clips 
containing any event of interest, assuming only a limited amount of training exemplars are given. Figure 1 
displays a few example video frames of the three events evaluated in TRECVID MED 2010. 
 

 

 
Making a cake 

 

 
Batting a run in 

 

 
Assembling a shelter 

Figure 1: Example frames of the three events evaluated in TRECVID MED 2010. Content of the 
same event class can be very different. 
 
In our MED 2010 system, we explored several interesting and important issues including video feature 
representation, temporal matching, event contexts, and reranking by event-specific object detector. In the 
following we discuss each of the components in detail. 
 
2. Feature Representation 
 

Feature representation is critical for video content understanding. In TRECVID 2010, we explore three 
feature modalities for multimedia event detection. 
 
Static SIFT feature 

We adopt two sparse keypoint detectors: Difference of Gaussian (DoG) [4] and Hessian Affine [5]. Since 
the two detectors extract keypoints of different properties, we expect that they are complementary. Using 
multiple keypoint detectors is also suggested by many previous works [e.g., 6] for better performance. SIFT 
[4] is then adopted to describe each keypoint as a 128 dimensional vector. For each type of keypoints, we 
generate a visual vocabulary of 500 words using k-means. The visual words were found using features 
extracted from the web videos of TRECVID 2010 concept detection task. As processing all MED video 
frames will be computationally very expensive, we sample one frame from every two seconds. 
 
Spatial-temporal interest points 

While SIFT describes 2D local structures in images, spatial-temporal interest points (STIP) capture space-
time volumes where the image values have significant local variations in both space and time. We use 
Laptev’s method [7] to compute locations and descriptors for STIPs in video. The detector is based on an 
extension of Harris operator to space-time as described in [7]. Their code does not contain scale selection; 
instead interest points are detected at multiple spatial and temporal scales. HOG (Histograms of Oriented 
Gradients; 72 dimensions) and HOF (Histograms of Optical Flow; 72 dimensions) descriptors are 
computed for the 3D video patches in the neighborhood of the detected STIPs. We use concatenated 
HOGHOF feature (144 dimensions) as the final descriptor for each STIP. 
 
MFCC audio feature 

In addition to visual features like SIFT and STIP, audio is another important cue for detecting events in 
videos. We expect it to be complementary to the visual features. In audio processing, the mel-frequency 
cepstrum (MFC) is a representation of the short-term power spectrum of a sound. Mel-frequency cepstral 
coefficients (MFCC) are coefficients that collectively make up an MFC. They are derived from a type of 
cepstral representation of the audio clip (a nonlinear "spectrum-of-a-spectrum"). MFCC has been very 



popular in a large variety of audio related applications such as speech recognition. For TRECVID MED 
task, we compute MFCC feature over every 32ms time-window with 50% (16ms) overlap. 
 
2.1 Bag-of-X Representation 

Given a video clip, we extract three sets of features (SIFT, STIP, and MFCC). Due to the variations in 
length and content complexity, the sets of the same feature differ in cardinality across different video clips. 
This creates difficulties for learning methods (e.g., classifiers) which usually demand feature vectors of 
fixed dimension as input. To address this problem, we adopt vector quantization (VQ) technique to cluster 
each type of feature descriptors in feature space into a large number of clusters (i.e., “words”) using the k-
means clustering algorithm, and then encode each descriptor by the index of the cluster to which it belongs. 
The features extracted from each frame or audio time window are collapsed into a single bag. At the end, 
each video clip will be represented by a fixed dimensional histogram, one for each descriptor type. This 
forms the popular Bag-of-X framework which has been widely used for representing documents (bag-of-
word), images (bag-of-visual-word), as well as audio sounds (bag-of-audio-word). 
 
A fundamental difference of Bag-of-X representation for images or audio sounds is that the visual/audio 
words are the outcome of clustering algorithms (as opposed to the natural word entities in text documents). 
As a result, the performance of Bag-of-X image/sound representation is subject to several representation 
choices, such as vocabulary size (the number of clusters/words) and word weighting scheme in VQ.  
 
Different from the SIFT feature for which 500-d vocabularies are chosen, we empirically generate a 
vocabulary of 4000 words for the STIP and MFCC feature. Smaller vocabularies are used for SIFT because 
we also applied spatial partitioning (a.k.a. spatial pyramid; Figure 2) of the video frames which prefers 
compact vocabularies [6, 8]. While for STIP, no spatial partitioning is used as we have found it unhelpful 
from our previous internal studies. For all the three features, we adopt a soft-weighting strategy for VQ 
which has been proved very useful for alleviating the quantization effect caused by clustering [9]. 
 

 
Figure 2: Image representation using static SIFT features with spatial partitioning (1x1 and 2x2). 
The two histograms are concatenated into a 5000-d feature vector as the final representation for each 
video frame. Given a video clip, we aggregate the 5000-d features from its sampled frames together 
as our clip-level feature representation. The clip-level features are then L-2 normalized before 
classification by SVM. 
 
Baseline classifiers 

With the three feature modalities (SIFT: 5000-d; STIP: 4000-d; MFCC: 4000-d), we train three baseline 
SVM classifiers using χ2 kernel for each of the events over MED 2010 development set (1700+ web 
videos). The average fusion of probability predictions from the three SVM classifiers forms our baseline 
submission run6. 
 



3. Classification with Temporal Matching 
 

While accumulating all the SIFT/STIP/MFCC features from a video clip into a single feature vector seems 
a reasonable choice, it neglects the temporal information within the video clip. We therefore apply the earth 
mover’s distance (EMD) [10] to measure video clip similarity, which was used in our previous work in [3]. 
We only adopt SIFT feature in this experiment, and thus each video clip is represented by a sequence of 
5000-d bag-of-visual-word feature vectors (cardinality equals to the number of sampled frames). As shown 
in Figure 3, EMD computes the optimal flows between two sets of frames/features, producing the optimal 
match between both sets. Specifically, let a video clip be P = {(p1, wp1), ... , (pm,wpm)} of m frames, where pi 
is the index of the ith frame, and wpi is the corresponding weight (uniformly set as 1/m in this experiment). 
To match P with another video clip Q = {(q1, wq1), ... , (qn,wqn)} of n frames, the EMD is computed as 
 

EMD(P, Q) = Σi Σj fijdij / Σi Σj fij,             (1) 

where the ground distance dij between frames pi and qj is measured by the χ2 distance of their corresponding 
bag-of-visual-word features. The flow fij representing the amount of weight transferred from frames pi and 
qj is optimized in EMD by minimizing the overall transportation workload ΣiΣj fijdij, subject to the 
following constraints: 

         fij ≥0               (2) 
        Σj fij ≤wpi 

        Σi fij ≤wqj 

  ΣiΣj fij = min(Σi wpi, Σj wqj). 
 
The EMD is then used in a generalized form of Gaussian kernel for SVM classification: 
 

     K(P,Q)=exp-ρEMD(P,Q),              (3) 

where ρ is the kernel width parameter. 
 

…

… …

P

Q  

Figure 3: Toy example of EMD-based temporal matching between two sets of frames P and Q; lines 
indicate the presence of nonzero flows between corresponding frame pairs. 
 
4. Diffusion with Generic Contextual Concept Detectors 
 

Events are mostly defined by several (moving) objects such as “person”, and generally occur under 
particular scene settings with certain audio sounds. For example, as shown in Figure 1, “batting a run in” 
contains people of various actions in the baseball field scene with typically some cheering or clapping 
sounds. Such event-scene-object-sound dependency provides rich contextual information for understanding 
the events. Most previous approaches, however, handled events, scenes, objects, and audio sounds 
separately without considering their relationship. Our intuition is that once the contextual cues can be 
computed, they can be utilized to make the event detection more robust. We therefore explore such 
contexts in MED 2010. 
 
4.1 Building Contextual Concept Detectors 

To build detectors (classifiers) for a large number of contextual concepts, we first need to collect enough 
training samples. To this end, we defined 22 contextual concepts as listed in Table 1, and designed an 
annotation tool to label the development videos (but not the test videos) for 20 contextual concepts. Each 
video is divided to multiple 10-sec clips, and the annotation is conducted at clip-level. Note that this 
annotation work is not just for this year’s MED, but is a part of a long-lasting effort of building many 
contextual detectors for event detection. 
 



With the labeled training data, we train SVM classifiers for detecting the concepts. For Human Action 
concepts, we use the bag-of-X representation of the STIP feature. Here we use a hierarchical k-means 
implementation to generate visual vocabularies of sizes 100, 200, 500, and 1000. Then a histogram 
intersection kernel multi-class SVM classifier is trained per action and vocabulary. Average fusion is used 
to combine classification outputs from different vocabulary sizes for each action. For the scene and audio 
concepts, we adopt similar classification framework based on the SIFT and MFCC features respectively. 
One difference in the audio concept classifiers is that we use a representation based on MFCC mean and 
covariance for each 10-sec clip, not the VQ histograms as in the event classifiers. From our evaluation, 
these context concept detectors worked fairly well. Figure 4 shows some top ranked frames (with high 
prediction scores) in the test video dataset.  
 

Human Action Concepts Scene  Concepts Audio Concepts 
 Person walking 
 Person running 
 Person squatting 
 Person standing up 
 Person making/assembling stuffs 
with hands (hands visible) 

 Person batting baseball 
 

 Indoor kitchen 
 Outdoor with grass/trees visible 
 Baseball field 
 Crowd (a group of 3+ people) 
 Cakes (close-up view) 

 

 Outdoor rural 
 Outdoor urban 
 Indoor quiet 
 Indoor noisy 
 Original audio 
 Dubbed audio 
 Speech comprehensible 
 Music 
 Cheering 
 Clapping 

Table 1: Contextual Concept Names. 
 

Baseball field

Cakes
(close-up view)

Crowd 
(3+ people)

Grass/trees 

Indoor kitchen

 

Figure 4: Top results of scene concept detection in MED 2010 test set. For each concept, frames of 
the top 16 detected video clips are shown, ordered from left to right and top to bottom.  



4.2 Contextual Diffusion 

To utilize these contextual detectors, we apply a contextual diffusion algorithm DASD (domain adaptive 
semantic diffusion) proposed in our prior work [11]. One underlying assumption of DASD is that detectors 
of frequently concurrent concepts/events should produce highly correlated scores. For example, the 
detection result of “baseball field” and “batting a run in” should be highly consistent as they frequently co-
occur.  
 
We therefore construct an undirected and weighted graph, namely semantic graph, to model the 
relationship between (and within) the events and the contextual concepts, where the relationship is 
estimated according to ground-truth labels of the events/concepts over the development dataset. In MED 
2010, the graph contains 24 nodes (3 events and 21 contextual concepts). A part of the graph node 
relationship (only the event to concept relationship) is visualized in Figure 5. The graph is then applied to 
refine the detection scores using a function level diffusion process, where the aim is to recover the 
consistency of the detection scores w.r.t. the pair-wise relationship. More formally, the cost function of 
DASD is defined as: 
 

E(g, W) = 1/2 Σij Wij ||g(ci) – g(cj)||
2              (4) 

 

where g(ci) and g(cj) are the detection score vectors over a set of testing samples (video clips) for 
concepts/events ci and cj, and Wij indicates the affinity (i.e., weight on the corresponding graph edge) 
between the two concepts/events. 
 
Apparently, this cost function evaluates the smoothness of g over the semantic graph. Therefore, reducing 
the function value of E makes the detection results g more consistent with the concept affinities captured by 
W. Specifically, we use gradient descent to reduce E by updating g iteratively. Interested readers are 
referred to [11] for more details of the DASD method. In the original DASD algorithm, it also involves a 
graph adaptation process which adapts W according to test data distribution. This process was not applied 
in MED 2010 as the development and test data are from similar domains. 
 

0.006 0.291 0.008 0.103 0.000 0.264 0.194 0.037 0.012 0.106 0.140 0.117 0.100 0.011 0.010 0.204 0.051 0.223 0.222 0.126 0.013

0.000 0.093 0.694 0.078 0.000 0.116 0.047 0.001 0.000 0.043 0.002 0.020 0.000 0.282 0.338 0.072 0.308 0.117 0.106 0.007 0.638

0.779 0.009 0.000 0.018 0.600 0.011 0.018 0.354 0.163 0.178 0.143 0.275 0.120 0.009 0.014 0.029 0.011 0.018 0.010 0.410 0.007

Assembling a  shelter

Batting a  run in

Making a  cake
 

 
 
 
 
 

 
Figure 5: Estimated relationship (correlation) between the 3 events and the 21 contextual concepts 
according to ground-truth annotations. Note that the semantic graph not only models these event-
concept relationships shown in this figure, but also the event-event and concept-concept correlations. 
The color-highlighted cells indicate the strong correlations discovered between events and the 
concepts. 
 
5. Reranking with Event-Specific Object Detector 
 

Besides the generic methods mentioned above, we are also interested in evaluating some ad-hoc ideas that 
are specific to individual events only. For event “batting a run in”, videos usually contain certain human 
objects (e.g., batters) of familiar gestures and similar clothing. Assuming that videos of this event should 
have a high ratio of frames with batter visible, we trained a “batter” detector as an additional clue for 
detecting this specific event. 
 
In order to train the detector, we manually labeled 800 positive frames in the development set by marking 
the bounding boxes of the whole body of batters. Negative samples (image patches) are randomly drawn 
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from the other parts of the frames. Harr feature is extracted for each image patch. Other features such as 
HOG can also be applied but is not included in our current implementation. Training of the detector is 
based on the popular AdaBoost framework proposed in [12]. We found such specialized detectors to be 
reasonably effective in the small validation data set. Figure 6 shows a few examples of the detection results. 
 
The batter detector is applied as a post-processing reranking step. For every test video, the ratio of frames 
that have positive detection of the batter object is first computed. If the ratio is larger than a threshold (its 
optimal value determined over a separate validation set), the event score of the video clip will be multiplied 
with the ratio and the video will be moved up to the top of the ranked list. Event detection scores of other 
videos are not modified.  
 

      
                              

Figure 6: “batter” detection results. 
 
6. Results and Analysis 
 
Our MED system is designed to combine each of the core components introduced above. We submitted 6 
runs to by incrementally adding in new components in order to study their effectiveness. Aside from the 
official submissions, we have also conducted evaluations over the dry-run validation set to analyze the 
contribution of each feature modality. 
 
Figure 7 shows our six official submissions and all of the official TRECVID-2010 MED submissions. 
Performance is measured by mean Minimal Normalized Cost (MNC) over the three events. The MNC is 
computed based on the best (oracle) threshold of the detection scores, reflecting the best possible detection 
performance a system can reach. Detailed evaluation framework and description of the metrics can be 
found at http://www.nist.gov/itl/iad/mig/med10.cfm. From the figure we can see that a judicious approach 
using average fusion of the three feature modalities (Run6) already achieves very impressive results, with a 
mean MNC at 0.586. Incorporating the generic concept detectors (run4&5) using the graph diffusion 
algorithm provides moderate gains (run4 mean MNC 0.579). In addition, temporal matching with EMD 
kernel (run2&3) further improves the results (run2 mean MNC 0.565). The event-specific “batter” detector 
used in run1, however, didn’t prove useful from our current re-ranking tests. We conclude that event 
detection using multiple feature modalities is effective. While temporal matching with EMD kernel shows 
some noticeable gain, the contextual graph diffusion didn’t show significant improvements as we expected. 
This may be due to the fact that our event baseline has already used all three features combining different 
modalities (both visual and audio) In addition, our current implementation of concept detectors uses only 
single feature type (either visual or audio) and thus their performance may not be as strong as the multi-
modal baseline detectors for events. Therefore, adding such relatively weak concept classifiers as context 
did not prove to be significantly beneficial in our current implementation. 
 
Table 2 gives the performance of each feature component over the dry-run validation set. We see that all 
the three features perform fairly well, and the fusion of them significantly improves the results. Comparing 
the individual feature performance, STIP is slightly better than SIFT in terms of mean AP. This is 
consistent with the observations in recent works on action/event recognition [13]. For event “batting a run 
in”, SIFT outperforms STIP – which is probably because this event contains more consistent background 
scenes (“baseball field”), for which static SIFT features are very discriminative.  
 



Another very interesting observation from our experiments is that standard audio feature MFCC, modeled 
in a bag-of-audio-word framework, demonstrates an impressive capability for event detection in 
unconstrained videos (though still lower than the visual counterparts). It is quite complementary to the 
state-of-the-art visual features used for event detection, as shown in the consistent accuracy improvement 
after fusing the audio-based detectors with the visual approaches. This shows the potential of jointly using 
both visual and audio features for multimedia event detection, which was only investigated in very few 
prior works [15]. 
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Figure 7: Performance of our submitted MED runs (circled) and all 45 official submissions.  The 
vertical axis shows the performance measured by mean minimal normalized cost (mean MNC). This 
figure is best viewed in color. 
 

   Assembling a shelter Batting a run in Making a cake Mean AP 

Visual STIP 0.468 0.719 0.476 0.554 

Visual SIFT 0.353 0.787 0.396 0.512 

Audio MFCC 0.249 0.692 0.270 0.404 

STIP+SIFT 0.508 0.796 0.476 0.593 

STIP+SIFT+MFCC 0.533 0.873 0.493 0.633 
 

Table 2: Average precision (AP) performance of event detectors based on features of different 
modalities and their combinations. Note higher AP means better performance. 
 
Figure 8 further displays the per-event performance of all the submissions. In addition to MNC, actual 
normalized cost (ANC) is also computed based on our provided threshold value. To determine the 
threshold, we simply treat the top 40 videos with the highest scores as positive and all the remaining ones 
as negative. In terms of both MNC and ANC, the runs we submitted demonstrate the best performance over 
all the submitted runs. In addition, from the results we also observed that different events favor different 
components or combination strategies. For example, the EMD-based temporal matching is helpful for 
“assembling a shelter” and “making a cake”, but not for “batting a run in”. Therefore another very 
interesting research direction is to investigate an adaptive method to automatically find out the best 
component and/or combinations for each event. 

Run1: Run2 + “Batter” Reranking 
Run2: Run3 + Scene/Audio/Action Context 
Run3: Run6 + EMD Temporal Matching 
Run4: Run6 + Scene/Audio/Action Context 
Run5: Run6 + Scene/Audio Context 
Run6: Baseline Classification with 3 features 
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Figure 8: Per-event performance of our submitted MED runs (circled) and all 45 official submissions, 
measured by both minimal normalized cost (MNC) and actual normalized cost (ANC). We obtained 
top performance for all the three events. Note lower cost values mean better performance. 
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