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ABSTRACT
In this paper we propose a novel aesthetic model emphasizing psycho-
visual statistics extracted from multiple levels in contrast to earlier
approaches that rely only on descriptors suited for image recog-
nition or based on photographic principles. At the lowest level,
we determine dark-channel, sharpness and eye-sensitivity statistics
over rectangular cells within a frame. At the next level, we extract
Sentibank features (1, 200 pre-trained visual classifiers) on a given
frame, that invoke specific sentiments such as “colorful clouds”,
“smiling face” etc. and collect the classifier responses as frame-
level statistics. At the topmost level, we extract trajectories from
video shots. Using viewer’s fixation priors, the trajectories are la-
beled as foreground, and background/camera on which statistics are
computed. Additionally, spatio-temporal local binary patterns are
computed that capture texture variations in a given shot. Classifiers
are trained on individual feature representations independently. On
thorough evaluation of 9 different types of features, we select the
best features from each level – dark channel, affect and camera mo-
tion statistics. Next, corresponding classifier scores are integrated
in a sophisticated low-rank fusion framework to improve the final
prediction scores. Our approach demonstrates strong correlation
with human prediction on 1, 000 broadcast quality videos released
by NHK as an aesthetic evaluation dataset.
Category and Subject Descriptors: H.4 [Information Systems
Applications] : Miscellaneous

Keywords: Video Aesthetics, Affect features, Camera motion fea-
tures, Cinematography, Low Rank late fusion

1. INTRODUCTION
Automatic aesthetic ranking of images or videos is an extremely

challenging problem as it is very difficult to quantify beauty. That
said, computational video aesthetics [4, 7–11, 13, 14] has received
significant attention in recent years. With the deluge of multimedia
sharing websites, research in this direction is expected to gain more
impetus in future, apart from the obvious intellectual challenge in
scientific formulation of a concept as abstract as beauty.
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Figure 1: Video aesthetic assessment: Top row shows frames from videos
ranked from 1 − 5 and bottom row shows the bottom 5 ranked videos in the
NHK video aesthetic dataset, using the proposed approach. Numbers in paren-
theses indicate deviation from ground truth rankings. Our approach correctly
predicts video 0431 (bottom right) to be the lowest ranked.

Since there is no well-defined set of rules following which any
image or video can be deemed as beautiful, the problem can be
posed appropriately in machine learning paradigm. In this vein,
the authors of [4, 7] propose the use of low-level statistical fea-
tures e.g., hue count, blur, saturation to predict aesthetic appeal.
[9] insinuated using these properties for foreground regions, which
intuitively is a more reasonable approach. However it involves
segmentation. Later these are circumvented using visual saliency
maps [22] or dedicated content based classifiers [8].

In contrast to these customized statistics that are believed to cap-
ture some aspects of aesthetics, the authors of [10] propose the use
of image descriptors popular in object recognition literature to as-
sess beauty of photographs. Except for a few earlier efforts [9, 11,
13], most research efforts are concentrated on modeling aesthetic in
still images. While features proposed in [4,7,8,10,14] demonstrate
some success for images, we argue that these do not necessarily ap-
ply to videos. For example, rule of thirds – a composition guideline
used to assess photography, requires foreground to be aligned to 4
specific locations in an image frame [8, 9]. Videos captured with
such constraints, tend to have non-moving foreground and lead to
viewer dissatisfaction [13]. Also, cinematographic techniques –
camera motion, lighting changes etc. are often introduced in pro-
duced videos to increase their aesthetic appeal, which cannot be
captured using aesthetics based on single images.

Motivated by the above, we propose a hierarchical framework
encapsulating aesthetics at multiple levels which can be used inde-
pendently or jointly to model beauty in videos. Our contributions
are: (1) We extract motion statistics that latently encode cinemato-
graphic principles, specific to foreground and background or cam-
era, superior to approaches proposed in [9,11,13], (2) We introduce
application of human sentiment classifiers on image frames that
capture vital affective cues which are directly correlated with visual
aesthetics and are semantically more interpretable than [8], (3) We
employ a relatively small set of low-level psychovisual [15,18] fea-
tures as opposed to [4, 7, 9, 10, 14] and encode them efficiently into
descriptors that capture spatial variations within video frames, and
finally, (4) We exploit a more sophisticated fusion scheme [21] that



show consistent improvement in overall ranking when compared to
methods used in [10, 11, 13]. Section 2 discusses computation of
these features in detail.

2. VIDEO AESTHETICS
We analyze a video at multiple granularities employing three

strategies, each catering to specific aspects of aesthetics. Each
video is divided into shots and for each shot, keyframes are selected
uniformly. Following this, features are selected at three levels –
cell, frame and shot.

2.1 Cell-level
At this level, each keyframe in a shot is divided intom×m grids

of rectangular cells. Each cell ({Aj}m×mj=1 ) is further described
using the following statistics, thus providing a mean to analyze low-
level aesthetics in different spatial regions: (a) The Dark-channel
statistics, proposed in [5] and used in [8], is essentially a minimum
filter on RGB channels which reflects local clarity, saturation, and
hue composition in a given image (I) subjected to a neighborhood,
Ω(i) around i-th pixel. For j-th, cell the dark channel feature is
computed in Eqn. (1) as:

Fdc(j) =
∑

(i)∈Aj

min
c∈R,G,B

( min
i′∈Ω(i)

Ic(i
′))∑

c∈R,G,B

Ic(i)
, (1)

with each real valued numbers normalized by the cell area. (b)
Sharpness statistics are derived from squared root of the product of
spectral map (αxj ) and sharpness map computed over 8-pixel row
(xrj ) and column neighborhoods (xcj) of the gray-scale equivalent
(xj) of a cell from a color frame (Aj). The simplified formulation
from [19] as given in Eqn. (2)
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(2)
captures the perceived sharpness of j-th cell, indicating the amount
of detail in each cell. (c) Eye-sensitivity is one of the oldest known
aesthetic attribute known to humans, which is associated with the
visual cortex’s sensitivity to colors of certain wavelength in the vis-
ible spectrum. We obtain this by building a weighted color his-
togram for a given cell using the corresponding color sensitivity
scores predefined in [18]. The peak of the histogram represents
the sensitivity score with respect to the human eye, for a given cell
and is used as our final cell level statistics (Fes).

2.2 Frame-level
Global frame-level descriptors as used in [10] are more suited in

for recognition of scenes or objects, primarily due to their invari-
ance towards pose, viewpoints, illuminance condition under which
images are captured etc. We hypothesize that such properties are
not desired in the current problem context and resort to detection
of a more abstract concept – human affect present in a given video
frame. We apply a large set of affect based classifiers from a re-
cent work by Borth and colleagues [2], hereafter being referred to
as SentiBank Detectors. These detectors are founded on a psycho-
logical research known as Plutchik’s Wheel of Emotions [15].

To train this detector library, a Visual Sentiment Ontology is
firstly built by data-driven discovery from Internet: adjective and
noun tags are extracted from Flickr and Youtube based on their co-
occurrence with each of the 24 emotions defined in Plutchik’s the-
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Figure 2: Results of applying sentiment classifiers on 4 different keyframes
from the NHK dataset. A subset of 10 unique classifiers listed on the right of the
figure, are applied on the keyframes shown above. Detection confidence for each
of these classifiers for all 4 images are shown as a barchart.

ory. These tags are then assigned with sentiment values and used to
form Adjective Noun Pairs (ANP) such as “cold winter” or “happy
baby”. More than 3, 000 ANPs are then selected to form the ontol-
ogy based on their frequency ranking on Flickr and semantic cover-
age. For each ANP of the ontology a detector is trained from Flickr
images that are tagged with this ANP and only 1, 200 ANP con-
cept detectors are selected according to the detector performance
to form the SentiBank detectors library, which we apply on video
frames to generate a 1, 200 dimensional ANP detector response,
hereafter referred to as Faf . Fig. 2 demonstrates the results of ap-
plying a small subset of these detectors on 4 different keyframes
from 1, 000 videos in the NHK video aesthetics dataset. In each
case, we observe direct correlation between the sentiment invoked
in a viewer with the individual detector’s confidence, which argues
in favor of their applicability in this context.

2.3 Shot-level
This is the final level of our feature hierarchy where we com-

pute three different statistics from a video shot based on (a) Fore-
ground and (b) Background motion and (c) Texture dynamics.
To accomplish the former two tasks, we track distinctive points [16]
from a sequence of frames in a shot, to get meaningful trajectories.
Since trajectories can either belong to moving foreground objects
and either non-moving background or moving camera, we further
apply a Bayesian spatio-temporal saliency detection algorithm [22]
based on natural image statistics, employing priors from viewer’s
eye fixation. This generates a coarse map for every frame with re-
gions corresponding to foreground with high saliency and those to
background with low saliency. Using this coarse map, trajectories
are labeled whether they are emanated from either foreground or
background.

For both types of trajectories, we independently perform a low-
rank matrix decomposition using [3] to find dominant trajectories
belonging to both motion classes. The low-rank assumption is
based on the observation that: all trajectories belonging to either
foreground or background, when stacked together, form a matrix
which can be factorized into a low-rank component and a noise
component. This step ensures further refining of trajectories ob-
tained initially. First k-components of the low-rank matrix identify
the dominant trajectories. Finally each dominant trajectory is de-
scribed using statistically invariant features listed as: mean, stan-
dard deviation, range, minimum, maximum, l1 and l2 norm. Thus,
in this case, a 2 dimensional x, y trajectory of arbitrary length, is
reduced to a 2 × 7 dimensional vector, denoted as Ffg or Fbg de-
pending on its source (foreground or background/camera).

In addition, we also represent a shot based on its texture dynam-
ics. For this purpose, we employ a spatio-temporal local-binary
pattern algorithm [23], for describing volumetric texture varia-



tions in videos. The spatio-temporal LBP descriptor is computed
by binning LBP codes along a small spatio-temporal neighborhood
in three orthogonal planes: x− y, x− t and y − t. Hence the final
descriptor for a shot is given by a histogram (Ftx) of 3 × 2n, n
indicating the spatial-pixel neighborhood in x, y plane.

All descriptors are further clustered independently using a fast
k-means clustering algorithm [12] to create vocabularies of dif-
ferent sizes. Thereafter, each video is described using separate
bag-of-X representations obtained by standard vector quantization.
Here X denotes a particular feature type from our pool of features:
Fdc (dark channel), Fsp (sharpness), Fes (eye-sensitivity), Faf

(affect), Ffg (foreground motion), Fbg (background motion), and
Ftx (texture dynamics). Finally, bag-of-X representations for a
particular feature type, are used in a ranking SVM framework [6]
to learn an aesthetic model for the given feature type. In the next
section, we discuss how individual models generated from comple-
mentary features, can be efficiently fused to produce a final aes-
thetic model.

2.4 Rank Fusion
We employ the Low-Rank Late Fusion (LRLF) scheme [21] to

fuse the ranking scores from m ranking SVM models, each of
which is trained with one specific aesthetic feature. The advan-
tage of this fusion scheme is that it is not only isotonic to the nu-
meric scales of scores from different models but also removes the
prediction errors from each model. Given a ranking score vector
si = {si1, . . . , sin} from the i-th model, where n is the number
of videos and each sij denotes the ranking score of the j-th video
predicted by the i-th model. We convert it into an comparative re-
lationship matrix T i such that T ijk = 1 if sij > sik, T ijk = −1 if
sij < sik and T ijk = 1 if sij = sik. In this way, the real-valued score
vector is encoded as an integer matrix, which gets rid of the nu-
meric scale variances among scores from different models. Taking
the comparative relationship matrices {T i, i = 1, . . . ,m} as input,
LRLF scheme seeks a shared rank-2 matrix through which each T i

can be decomposed into a common rank-2 matrix and a sparse er-
ror matrix. Our hypothesis behind the rank-2 matrix is that if ideal
score vector s∗ exists, the real-valued comparative relation matrix
T ∗ is a rank-2 matrix formed by T ∗ = s∗e> − es∗>, where e is
a all-one vector. LRLF considers the reverse problem: Based on
the inferred rank-2 matrix T̂ , it performs rank-2 factorization of T̂
such that T̂ = ŝe> − eŝ>. Finally, the recovered s> can be used
as final fused score for video aesthetic ranking.

3. EXPERIMENTS
We evaluate our algorithm on the recently released “NHK - Where

is beauty?” dataset, consisting of 1, 000 broadcast quality videos,
aesthetically ranked from best (1) to worst (1, 000) by humans. In
our setup, each keyframe from a video is divided into 3 × 3 grids
containing a total number of 9 cells. Empirically, m = 3 implic-
itly mandates one of the composition rules proposed in [1, 4, 9] –
the rule of thirds, hence a natural choice. Sharpness for a cell, de-
scribed using minimum, maximum, mean and standard deviation
of the S3 map discussed in Eqn. (2) leads to a 9 × 4 dimensional
vector i.e, Fsp ∈ R36. Dark channel and eye-sensitivity are mea-
sured described using the mean and maximum values for a given
cell, respectively, implying Fdc ∈ R9 and Fes ∈ R9. For frame
level features, we replicate the experimental setup in [2]. For shot-
level features, k is empirically set to 16 to select top 10 dominant
trajectories from both motion classes. Finally, while computing the
texture dynamics descriptor based on [23], we consider a 5×5×5
neighborhood yielding Ftx ∈ R96 (3× 25 = 96).

In addition, we implemented two independent baselines inspired
from [10] whose performance are recorded in top two rows in
Tab. 1. The two baselines are generated on generic image [17]
(BL-I) and video [20] (BL-V) descriptors, widely used in recogni-
tion tasks. All descriptors are randomly sampled from 200 videos
to construct vocabularies with different sizes (128, 256, 512, 1024)
and subsequently for every vocabulary-feature combination, bag-
of-X representations are generated for all videos. We use SVM
rank [6] on linear kernels using the 1-slack (dual) with constraint
cache optimization algorithm, to train separate models for each set-
ting. We employ a 5-fold cross validation scheme to select the cost
parameter for each SVM. Once parameters are selected, we use the
regular query setting with 80%− 20% (training - testing) split, en-
suring testing samples do not appear during the training phase for
a particular split. Thus with 5 splits, we can generate the ranks for
all videos in the dataset. Finally, evaluation is performed using the
Kendall (τ ) and Spearman’s (ρ) rank correlation coefficients:

τ =
Nc −Nd

1
2
N(N − 1)

, and ρ = 1− 6
∑
d2
i

N(N2 − 1)
, (3)

where Nc and Nd denote the number of concordant and discordant
pairs respectively, N being total number of samples = 1000, and
di being the difference of between the ground truth and predicted
ranks. Both τ and ρ can take values between [−1, 1], where −1,
1 indicating ground truth rank and predicted ranks are completely
reverse, and same, respectively, while 0 signifies no-correlation be-
tween the two rank sets.

Kendall’s coefficient (τ ) Spearman’s coefficient (ρ)
Feature 128 256 512 1, 024 128 256 512 1, 024

BL-I -0.011 0.001 0.006 -0.002 -0.041 0.014 -0.013 0.012
BL-V 0.001 -0.021 0.012 0.001 0.001 0.001 -0.002 -0.049
Fdc 0.014 0.017 0.016 0.013 0.039 0.025 0.045 0.044
Fsp -0.018 0.017 0.014 0.023 -0.027 -0.003 0.026 0.031
Fes 0.003 0.004 0.006 0.001 -0.004 -0.004 0.004 -0.002
Faf 0.028 0.021 0.034 0.030 0.035 0.041 0.045 0.046
Ffg 0.009 0.005 0.011 0.013 0.015 0.008 0.013 0.021
Fbg 0.027 0.041 0.039 -0.016 0.039 0.044 0.047 -0.018
Ftx -0.001 -0.001 -0.002 -0.000 0.001 -0.004 -0.003 -0.003
FUSED 0.0861 0.1266

Table 1: Summary of experiments using classifiers trained on different Bag-of-
X representations of baseline features from [17] (BL-I) and [20] (BL-V), followed
by our proposed features (labeled as Fxx). The row labeled FUSED shows the
best fusion results obtained after combining 5 different feature combinations (in-
dicated in bold) using [21].

Tab. 1 summarizes all our experiments. For every feature - vo-
cabulary combination, both Kendall(τ ) and Spearman (ρ) are re-
ported. Our proposed psychovisual features perform significantly
better than the baselines reported as BL-I and BL-V in top two
rows. Thus, classifiers trained on generic image level descriptors
such as colorSIFT [17] and video level descriptors such as MBH [20]
are not suited for quantifying video aesthetics. Intuitively, this can
be explained from the following observations: (a) colorSIFT de-
scriptors on high-quality images capture more detail (Flickr im-
ages as shown in [10]) as compared to low-resolution 640 × 360
video frames from the NHK dataset, and (b) MBH [20] descriptors
are unable to differentiate between motion originating from back-
ground or foreground, which is necessary for describing motion
based aesthetics, resulting into generation of suboptimal aesthetic
models.

The last row in Tab. 1 (FUSED), shows fusion [21] results ob-
tained from a two-step process: first we use cross validation to se-
lect top 5 features (which may use different vocabulary sizes) based
on high ρ and τ values. Next we use various late fusion methods



(score averaging, normalized rank, and low-rank fusion [21]) to
fuse these independent 5 scoring models. Thus selecting an opti-
mal algorithm for fusing knowledge from individual models, boosts
overall performance. More detailed analysis of fusion is provided
in Fig. 4. It is evident that models built on shot-level features:
camera/background motion perform well with smaller vocabulary
sizes, in comparison to the ones that are trained using texture de-
scriptors and sentibank features - which perform better with larger
vocabularies.

We also observe that, shot level features : camera/background
and foreground motion statistics outperform all other features in
most cases. It is also interesting to note that frame-level sentibank
features also perform equally well. Among cell-level features, dark
channel based statistics demonstrate best performance. This is fur-
ther supported by the scatter plot in Fig. 3(a). Ideally, the dots in
the figures are expected to be along the line that connects (1, 1)
to (1000, 1000), indicating no discordance between ground truth
rank and predicted rank. We notice that magenta dots, correspond-
ing to dark channel features are more aligned to the line, than those
belonging to sharpness or eye-sensitivity.
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Figure 3: Scatter plot showing label disagreement between (a) Cell-level (Dark
channel – Magenta , Sharpness – Green, Eye-sensitivity – Blue), and, (b) Shot-
level (Foreground motion – Yellow, Camera/Background motion – Cyan, Texture
dynamics – Red) feature based classifiers (Best viewed when zoomed). Each dot
is plotted according to Cartesian pairs (Ground Truth Rank, Predicted Rank).

However, in case of shot level features, we observe a larger de-
gree of agreement between the ground truth and the prediction, in
comparison to the cell-level features. This is reflected in Fig. 3(b).
Finally, in Fig. 4, we provide some results using classifiers trained
on frame-level affect based features (Orange). Except for a few
(< 5%), we see strong label agreement between ground truth and
prediction - similar to the shot-level features. This encourages us to
fuse the individual classifier outcomes in 3 different settings. These
results are also shown in Fig. 4. Fusion of classifiers trained on
affect and dark channel based features are indicated in Turquoise.
These results are further improved after adding classifiers trained
on camera/background motion (Lime green). Ultimately fusion re-
sults from classifiers trained on top 5 features is shown in Pink. We
notice strong level of concordance in this setting.

4. CONCLUSION
We proposed a novel model for assessing beauty of broadcast

quality videos, emphasizing on statistics from multiple granulari-
ties i.e. cells within keyframes, entire frame and shots. Specifically,
we introduced three novel features – affect statistics at frame level,
and motion statistics of foreground and background at shot level.
Through extensive experiments, we demonstrated that using only a
handful of carefully selected features, and efficiently fusing models
learned on top them, can greatly increase the performance of aes-
thetic evaluation over previously published approaches. Although
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Figure 4: Scatter plot showing label disagreement between affect based classi-
fier results (Orange) versus ground truth. Fusion results are also shown : affect
+ dark channel (Turquoise), affect + dark channel + camera/background motion
(Lime green), and top 5 features combined (Pink). Refer to Fig. 3 for details on
interpretation.

our results indicate significant performance gain over prior work,
we conjecture that there is still plenty of scopes for further improve-
ment. Since research in aesthetic quality assessment of videos is
currently at an inchoate stage, we intend to explore how knowledge
from different domains images, audio, text etc. can be exploited in
this direction, as part of our future work.
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