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Abstract—In this paper, we propose a discriminative represen-
tation of a video shot based on its camera motion and demonstrate
how the representation can be used for high level multimedia tasks
like complex event recognition. In our technique, we assume that
a homography exists between a pair of subsequent frames in a
given shot. Using purely image-based methods, we compute ho-
mography parameters that serve as coarse indicators of the am-
bient camera motion. Next, using Lie algebra, we map the homog-
raphy matrices to an intermediate vector space that preserves the
intrinsic geometric structure of the transformation. The mappings
are stacked temporally to generate vector time-series per shot. To
extract meaningful features from time-series, we propose an effi-
cient linear dynamical system based technique. The extracted tem-
poral features are further used to train linear SVMs as classifiers
for a particular shot class. In addition to demonstrating the effi-
cacy of our method on a novel dataset, we extend its applicability
to recognize complex events in large scale videos under uncon-
strained scenarios. Our empirical evaluations on eight cinemato-
graphic shot classes show that our technique performs close to ap-
proaches that involve extraction of 3-D trajectories using compu-
tationally prohibitive structure from motion techniques.

Index Terms—Cinematographic shots, homography, lie algebra,
multimedia event recognition, shot classification.

I. INTRODUCTION

S HOT level classification of videos has been an interesting
field in computer vision research, especially due to its

applicability in diverse domains. These include: content based
video search [12], film genre classification [8], [23] and video
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Fig. 1. A schematic diagram showing the various processes involved in our
proposed approach towards classification of a typical shot. We build our com-
plex event recognition computational pipeline (discussed in Sect. IV-E based on
the above methodology. Please refer to text for a detailed explanation.

quality analysis [4]. With the constant need to improve online
video search, interesting research [6], [8], [12], [17], [23],
[29] have been pursued that address shot classification from
multiple perspectives: low-level textures, intensity, high-level
objects and scenes etc. While these are meaningful at content
level, they are unable to capture the ambient camera motion
which replicates the narrative human eye and hence are far
more semantically challenging.
Camera motion in authored videos (commonly pan, tilt or

zoom), are directly correlated with high-level semantic concepts
described in the shot. For example, a tracking shot in which a
camera undergoes translation on a moving platform indicates
the presence of a following concept. Detection of such useful
concepts can be used by current video search engines at a later
stage to perform high-level content analysis such as detection of
events from videos. This motivates us to explore the possibili-
ties of using pure camera motion to solve the shot classification
problem. Camera motion parameters, also known as telemetry,
are very difficult to obtain directly as few video cameras are
equipped with sophisticated sensors that can provide such ac-
curate measurements. Furthermore, telemetry data is not gener-
ally available and is certainly not present in Internet or broad-
cast video. Hence, we resort to a purely image based technique
to robustly estimate homographies which are coarse indicators
of the camera motion incurred during capture. However, homo-
graphies are not meaningful features for discriminative classifi-
cation of shots as different parameters in a homography matrix
quantify different planar relationship (scale, rotation, etc.) and
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cannot be treated in separation. Also, since homographies be-
long to the projective group (i.e., are not closed under vector
subtraction or scalar multiplication), they are not suitable for
classifiers such as linear SVMs or Nearest Neighbors. There-
fore representing the ambient motion in a principled manner is
extremely important, to classify a shot.
While there exist methods [24], [30] to estimate camera

motion using full 3D reconstruction of a scene, we argue that
our method achieves a reasonable trade-off between high-ac-
curacy and prohibitive computational cost. This enables us to
contribute a global feature based on camera motion which can
be used for large scale video analysis.
To this end, we propose the followingmethodology (Fig. 1) to

represent the camera motion extracted from a video: (1) Given
a shot, pairwise homographies are computed between the con-
secutive frames, (2) Next we map them to a linear space using
Lie algebra defined under Projective Group (3) Coefficients of
this linear space are used to construct multiple time series (4)
Representative features are computed from these time series for
discriminative classification. A schematic diagram of our com-
putational pipeline is shown in Fig. 1.

II. RELATED WORK & OUR CONTRIBUTIONS

A full survey of shot classification is beyond the scope of this
paper. Please refer to [10], [22], [23] for a good background. In
one of the earliest efforts [25], the authors qualitatively estimate
camera pan, tilt, zoom, and roll from a sequence of images. [32]
extends the idea to shots with camera rotation, where mutual
information between motion vectors is utilized. In [21], Park et
al. explored further using linear combination of motion vectors.
While these techniques relied on optical flow to obtain motion
vectors, a few teams in TRECVID 2005 [20] used motion vec-
tors provided in MPEG stream for this purpose.
From a different perspective, Fablet et al. [9] make use of

local spatio-temporal derivatives to classify dynamic content of
shots without motion segmentation. Wang and Cheong on the
other hand, explore the possibilities of using a Markov Random
Field based motion foreground vs background labeling frame-
work [27] together with cinematographic principles to classify
pan, tilt, zoom, track and establishing shots. Approaches pro-
posed in [14], [26], [28] focus on specific semantic classes of
videos. For example, in [28] the authors employ structure tensor
histograms to determine motion characteristics in shots from
action movies. Similarly, [14], [26] leveraged on specific cin-
ematographic techniques that only applied to sports videos to
address the shot classification problem.
In this paper, wemake the following contributions: (1)We ob-

tain global cameramotion by robustly estimating frame to frame
homographies unlike approaches [9], [21], [25], [32] that rely on
local optical flow based techniques, which are often noisy or full
structure from motion based approach [31], which is computa-
tionally expensive, (2) Compared to approaches [26] that use
homographies directly for classification, our lie-algebra based
representation homographies is more accurate, (3) Our global
features computed from a shot consider temporal continuity be-
tween frames, are superior to orderless bag of words techniques
used in [20], thereby eliminating any need for explicit temporal
alignment of shots of unequal lengths, (4) Our representation is

capable of classifying a broader category of shots as compared
to [19], [21], [25], [31], [32]. Our dataset consists of eight cine-
matographic shot classes [1] which we are freely distributing to
the research community, (5) Our method is more versatile than
approaches suggested in [14], [26], [28] which apply to specific
domains such as movies or sports. It also requires fewer param-
eters to adjust as compared to [27], which require explicit mo-
tion segmentation, and (6) Finally, this is the first work to show
how our novel camera motion representation can be used as a
complementary feature for recognition of complex events in un-
constrained Internet videos.

III. APPROACH

A. A Cinematography Primer

A complete list of cinematographic techniques can be found
in [1]. In this paper we focus on the following cinematographic
shot classes: aerial, bird-eye, crane, dolly, establishing, pan, tilt
and zoom. The Fig. 2 shows the ambient camera motion in each
shot class except for establishing shots where the camera re-
mains stationary. Both aerial and bird-eye shots are captured
from a high flying platform. The former class of shots have a
strong perspective distortion, while the latter being taken from
a camera ortho-normal to the ground plane, show affine transfor-
mation properties between consecutive frames. Crane or boom
shots involve vertical motion of camera which may include si-
multaneous movement along x or y axes A dolly shot, on the
other hand, is taken by placing the camera on a platform that
moves smoothly on ground without any movement along z-axis.
Pan and tilt shots are associated with camera rotation along z and
y-axes respectively. A zoom shot, does not involve any physical
camera motion. It is characterized by the change in focal length,
which is an internal camera parameter. All of these motions can
be efficiently captured by the projective transformation model.

B. Motion Parameter Extraction

We employ a feature based method to estimate homography
between consecutive frames or every -th frame of a given shot.
In our technique, SURF features [2] are detected on each pair
of frames on a dense sampling basis. Correspondence between
features are established using a nearest neighbor search. We use
the open source implementation available in [3] for this purpose.
Given two sets of corresponding points

, and
a homography , is a , 8 degrees of freedom
projective transformation that models the relationship between
two points and. . in the following way:

(1)

Using a set of corresponding points, we can form the fol-
lowing linear system of equations:

(2)

where are the following vectors:

(3)
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Fig. 2. Schematic diagram showing different types of shots–Top Row: The first two figures show aerial and bird-eye shots. In both shots the camera is attached to
a high flying platform and has its characteristic motion in 3D. In case of aerial shot, there is a strong perspective which is absent in case of bird-eye shots. The third
figure shows a crane shot where the crane moves along -axis with no simultaneous motion along or axis. Red lines show the field of views of each camera in
a particular shot setting. Bottom Row: The first figure shows a dolly shot where the camera is on a platform that undergoes smooth translation along the ground
plane. The next three figures show pan, tilt and a zoom shot. Pan and tilt shots are associated with camera rotation along -axis and -axis respectively. A zoom
shot as shown, does not involve any physical camera motion. The change of focal length in this case is indicated using dotted lines with different sized lenses.

Eqn. (2) is solved using random sampling consensus tech-
nique [11] that iteratively minimizes the back-projection error,
defined as:

(4)

where,

(5)

and,

(6)

In practice, since frame-to-frame homographies do not map
image points to infinity, the last element of the matrix, is set
to 1, which gives 8 transformation parameters to be computed
between each image pair. Except for and , which indicate
translational motion along and axes respectively, these pa-
rameters are not individually meaningful (this is experimentally
validated in Section IV). However, since they represent a trans-
formation, they can be mapped efficiently to some subspace that
preserves the internal structure of the transformation. We resort
to Lie algebra for projective group to establish this mapping.

C. Lie Algebra Mapping of Projective Group

Recently, Lie algebra is made popular by the authors of [13]
to solve a wide range of tasks in computer vision. The alge-
braic representation of affine and projective transforms facili-

tates the use of learning methods by providing an equivalent
vector space that preserves the geometric transformation struc-
ture under linear operations.
Homographies belong to the projective group which has mul-

tiplicative structure. This group is neither closed under vector
addition nor scalar multiplication, and therefore treating it as a
linear space for classification results in undesirable effects. This
is because nearest neighbor or SVM based classification do not
consider geometric constraints which apply to projective groups
since they belong to a nonlinear manifold. The Lie algebra map-
ping of the projective group is a matrix in homogeneous
space which relates to the homography matrix through an ex-
ponential function as:

(7)

Alternatively,

(8)

Due to linearity in the Lie algebraic representation, can be
written as the linear combination of orthogonal bases as:

(9)

where, are also called generators of the Lie group [7]. It is
shown in [7] that for infinitesimal transformations near identity,
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Fig. 3. Trajectory based visualization of different shots obtained from raw homography sequence and their linear space mapped counterparts. (a),(c) can be
interpreted as pure homography sequences while (b),(d) are their respective Linear space mapping using Lie algebra of Projective groups. Time is shown in -axis
and scaled independently to improve visualization. The axes represent dimensionally reduced H, and L coefficients from a shot sequence using PCA and do
not have any physical interpretation. Note the clutter in projective case.

the higher order terms in Eqn. (8) can be ignored. Thus, can
be computed by projecting the first order approximation of
i.e. on . In principle, as long as the bases are orthog-
onal, Eqn. (9) is valid. We select the following generators since
they are already established in literature [7] and have injective
mapping with the projective group of transformations:

(10)

Using the above, the frame by frame homography matrix can
be represented by in an equivalent vector space. The ef-
fect of this transformation can be well explained using Fig. 3.
The Figs. 3(a) and 3(c) are pure homography sequences from
different shot categories, alphabetically arranged into 2 groups.
In contrast, Figs. 3(b) and 3(d) are Linear space mapping of the
original homography sequences, obtained using Eqn 9-10. Time
is shown in -axis and scaled independently to improve visual-
ization. The axes represent homographies and their corre-
sponding linear space mappings, reduced to 2-D using PCA and
do not have any physical interpretation. In both Figs. 3(a) and
3(c), we observe how cluttered these trajectories appear in the
projective space, while in case of Figs. 3(b) and 3(d), they ap-
pear more distinct, arguing in favor of our original hypothesis.

Fig. 4 provides a more convincing evidence towards how our
Lie algebra based representation is more efficient in terms of
segregating different classes of shots in contrast to their original
projective space. Both Fig. 4(a) and 4(b) show color coded
similarity matrices in bag-of-X representations computed from
homographies and the corresponding linear mapping, respec-
tively. For more details on the vocabulary chosen for Bag-of-X
please refer to Sect. IV. These are being referred to as Bag-of-H
and Bag-of-LC throughout the rest of the paper. For ease of
understanding, shot samples are arranged alphabetically ac-
cording to their respective class names with aerial samples (top
- aerial, bottom - zoom). We observe high intra-class similarity
and inter-class dissimilarity in case of Fig. 4(b) as opposed
to Fig. 4(a). In case of both similarity matrices, we observe
strong degree of similarity in the establishing shot category
(5th from top), which is mainly due to the identity nature of the
homography matrices.
The bag-of-LC model provides reasonably discriminative

representation for a given shot, and can be used as a generic
shot-level descriptor. However, we intend to incorporate the
temporal relationship between the Lie group coefficients which
is not captured in the bag-of-LC model. With this motivation
we proceed to the next step where we present an efficient
manner to extract the temporal relationship in a more mean-
ingful way, leading to a compact descriptor per shot, without
the requirement of additional vector quantization.

D. Feature Extraction from Time Series

The different time series obtained after sequential arrange-
ment of the Lie-group coefficients could be imagined as trajec-
tories. It may be tempting to fit these trajectories into splines or
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Fig. 4. Intra class similarity in original projective space and proposed Lie Space. The similarity is not meaningful in case of (a), while they are more pronounced
in (b). In the latter case 8 distinct blocks are clearly visible, corresponding to the shot classes arranged in alphabetical order of their class name.

simple models by finding the parameters that best explains the
data, however classification using these models is complex and
can be badly distorted by outliers as they usually do not have
any structural interpretation. We hypothesize that the temporal
order of these coefficients is crucial for classification. This mo-
tivates us to explore computation of features from multi-dimen-
sional time-series data from the perspective of linear dynamical
systems (LDS). Modeling our time-series data using LDS is a
reasonable assumption as (a) the Lie-algebra coefficients span
a well defined linear space in a given shot, and (b) coefficient
vector at a time step follows single chain Markov property.
Thus, using foundations from LDS theory, we can describe

any coefficient vector using the following set of equations:

(11)

(12)

where, is the observation matrix that maps each ob-
served time-step to a relatively lower dimensional hidden
state vector , (noise), and is the dy-
namics or transition matrix which relate s the current
hidden state with the previous hidden state.
One popular way to indirectly characterize the system defined

in Eqn. (12) is to analyze the Eigenspace of the Hankel matrix
constructed from this system [5]. Given a sequence of coeffi-
cient vectors of length ( ) the Hankel matrix can
be can be constructed as follows, whose entries are the same
along the anti-diagonals:

(13)

where is an integral estimate on the number of entries of the
-th column vector that are sufficient to express the subsequent

-th column in . The Eigenspace of the above ma-
trix captures the dynamic structure of a system in a meaningful
manner [5]. Since, the matrix in Eqn. 13 is not guaranteed to
be square, we perform singular value decomposition on ,
yielding the matrix containing the eigen vectors. The projec-
tion of on the largest Eigenvector from is used as the
final descriptor, which is interestingly invariant to phase-shift.
Thus, a quick pan motion and a slow pan are treated in the same
way, as similar to pan-right and pan-left. In practice, all Hankel
matrices are normalized before any processing, using the Frobe-
nius norm for matrices given by the following equation:

(14)

The projection results in a dimensional descriptor
for a shot We maintain to have sufficient overlap between
column vectors of the matrix. The feature computed as above
is used to train linear SVM classifiers, details of which is pro-
vided in Section IV. Throughout the paper, this method is being
referred as “Proposed” for shot classification.
The descriptor computed using the above method is capable

of capturing temporal dynamics across all the Lie group coef-
ficients efficiently for a given shot. To support this argument,
we compute a set of exhaustive statistics from each dimension
of the 8-dimensional time-series separately. Assuming, a time
series across each dimension can be represented as a vector
, the statistical features are as follows: mean, variance ( ),
first and last order statistics ( ), range ( ),
average crossing rate ( , being temporal
interval, is the cardinality function), average root mean
square, mean and variance of skew ( ), signal entropy,

mean and variance of kurtosis ( ). In addition, we
compute 28 pairwise correlations between each of the eight
dimensions of the trajectory. Finally the sum and the squared
sum of all the dimensions is computed. This results in a total of

statistical features and is used as another
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Fig. 5. Camera Motion based Representation of Events: Top two rows repre-
sents two different videos each from an event class. Each video is divided into
fixed length shots of 100 frames. Outputs from 4 shot classifiers: Establishing
(E), Pan (P), Tilt (T), and Zoom (Z) Shot are indicated under each shot.

baseline (SF in Fig. 7) to compare the contribution of the
temporal correlation observed between Lie group coefficients.

E. Recognizing Complex Events

The novel camera representation presented above can be used
in many applications. In addition to the obvious application of
cinematographic shot classification, it can be extended to per-
form high-level analysis of unconstrained Internet videos. A
majority of unproduced videos in the Internet, captured by am-
ateur users tend to have different camera motion signatures de-
pending on the subject or the context of an event being captured.
For example, a person “attempting a board trick” or performing
“parkour” is mostly captured by a camera in motion to keep
the subject in focus. Consequentially, the captured video, de-
picts significant amount of unintentional pan, tilt or zoom. Sim-
ilarly, a video of a “parade” is expected to have pan and zoom
in contrast to videos that are shot indoors such as “working on
a sewing project”.
This motivates us to explore a principled approach towards

describing such videos using our proposed camera motion de-
scriptor. To this end, we resort to the following methodology:
we divide each video into non-overlapping, fixed length shots
of frames and apply pre-trained classifiers for four of the com-
monly occurring shot classes - pan, tilt, zoom and establishing.
Any classifier response below a certain threshold is neglected
and the corresponding shot class is labeled as “undetermined”.
Thus, each video can be reduced to string of variable length
containing symbols ‘P’, ‘T’, ‘Z’, ‘E’ and ‘U’ depending on the
respective classifier outputs, as shown in Fig. 5. Given such a
compact representation of a video, it is straightforward to train
a Hidden Markov Model corresponding to a set of videos that
depict a specific complex event category. Once these models are
generated, classification for an unknown video, is performed by
comparing the log-likelihood of its corresponding camera mo-
tion signature string, being generated from a particular model
against all other models. The maximum likelihood identifies the
target complex event class.
While it is to be noted that unconstrained videos in practice,

show a combination of shots: simultaneous pan-tilt, zoom-pan
etc., we believe there are two ways to address this problem.
The first one is training separate classifiers for such combined
shots, which requires further annotation. The second one being
using the camera motion representation as is in a bag of features

model (Bag-of-LC), without the need of explicit shot classifica-
tion. Clearly, the first one is beyond the scope of this paper. We
however report performance of the second method against the
more principled approach of using a HMM based classifier over
camera motion signature sequence in Section IV-D.

IV. EXPERIMENTS

In this section, we first discuss our dataset of 8 distinct cate-
gory of shot classes based on cinematographic guidelines. The
following section provides implementation specific details on
the various stages involved in our computational workflow. This
is followed by results and discussion. On a separate note, we de-
scribe how this shot classification technique can be integrated
into large scale complex event recognition, backing our claim
with results.

A. Cinematographic Shot Dataset

Most of the earlier papers [9], [21], [25], [32] on this topic
evaluate their respective approaches on their own private col-
lections, which are not made available. We make an attempt to
build the first dataset of this kind which is reusable, expand-
able and publicly available.1 Our dataset consists a clean and
an unconstrained part. The clean part has videos downloaded
from high resolution, professional stock video2 while the uncon-
strained part contains videos from amateur consumer uploaded
videos found in YouTube that typically have fair amount jit-
ters caused due to unstable mounts. These two separate sources
were used for two different experiments to validate the effi-
ciency of our shot representation. Each videos in the dataset
conforms to either one of eight categories, namely: (1) Aerial,
(2) Bird eye, (3) Crane, (4) Dolly, (5) Establishing, (6) Pan,
(7) Tilt, and (8) Zoom. Each video is carefully screened by 3
human observers with good cinematographic knowledge to en-
sure there is no mixing up of camera motions in a particular
video. Note that this is a difficult task since most shots do not
occur in isolation as pointed out in [20]. Finally all videos are
resized to an approximate resolution of keeping the
aspect ratio locked. Some sample frames from the clean part of
our dataset are shown in Fig. 6. Table I contains some statistics
of our dataset.

B. TRECVID MED 2011 Events Dataset

Recently, NIST has released the Multimedia event detection
competition3 dataset which consists of videos from 15 event cat-
egories namely (1) Attempting a board trick, (2) Feeding an an-
imal, (3) Landing a fish, (4) Wedding ceremony, (5) Working on
a woodworking project, (6) Birthday party, (7) Changing a ve-
hicle tire (8) Flash mob gathering, (9) Getting a vehicle unstuck,
(10) Grooming an animal, (11)Making a sandwich, (12) Parade,
(13) Parkour, (14) Repairing an appliance, and (15) Working on
a sewing project. We use a subset of this dataset that has 2062
videos from all these 15 event categories for our experiments.
Events like “Attempting a board trick” and “Parkour” usually
have a lot of jittery camera motion coupled with pan and tilt

1https://www.cs.ucf.edu/ subh/csdv1.tar.gz
2http://www.gettyimages.com
3http://www.nist.gov/itl/iad/mig/med11.cfm
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Fig. 6. Cinematographic shot dataset: Each column in the figure represents a typical shot category. The top row shows the trajectory against and axes of the
image plane (obtained by tracking points). The second row contains the initial frame from the shot. Subsequent rows show samples 50 frames apart. Images from
top to bottom provide an idea of the camera motion as the shot progresses.

TABLE I
SOME STATISTICS FROM OUR CINEMATOGRAPHIC SHOT DATASET

(UNC. STANDS FOR THE UNCONSTRAINED PART OF THE DATASET)

motions. Similarly, videos depicting events such as “Wedding
Ceremony” and “Birthday Party” are mostly captured by sta-
tionary cameras with limited pan and some amount of zoom.
The goal of this experiment is to find out if we can leverage our
proposed representation to capture these meaningful statistics
from these amateur videos and perform crude event detection
without resorting to any content extraction techniques.
Our experiments on this dataset are motivated to substantiate

two important claims: Firstly, we are able to demonstrate how
our proposed shot representation can be adapted to address
a more challenging problem–recognition of complex events.
Secondly, it provides an avenue to test our shot classification
framework on a significantly large dataset (approx 30,000
shots).

C. Setup

We use an OpenCV based implementation of the SURF [2]
extraction and use an approximate nearest neighbor search
algorithm [16] to obtain point correspondences which is later
required for homography estimation. The normalized homo-
graphies (H) and their corresponding Lie-algebra mappings

(LC) are used in a bag-of-X framework typically surveyed in
[12], under different codebook configurations in the range:

and these help us investigate the efficacy
of our shot representation incrementally. In both of these
settings, SVMs with histogram intersection kernel is used for
classification using a 10 fold cross validation scheme. The
parameters for SVM is chosen using coarse grid search during
cross validation.
We also, evaluate how our method performs against a more

accurate camera trajectory estimation technique (using full
structure from motion [24]). We compute similar temporal fea-
tures as described in Sect. III-D from camera trajectories after
connecting the 3-D camera locations ( ) temporally using
frame indices. This method is being referred to as TF in the
remaining part of the paper. Although features extracted using
this method are very discriminative, the trajectory computation
in itself a prohibitive task as the 3D reconstruction algorithm
needs an exhaustive set of points from all frames in a video
to solve a complex optimization problem. This makes this
technique a misfit for large-scale Internet videos.
Next, we investigate the discriminability of our final LDS

based temporal representation by comparing against naive time-
series statistics (referred as SF) as discussed in Sect. III-D. In
addition to the above baselines, we compare our method with
our implementations of two other relevant algorithms: Motion-
Slices [19]) and HF (Threshold selection on Homography and
fundamental matrices [31]). The former represents a shot using
tensor histogram of spatio-temporal slices of gray-scale inten-
sities while the latter uses a combination of homography and
fundamental matrix to represent a shot. It is to be noted that,
both of these methods have certain limitations as stated by their
respective authors because of which they cannot be applied to
all 8 classes of shots in our cinematographic shot dataset.
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Fig. 7. Classification performance of our method against several baselines on the cinematographic shot dataset. Note that the baseline method [19] cannot be used
for 4 types of shot classes: aerial, bird-eye, crane and dolly due to their algorithmic limitations. Similarly the other baseline [31] cannot be applied for crane, dolly
and aerial shots (The bars corresponding to these method-shot combinations are non-existent).

Finally, to adapt our shot classification method to recognize
complex events, we empirically select yielding
long shots. Classifier threshold are uniformly chosen as
to eliminate less confident responses. We use an open-source
implementation of discrete HMMs4 with default number of
states (10). In our experience, changing this parameter does not
make any conclusive change in performance. To show, how
we fair with the camera motion representation alone, we use
a bag-of-features model with a vocabulary size of 256 on the
shot-level features to describe each video. We compare both
of these approaches with already published bag-of-SIFT [15]
features based approaches used in [29], [31]. In both bag-of-X
techniques, SVMs with histogram intersection kernels are
trained in a 10-fold cross validation mode. Furthermore, to
show our shot-level features contain complementary infor-
mation as compared to the bag-of-SIFT representation, we
perform late fusion of event-level classifier scores.

D. Results and Discussions

We begin with an important insight on the motion parameter
extraction phase. Through careful temporal sampling of frames
for homography estimation the overall classification perfor-
mance can be improved. Temporal sampling can be perceived
as the number of frames that are skipped between any given
pair of frames before computing the homography between that
pair. Typically, the larger the gap between two sampled frames,
the more the homographies deviate from identity as the relative
inter-frame motion increases. The average accuracy reaches
its peak when the sampling interval is 4, i.e. homography is
computed between pairs separated by four frames. This can be
explained with the help of evidence from homography compu-
tation which is primarily noisy for smaller temporal intervals.
At interval lengths larger than 4, the homography violates the
primary assumption for Lie group mapping which states that
the transformation should be approximately equal to identity.

4https://code.google.com/p/pmtk3/

TABLE II
COMPUTATIONAL ASPECTS: EACH ROW INDICATES A COMPUTATIONAL STEP,
IMPLEMENTED IN . FROM TOP TO BOTTOM: FEATURE

EXTRACTION (FE), HOMOGRAPHY ESTIMATION (HE), VECTOR SPACE MAPPING
(VSM), TIME SERIES FEATURE COMPUTATION (TSFC). TF BEING 3D CAMERA

TRAJECTORIES ESTIMATED DIRECTLY USING STRUCTURE FROM MOTION

[24]. THE SPEED IS RECORDED FOR A VIDEO CONTAINING 300
FRAMES ON A STANDARD DESKTOP HOSTING A 2.4 GHZ CPU

In Fig. 7, we provide an extensive analysis of the results we
obtained on the cinematographic shot dataset. Each bar in the
chart corresponds to one of 6 methods, grouped into 8 classes.
As hypothesized in Fig. 4, a naive bag-of-LC (Lie group co-
efficients of homographies) representation, without any notion
of temporal relationship across frames, performs significantly
better (21%) than bag-of-H (pure homographies). When we add
temporal information through naive statistical features (
) the performance on an average increases by another (7 -

8%). This is progressively improved by (6 - 7%) when the ap-
propriate method is used to extract meaningful temporal pattern
from the sequence of Lie group coefficients.
Furthermore, our proposed shot classification model built on

top of LDS based temporal features extracted from sequences
of Lie group coefficients does significantly better than all base-
lines and two of the previously published algorithm. Although
our feature does not outperform the structure frommotion based
trajectory estimation technique (TF), we report comparable ac-
curacies with the obvious advantage of speed. Please refer to
Table II for more details.
It is also encouraging to see that the proposed method re-

ports a consistent classification performance (over 75%, vari-
ance across different train-test folds are shown in error bars)
for 6 out of all 8 categories. Among shot classes, establishing
shots are classified with maximum confidence which indicates
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Fig. 8. Confusion matrices obtained after classification on the clean and un-
constrained part of the cinematographic shot dataset. Figure on the left shows
confusion among classifiers trained on clean shots and tested on the similar clean
shots, while on the right, the test set is changed to unconstrained shot, indicating
a drop of performance.

strong correlation of performance with proximity of the homog-
raphy matrices towards the identity matrix. This is followed by
the classification performance on bird-eye and aerial shots (over
88%). One of the limitations of our approach is observed in clas-
sifying zoom shots where the avg. accuracy is 20% lower than
the dataset average. One reason behind such an anomaly can
be linked directly to the initial step of extracting homography.
In case of zoom shots, the SURF descriptors being sensitive to
the degree of scaling, are often mis-matched. This results in de-
generate homographies, which may result into suboptimal rep-
resentations.
A deeper level of understanding can be obtained from the

confusion tables listed in Fig. 8. Visually similar shots such as
aerial and bird-eye depict certain degree of confusion. Likewise,
pan and dolly shots are confused because of similarity when di-
rection of rotation along z-axis coincide with slow translation
along the same direction. Apart from the confusion alone, the
Fig. 8 offers insight on another interesting experiment we con-
ducted to test the robustness of our shot classifiers. In this ex-
periment, we use our proposed final representation to describe
each shot in our dataset. The confusion matrix in the left reports
avg. accuracies and the respective confusions across each of the
8 classes in our cinematographic shot dataset. On the right, we
report the results when the test set is switched from clean part to
the unconstrained part of the dataset. We observe a 16% drop in
performance which can be attributed to the nature of the uncon-
strained shots that contain significant jitter. However, the per-
formance in the constrained part of the dataset is still promising
(38% better than random).
Table II shows the typical computational aspect of different

steps involved in the entire workflow. In our current implemen-
tation, the feature extraction process takes themaximum amount
of compute cycles. However, the process is completely paral-
lelizable both in terms of spatial and temporal perspectives as
features computed in one frame can be computed independently
of previous frames. Except for the feature computation and ho-
mography estimation, none of the techniques discussed in our
shot classification process are dependent on the spatio-temporal
resolution of video. For, brevity we keep aside asymptotic anal-
ysis of all the algorithms discussed here.
In the next section we discuss our results on a more chal-

lenging problem i.e. recognition of complex events.

Fig. 9. Recognition of complex events that are expected to occur in outdoor
setting with substantial camera motion.

Fig. 10. Recognition of complex events that are expected to occur in indoor
settings with relatively low camera motion.

E. Complex Event Recognition Based on Camera Motion

We perform exhaustive comparative analysis of event recog-
nition performance for two separate cases. In the former case,
we report the average precision of event classifiers on events
that are commonly observed in outdoor settings involving sig-
nificant camera motion. The results are reported in Fig. 9. The
latter case involves events that are typically expected to occur in
indoor settings, accompanied by limited camera motion. Fig. 10
reports results corresponding to these events.
Among outdoor events, “Attempting a Board trick”,

“Changing a Vehicle tire”, and “Parade” are well detected
using our proposed HMM based approach on top of the pre-
defined shot classifier responses (HMM/SC). While in case
of indoor events, “Birthday party” and “Working on a sewing
project” are detected with high avg. precision. We also notice
that in all event cases, late fusion with a content based classifier

, improves the result by 3 - 4%, which
supplies strong evidence towards the complementary nature of
our feature. Interestingly, classifiers trained on Bag-of-LC only
achieve 3.5 - 5% lower than HMM/SC. Thus, for even larger
datasets, we can obtain a decent trade-off between speed and
accuracy by eliminating the full shot classification followed by
HMM training step, opting for simpler
based approach.
Lastly, we report detection error trade off plots in Fig. 11(a),

specific to the said 5 events to show how graceful the
event detectors are at different thresholds. In Fig. 11(b),
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Fig. 11. Detection-Error Trade off (DET) curves for (a) 5 event classes best rep-
resented using our camera motion based features. (b) Curves for corresponding
event classes obtained using a content based feature representation (Bag-of-
SIFT-features).

we compare the performance with detectors based on
. We fix an reason-

able operating region (6% false alarm with 75% misdetection)
and measure the area under each curve intersecting this oper-
ating region.

V. CONCLUSION

We presented a novel set of methodologies to perform ro-
bust shot classification based on camera motion adhering to
cinematographic principles. In our approach, we first extracted
camera motion from shots by computing frame to frame homo-
graphies. In order to represent homographies in a manageable
space, we proposed the use of Lie algebra to obtain one to one
linear mappings of the homographies. In order to exploit the
temporal order these mappings, we compute features from time
series constructed from these mappings. Our approach performs
significantly better than the state of the art methods. As part of
this work, we also introduced a cinematographic shot dataset
that can be used by the research community to explore different
avenues in this direction. Finally, we demonstrated the applica-
bility of our proposed method to represent ambient camera mo-
tion in videos to develop insights towards solving a more chal-
lenging event detection problem. As part of future work, we in-
tend to augment our complex event recognition framework with
proper camera motion boundary detection [18], instead of these
fixed length segments.
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