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Abstract— This paper introduces an integrated surveillance
system capable of tracking multiple objects across aerial and
ground cameras. To this end, we propose a set of methodologies
that deal with tracking problems in urban scenarios where
cameras mounted on quad-rotor unmanned helicopters could
be used in conjunction with ground cameras to track multiple
subjects persistently. We track moving objects from a moving
aerial platform using a three staged conventional technique
consisting of ego-motion-compensation, blob detection, and
blob tracking. A hierarchical robust background subtraction
followed by a motion correspondence algorithm is applied to
track objects from the ground surveillance camera. Using meta-
data available at the airborne camera and the calibration
parameters of the ground camera, we are able to transform
the object’s position in both cameras’ local coordinate system
to a generic world coordinate system. Trajectories obtained in
terms of the generic world coordinate system are then merged
assuming temporal continuity. A false candidate trajectory is
eliminated using a similarity measure based on color intensity
of the object that generated it. Our system has been tested in 3
real-world scenarios where it has been able to merge trajectories
successfully in 80% of the cases.

I. INTRODUCTION

There has been an exponential increase in the awareness of
surveillance in relation to safety and security in recent years.
Video cameras and data storage, which form the basic neces-
sity of these surveillance systems, are also affordable with
low operational cost. However, cameras have finite spatial
resolution, limiting their fields of view, thereby rendering
them inefficient in real world surveillance scenarios, e.g.
tracking an object. In order to solve this problem, Pan-
tilt-zoom (PTZ) cameras were introduced whose fields of
view could be adjusted remotely according to the changing
regions of interest. While a network of several such PTZ
cameras is a seemingly viable solution to this problem,
the intricacies involved in control and automation of these
cameras are prohibitive. This becomes the primary reason
to explore the applicability of low-flying cameras in the
context of such surveillance scenarios. Cameras mounted
on aerial platform (more specifically, quad rotor unmanned
helicopters) have wider coverage of a scene as the platform
exhibits unconstrained 3-dimensional motion, as opposed
to fixed cameras with no movement or PTZ cameras with
limited panning movement. Moreover, with the decreasing
cost of consumer electronics and significant technological

advances in unmanned aerial system design, building such
a system is practically feasible. The interested reader is
referred to [1] for more information on remote controlled
helicopters equipped with video cameras that are widely used
in commercial aerial surveillance systems.
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Fig. 1. A typical urban scenario under aerial and ground sureveillance:
Object is in the field of view of the aerial surveillance camera for a period of
time and can be tracked. As it enters the building it escapes the field of view
of the aerial camera, but is in the field of view of the ground camera and
can be tracked again. Our objective is to establish correspondence between
the two instances of the same person.

Consider a typical urban scene where a object is approach-
ing a building from a distance. A camera mounted on a
UAV is flying at an altitude just appropriate to distinguish
between two or more objects based on color information.
At a fixed altitude, the aerial camera has the same degrees
of freedom as that of the object on the ground, hence the
target is never lost from the field of view of the camera as
long as the object is outside the building. However, as soon
as the object enters the building, the aerial camera loses its
track. Since the building has its own set of fixed surveillance
cameras, any moving object that is in the field of view
of these cameras, could be tracked as illustrated in figure
1. Although the tracks outside and inside the building are
generated by the same object, it continues to be an extremely
challenging problem in computer vision. Huttenlocher and
Zabih in their technical report [2] have already discussed
the gravity of the problem. The primary reason behind this
is the incoherence between the fields of view from which the
images of the same object is being generated. Any method



that seeks a direct correlation between the two images based
on only appearence is bound to fail. We propose a novel
technique to solve this correspondence problem using a 3-
D geometry based approach. We also extend this method to
generate persistent trajectories across cameras with mutually
exclusive fields of view.

II. RELATED WORK

Object tracking is a well known problem in Computer
Vision. The most fundamental case in this subdomain is
tracking objects using a single stationary camera, which is
predominantly done by background subtraction techniques
followed by blob tracking. Several interesting extensions
to the single camera object tracking problem have been
proposed to date. A detailed literature review of tracking
objects in multiple cameras is presented in the authors’ book
[4] on multi-camera surveillance.

Another non-trivial extension to the object tracking prob-
lem is observed in [3], [6], [7], [8], [9], and [10], where
the authors have elucidated several methodologies involved
in the detection, classification, and tracking of objects in
aerial videos. In [5], the authors have addressed the problem
of trajectory association across non-overlapping fields of
view from multiple aerial cameras by making the motion
model of each object with respect to time explicit. The
association is refined by computing the maximum likelihood
estimate of the inter-camera homographies, using Expecta-
tion Maximization algorithm. The closest in relevance to
this paper is Sheikh and Shah’s research [11] in tracking
across multiple airborne cameras where the authors assume
transitive closure between the fields of view of more than two
cameras in order to ensure a coherent correspondence. They
also restrict the cameras to the same plane. Our approach,
on the other hand, exploits telemetry and calibration data
from the cameras to map the fields of view to geospatial
coordinates.

While all these prior efforts are interesting in their own
aspects and many of them deal with different aspects of
the multi-camera surveillance problem, yet they all assume
a certain degree of homogeneity across the cameras. This
is because in all multi-camera problems, the Brightness
Transfer Functions (BTF) of all given cameras lie in the
same low dimensional subspace as shown by the authors
et. al. in [4], which could be effectively used to compute
appearance similarity. Such a low-dimensional subspace is
extremely difficult to determine for cameras whose fields
of views are completely non-coplanar. To the best of our
knowledge, our attempt to establish correspondence across
completely uncorrelated and incoherent fields of view is an
entirely novel study in itself. Furthermore, visual surveillance
research, using both multiple airborne cameras and multiple
ground cameras, has reached maturity in isolation. This work
is the first step towards an integrated surveillance system
which would open new avenues for research.

The rest of this paper is organized as follows. Section III
provides a detailed description of our experimental hardware
and software we have used to track moving objects in both

Fig. 2. A quad-rotor microdrone model md4-200

aerial and ground surveillance cameras. In section IV, we
introduce our approach to establish correspondence between
trajectories observed by our ground and aerial surveillance
systems and generate persistent tracks. In section V, we
conclude our discussion with some interesting results and
provide some pointers toward future research in this area
coupled with some real world applications.

III. INTEGRATED SURVEILLANCE SYSTEM

Object tracking in an aerial surveillance system is different
from that of a ground surveillance system. We use separate
hardware and software platforms for each task. Our aerial
surveillance hardware consists of a lightweight Autonomous
Unmanned Micro Aerial Vehicle (AUMAV) called the Mi-
crodrone model md4-200 (refer figure III) with Vertical Take
Off and Landing (VTOL) capabilities. The drone is made
of carbon fiber and reinforced plastic which inherently en-
hances lift and shields against electromagnetic interferences
typically observed in urban environments. Flight stability is
monitored in realtime using a built-in Altitude and Heading
Reference System comprising of accelerometer, gyroscopes,
and Magnetometer. The drone’s quad-rotor lift system, which
is based on synchronized, brushless direct drives, reduces the
noise level and recovers from stall and overload conditions
even at flight time. The payload capacity of the drone is
approximately 200g, which is just sufficient to carry a small
digital video camera. The drone is equipped with an onboard
GPS system and video camera. The video captured by the
camera is transmitted using a video channel at 24 frames/sec
whereas the drone’s positional coordinates and the camera
roll, pitch, and yaw parameters, which form the telemetry
information, are transmitted uniformly at 10 frames/sec from
the drone using a separate channel. Both video and the
meta-data information are processed using a 2.4 Ghz Intel
computer serving as a base-station. The ground surveillance
hardware consists of a video camera coupled with the same
base-station to process output from this camera. The software
environments used to process the video feeds from both
of these cameras are discussed in sections III-A and III-B
respectively.
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Fig. 3. Blob-detection followed by tracking in aerial surveillance system (each image is 250 frames apart):Top row shows blob detection results from
UCF Harris sequence; Corresponding trajectories being output in the bottom row. It can be noted that the subject in red clothing is about to escape the
field of view of the aerial camera (track shown in blue) and entering a shed in the first two images. Similarly, subject in white clothing approaching entry
in the next frame and is about to escape the field of view of the aerial camera (track shown in red) and entering the shed in the last image.

A. Aerial Surveillance System

A fast OpenCV based implementation with some mod-
ifications to the original COCOA system [12] is used to
retrieve tracks of moving objects from aerial video feed. The
system processes videos at speed approximately equal to 12
frames/sec. A brief overview of the steps involved in the
process is provided with some outputs.

In order to track objects effectively from an aerial camera,
we intially have to eliminate ego-motion artifacts from the
aerial sequence. In cases where the view is purely ortho-
graphic, the relationship between one image frame to the
subsequent frame is affine and the transformation parameters
(2× 3 matrix) are computed using the direct registration
technique proposed by Bergen et. al. in [13]. However,
when the view changes from orthographic to oblique, a
more refined projective estimation (Homography) is applied.
This is a two step process in which interest points on a
source image frame are computed using a method proposed
by Shi and Tomasi in [14]. Since intra-frame motion is
not significant, we compute corresponding candidate interest
points in the subsequent target frame using pyramid optical
flow as proposed in [15]. An iterative approach (RANSAC)
is used to refine the selection of interest points that have
strong correspondence across the source and target frames,
which helps us to estimate the frame by frame homography
matrix. This matrix contains the transformation parameters
which are required to align one particular frame with respect
to its previous frame.

Once a given number of consecutive frames are aligned
with respect to the initial frame from the video input, we
apply consecutive frame differencing on this given temporal
window to obtain blobs. A battery of heuristics (mean gray
area, blob compactness and eccentricity) are then applied

to filter most of the false blobs. In order to further refine
the results of detection, area based thresholds are applied to
reduce further false positives. The following voting scheme
is applied to the i-th blob to filter misdetected objects from
appearing in subsequent frames:

Wi = K×mgai +
1
L
×Ci +

1
M
×Ei, (1)

where symbols denote the following:
• Wi is the weight assigned to each blob,
• mgai is the mean gray area of the blob and is determined

by taking the mean of pixels, in the temporal window
of frames found within an N-connected neighborhood
in i-th region,

• Ci compactness measure of ith blob,
• Ei eccentricity measure of the ith blob,
• K,L, and M are empirically determined constants.
Finally, a search across all blobs is done using the pa-

rameters observed in the detection stage, and similarities
are derived from blob appearance, shape, and position of
centers. If similarities between blobs of consequent frames
are observed, tracks are generated accumulating similar blobs
over the same temporal window of frames. In case the blobs
disappear or reappear for short frame strides, tracks are
obtained by linearly interpolating blob centers in the frames
where the blobs had disappeared. A new track is generated
for blobs that do not have any correspondence across pre-
viously detected blobs. Figure 3 elucidate the outcome of
the blob-detection and corresponding blob-tracking processes
respectively.

B. Ground Surveillance System

The motion detection algorithm used on the ground
surveillance camera videos implements a robust background
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Fig. 4. Tracking in ground surveillance system (each image is 40 frames
apart): (a) Subject in red clothing has entered the field of view of the
ground camera (track shown in green) installed inside the shed mentioned
in figure 3, (b), (c) and (d) Subject in white clothing moves within field of
view of the ground camera (track shown in cyan).

subtraction proposed in [4]. This is a hierarchical method
of carving moving foreground objects from the static back-
ground by first classifying each pixels into a foreground
or background class using statistical distribution of gradient
and intensity information. Foreground pixels, hence obtained
from the intensity based subtraction, are grouped into blobs
using connected component analysis. False regions are inval-
idated using gradient based subtraction, and this inference is
used as a feedback to eliminate falsely classified pixels from
the initial step. Finally, a frame level analysis is performed
to remove further discrepancies that arise due to changes
in illumination. Certain movements detected by the blob
detection algorithm could be ignored using a threshold over
detected blob-sizes. For example, the hand movement of a
person as seen in figures 4(c) – 4(d) is ignored by the system
as it is insignificant as compared to the full body motion.

After having the foreground blobs segmented, the next
goal is to establish correspondence between these blobs
over a sequence of frames. This is done by minimizing the
deviation in speed and direction of motion exhibited by all
detected blobs. The motion depicted by blobs provides a
better idea of the motion exhibited by the whole object as
compared to the individual points on the object which could
be noisy. Figures 4(a) through 4(d) demonstrate the output
of the ground surveillance system used in this paper with
trajectories on the same scenario discussed in figure 3 .

IV. TRAJECTORY CORRESPONDENCE

Given a set of trajectories acquired by our UAV camera,
our objective is to find the corresponding continuation using
cues from the ground camera with the only assumption being
that the temporal gap between each pair of trajectories is
very small. For a formal definition of the problem, let us
suppose that both the aerial and the ground cameras observe

two scenes with the same configuration as shown in section
I for a fixed period of time. Let Ka and Kg be the number
of objects observed by each cameras respectively. An object
k, as observed by camera n (in this case n = 1 or 2), is
denoted as On

k . Let us also denote the imaged location of
each object under observation by xn

k = (xn
k,t ,y

n
k,t). Therefore

each trajectory is a set of points τn
k = (xn

k,i,x
n
k,i+1, . . . ,x

n
k, j).

Since trajectories are recorded by cameras that do not
share a co-planar relationship, the set of trajectories can not
be associated unless a common transformation is applied to
project the imaged locations On

k in the same plane. The next
section gives a brief explanation of the technique we use to
perform this transformation.

A. Transformation
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Fig. 5. The geometrical configuration of the aerial and ground cameras
with respect to the world coordinates. Both the camera axes are represented
in different colors (aerial:blue, ground:red). The different angles of rotation
for both the drone and the camera attached to it are also shown. Since the
drone’s camera can only rotate about the Y-axis, only the twist angle needs
to be taken into account; rest of the rotation parameters could be ignored.

The sensor telemetery or metadata is available to us from
the microdrone. Recall that video feed is available at 24
frames/sec while the metadata is available for approximately
every 3rd frame. Since telemetry does not change frequently
within this period, interpolating the metadata parameters is
a reasonable assumption. Similar to the drone metadata,
we have calibration data for our ground camera. Both the
metdata and the calibration data are used to transform the
respective locations of the objects in image coordinates of the
airborne camera and the ground camera respectively. Unlike
the drone metadata, calibration data is constant for a given
sequence. The following figure 5 illustrates the coordinate
system of both the cameras and the relationship between
the image coordinates of the drone camera and the world
coordinates.

Ideally while building the sensor model, we need the
following parameters from the metadata:
• Geodetic coordinates in Latitude and Longitude (trans-

lation along the y and x axes respectively Ty, Tx),



• Instantaneous altitude (translation along z-axis Tz),
• Camera orientation as elevation, twist, and azimuth

(rotations around x, y, and z axes relative to the drone:
θe,θt ,θa),

• Instantaneous angular displacement (pitch, roll, yaw) of
the drone (rotations along x,y,z axes : φp,φt , φa), and

• focal length of the camera ( f ).
We assume that the drone is flying at a fixed altitude over

the ground plane. Additionally, the microdrone camera has
only one degree of freedom, elevation (θt ) and azimuth (θa)
could be ignored (refer to figure 5 for more detail).

Given telemetry (Tx, Ty, Tz, θe , φp,φt , φa, f ), the geograph-
ical location (world 3D coordinates) of the object concerned
(xw

k,t = (xw
k,t ,y

w
k,t ,z

w
k,t)) at any given time t is related to the

imaged location (xi
k,t ) as:

xn
k,t = Πsensorxw

k,t , (2)

where Πsensor is the sensor model given by:

Πsensor = TxTyTzθeφpφtφa, (3)

and,
xn

k,t = (xn
k,t ,y

n
k,t ,− f ). (4)

From equation 2, the geo-spatial coordinates of the object
could be retrieved using a simple ray-tracing function. For
a non planar surface this ray-tracing function is called a
terrain projection which exploits Digital Elevation Maps. As
the surface under observation is very close to planar, we set
zw

k,t = 0∀t ∈ R.
Since translation along x and y axes are available in terms

of latitude and longitude, we need to convert it into metric
system, to be eventually used to match against the ground
camera calibration data. These equations are used to perform
the conversion:

Xw
k,t = (N(φ)+h)cos(φ)cos(λ ), (5)

Y w
k,t = (N(φ)+h)cos(φ)sin(λ ), (6)

where,
N(φ) =

a√
1− e2sin2φ

, (7)

φ ,λ , and h are latitude, longitude and height, a and e2 are
the semi-major axis and the square of the first numerical
eccentricity of the ellipsoid respectively. The ground camera
is calibrated using a method proposed by Drenk et. al. in
[16], and the GPS coordinates of the ground camera is
already known. We perform a simple experiment to verify
the calibration of the ground camera and the telemetry of
the aerial camera. Both these cameras are simultaneously
deployed to cover a flat planner surface in such a manner
that both their views coincide. Objects are captured walking
by both the cameras, the input is processed by the aerial
and ground surveillance systems, and tracks are generated.
Objects in image coordinates from both the cameras are
converted to the 3D world coordinate system and plotted

in figure 6(c). In figure 6(d), we plot the respective instan-
taneous speeds of individual objects. In almost all cases,
we have observed that the positional coordinates from the
cameras have aligned nearly perfectly. Also, object speeds
as computed from both the cameras when plotted against
each other demonstrate high correlation. The results from
these two experiments reinforce our case to explore trajectory
matching across these cameras in non-overlapping fields of
view.

B. Matching

After we have obtained a set of trajectories from both
the aerial and ground cameras, our next task is to match
between the trajectories. The temporal information is used
here as a discriminating cue. Let τw

k = (xw
k,i,x

w
k,i+1, . . . ,x

w
k, j)

be the trajectory defined by actual world locations of the of
the object k from time t = i to t = j during which it was
in the field of view of the aerial camera. Since we assume
the temporal gap in the field of view switch between the
aerial and ground cameras (also known as handover period)
is very small, the object’s exit from the aerial camera’s field
of view has a one to one mapping with his entry in the ground
camera’s field of view. We exploit this constraint to match
trajectories from both the cameras and generate a complete
trajectory of the form:

τ
W
k = {(xw

k,i,x
w
k,i+1, . . . ,x

w
k, j),(x

w
k, j,x

w
k, j+1, . . . ,x

w
k,l)},

where trajectory elements in t = i to t = j is generated
from the aerial camera and the same in t = j+1 to t = l are
generated from the ground camera.

C. Persistent Track Generation

In several real-world scenes, it is often observed that
objects reappear in the fields of view of the respective aerial
and ground cameras after short periods of disappearance. In
those circumstances, it is highly desirable to re-associate the
object back to its last appearance in the same field of view
before it had disappeared. In order to accomplish this, we
maintain a signature of the object in each trajectory observed
by a particular camera. An object signature is derived using
color histograms computed over a window of frames over
the detected object in the input video.

In order to re-associate objects with their previous oc-
currences, object signature is obtained in the given field
of view. After that, a nearest neighbor search over all
previously observed signatures is performed and the new
signature is re-associated with the trajectory that returned
the topmost match in the search. If there is no match in the
specified nearest neighbor radius, the signature along with its
current trajectory is updated as an independent entry in the
trajectory cache. For our experiments, we have computed
color histogram on the detected object for 10 consecutive
frames and performed exhaustive search for all possible
signature matches. The primary limitation of this approach is
in dealing with illumination changes and clothing similarity
between objects.
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Fig. 7. Persistent trajectory generation (each image is 50 frames apart in the sequence): (a), (b), (c) Subject in white clothing gradually escapes the
field of view of aerial camera (track shown in red), (d) The same object enters the field of view of the ground camera (e), (f) Subject moves within the
field of view of ground camera (track shown in green), (g), (h) Track persistence constraint followed by signature matching applied to match trajectories
between ground and aerial cameras and reassociate aerial camera tracks after 500 frames, dotted (not visible from the field of view of the aerial camera)
tracks in red are generated from the tracks exported from the ground camera. (i) 3D visualization of the single persistent trajectory in sequence 1. This is
generated by associating both aerial and ground trajectories after applying temporal continuity when the object escapes the field of view of one camera
and enters that of the other. In this example there are two such instances (represented as zoomed insets). The x and y axes show the geospatial locations
of the trajectories in the scene while the z-axis represents the time.

Sequence GT # of assoc. GT # of reassoc.
Seq 1 8 8 8 5
Seq 2 11 10 11 7
Seq 3 16 13 16 12

TABLE I
QUANTITATIVE ANALYSIS OF THE PERSISTENT TRAJECTORY

GENERATION ALGORITHM (GT - GROUND TRUTH, REFER TO TEXT FOR

DETAILS.)

Some results are shown from 2 independent sequences
in figure 8(a) and 8(b). The table I shows a quantitative
analysis of the number of objects for which the algorithm
could correctly generate persistent trajectories. The table
can be interpreted as follows : In column 2, the actual
number of trajectory associations are specified (number of

objects escaping the field of view of the aerial camera and
entering the field of view of ground camera also known as
ground truth). Column 3 contains the number of trajectories
associated by the technique. Column 4 specifies the number
of reassociations (actual number of objects then escaping
the field of view of the ground camera and entering the
field of view of the aerial camera). Finally, in column 5 the
number of persistent trajectories generated is provided for
each sequence. The dominant reason for the failure is due
to shadow artifacts that degrade the discrimination capability
of the color histogram based signature search.

V. CONCLUSION

In this paper, we have proposed an approach to establish
correspondence between moving trajectories across cameras
with different fields of view separated in temporal domain.
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Fig. 6. Experiments depicting validity of metadata: (a) - (b) Trajectories
of objects obtained from the ground and aerial surveillance systems respec-
tively, after processing video recordings of the same scene. (c) Positions of
a particular object as resolved into world coordinates by both the cameras
from time t = 0 to t = 10 sec (z-axis). Positional coordinates (x,y axes)
indicated by green diamonds are obtained by transforming the object’s
imaged location in the calibrated ground camera’s coordinate system to the
world coordinate system. Similarly, coordinates indicated by red diamonds
are obtained after transforming the object’s corresponding imaged location
in the aerial camera’s coordinate system. It could be observed how closely
the points match up indicating the validity of the meta-data. (d) Graph
showing the walking speeds (y-axis) of four independent objects strolling a
cross the common field of view of both the cameras, at different segments of
time. Each object’s walking speed, calculated from individual surveillance
systems, is represented by a pair of red and blue lines with different markers.
The red curve corresponds to the speed observed by the ground surveillance
system. The walking speeds also appear to match up quite well, as expected.

Our experiments demonstrate promising results with inde-
pendent real world scenarios with an aerial and a ground
camera surveillance system. There are some primary limi-
tations of this approach which we intend to explore further.

(a)

(b)

Fig. 8. A subset of results from the persistent trajectory generation on
sequence 2 and 3 is shown. The x,y axes corresponds to the world coordinate
axes and the z-axis corresponds to time. Several trajectories are being shown.

Firstly, the technique proposed here is capable of associating
trajectories correctly if the handover period is small. This
is not a necessary criterion in real-world scenarios. Sec-
ondly, the color histogram based object signature encounters
problems in cases that involve inter-object occlusion in
addition to strong natural illumination changes (shadows,
clouds etc.). Also, it is our general observation that the
telemetry information is mostly reliable for shorter intervals
of time (3-4 minutes). This restricts us to test the system
on longer sequences. Therefore one possible interesting
direction would be to explore the multiview correspondence
problem with more semantic interpretation of the scene, e.g.
person entering building, than purely low-level visual infor-
mation. Another possible extension to this work would be to
have more cameras in ground to cover a wider field of view
inside a building (as observed in supermarkets with multiple
exits). Programmable UAV could exploit this framework and
enhance their automatic localization capabilities near the
object of interest.
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