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ABSTRACT
Recognition of complex events in unconstrained Internet videos is
a challenging research problem. In this symposium proposal, we
present a systematic decomposition of complex events into hier-
archical components and make an in-depth analysis of how exist-
ing research are being used to cater to various levels of this hi-
erarchy. We also identify three key stages where we make novel
contributions which are necessary to not only improve the over-
all recognition performance, but also develop richer understanding
of these events. At the lowest level, our contributions include (a)
compact covariance descriptors of appearance and motion features
used in sparse coding framework to recognize realistic actions and
gestures, and (b) a Lie-algebra based representation of dominant
camera motion present in video shots which can be used as a com-
plementary feature for video analysis. In the next level, we propose
an (c) efficient maximum likelihood estimate based representation
from low-level features computed from videos which demonstrates
state of the art performance in large scale visual concept detection,
and finally, we propose to (d) model temporal interactions between
concepts detected in video shots through two new discriminative
feature spaces derived from Linear dynamical systems which even-
tually boosts event recognition performance. In all cases, we con-
duct thorough experiments to demonstrate promising performance
gains over some of the prominent approaches.
Category and Subject Descriptors: H.4 [Information Systems
Applications] : Miscellaneous
Keywords: Complex Event recognition, Multimedia Event De-
tection, Covariance Matrices, Lie Algebra, Riemannian manifolds,
Cinematographic Techniques, Shot classification, Video Descrip-
tors, Maximum Likelihood Estimates, Linear Dynamical Systems,
Block Hankel matrices

1. INTRODUCTION & MOTIVATION
Hundreds of hours of multimedia content are uploaded in video

sharing portals everyday. Most of these videos are captured by am-
ateur users with limited cinematographic knowledge, and are sub-
ject to camera motion, background clutter and frequent illumina-
tion changes. Usually these videos depict high-level social events
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- such as a music concert, birthday party or instructional events
such as cooking a recipe or teaching a piano lesson. Thus, sifting
through such enormous collections for a specific event is a crucial
task and is often painstakingly frustrating given the technological
maturity of current video browsing algorithms. Most algorithms,
rely heavily on the generosity of the uploader to provide mean-
ingful textual labels relevant to the uploaded video content. Since
such textual labels are frequently noisy [10, 11], automatic analy-
sis of such videos are gradually attracting a lot of researchers from
computer vision and multimedia communities.

One task within the realm of automatic video content analysis is
the recognition of complex events contained in the videos. The goal
of complex event recognition is to automatically detect high-level
events in a given video sequence. In addition to the obvious benefit
of making video search and retrieval more efficient and rewarding
experience for the user, tracking user interest based on the video
content they watch, may (a) promote effective advertisement of
certain products. Also, such rich automatic semantic description
of videos can help broadcast agencies predict important statistics
such as virality of views, geographical location of viewers etc. mo-
ments after videos are uploaded – thereby (b) optimizing broad-
cast channel bandwidth. Furthermore, it would enable human ob-
servers with (c) semantically rich textual summary of a video in
a relatively short duration without substantial human intervention,
for rapid analysis purposes.

2. RECOGNITION OF COMPLEX EVENTS
High-level or complex events are long-term spatio-temporal ob-

ject interactions that happen under certain scene settings. How-
ever, there are several technical challenges involved in understand-
ing complex events from unconstrained videos. Some of them are
listed in the following section.

2.1 Technical Challenges
Current approaches rely heavily on classifier-based methods em-

ploying directly computable low-level features from videos. Re-
search strongly suggests the joint use of multiple features [6] such
as static frame-based features, spatio-temporal features and acous-
tic features. Since these low-level features are designed with more
controlled conditions in mind [2, 9], it is not clearly understood
[3–5] if they are capable of capturing discriminative yet relevant
information from diverse open-source videos.

Secondly, after features are computed, they are typically quan-
tized into “video words” and each video is reduced to a histogram
popularly known as bag-of-X representation (X being a feature
modality). Classifiers are trained on these histograms with event
labels to obtain models that can be used for testing videos with un-
known labels. However, even with promising retrieval results [4,5],
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Figure 1: A hierarchical decomposition as proposed in [6] of complex events, with increased complexity from bottom to top. This bottom-up decomposition helps
dividing the original problem of event recognition into tractable and simpler sub-problems with richer semantic understanding.

these methods suffer from the usual disadvantages of quantization
used in converting raw features to discrete codewords. Alterna-
tively, X can be replaced by mid-level concepts in the bag-of-X
representation to obtain a semantically richer representation of a
video [3–6]. A concept can be visualized as a spatial or spatio-
temporal entity describing one of the following: (a) object (car,
human etc.), (b) scene (forest, beach etc.), (c) action (jumping, run-
ning) and, (d) interaction (person riding a bike). Nevertheless these
representations are semantically superior, they are unable to capture
temporal order between concepts which may be useful for predict-
ing the nature of events and drawing a textual summary of the same
(motivation (c) in Section 1).

Thus, to solve this enormous problem, a systematic decompo-
sition of an event is extremely necessary, which not only enables
solving simpler and tractable problems but also facilitates develop-
ing a better semantic understanding of complex events. We propose
the hierarchical decomposition in Fig. 1 appropriate in this context.
Through the rest of this proposal, we propose how individual com-
ponents of the hierarchy in Fig. 1 can be improved to improve the
overall performance of recognition of complex events.

2.2 Design of Novel Features
Within the purview of this effort, we explore two complementary

sources of information to design features that are fast to compute
and also useful for realistic video analysis. Our first feature is com-
puted from covariance of low-level appearance and motion cues
obtained from all pixels in a short video clip (typically 20 frames)
while the next feature encapsulates ambient camera motion present
during the video capture process.

The semi-global clip-level descriptor is a concise representa-
tion of a temporal window/clip of subsequent frames from a video
rather than localized spatio-temporal patches, which eliminates the
use of specific detectors. The descriptor is based on covariance
of complementary low-level motion (optical flow and their deriva-
tives, vorticity, divergence etc.) and appearance cues (first and sec-
ond order derivatives of pixel intensities etc.). Since covariance
matrices capture joint statistics between individual low-level fea-
ture modalities, they automatically transform our random vector of
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Figure 2: Two of our proposed sparse coding based classification techniques
are illustrated here with the top one using matrix log descriptors as input, while
the bottom one operating on covariance matrices directly.

samples into statistically uncorrelated random variables, leading to
a compact representation of a video.

Since these descriptors are computed on a dense temporal sam-
pling basis, most of these can be expressed using only a few dis-
criminative ones to form a dictionary, which can be randomly se-
lected from a collection of labeled videos. This motivates us to
resort to sparse coding based classification strategies (Fig. 2) in-
stead of regular SVM classification strategies. Sparse coding on
covariance matrices can be nicely formulated as a determinant max-
imization problem where each query covariance matrix is approx-
imated using a linear combination of dictionary elements. Since
vector addition and scalar multiplication of covariance matrices is
not closed, additional modifications need to be performed in the
original sparse coding formulation which expects a query to be ex-
pressed as linear combination of dictionary elements. A schematic
illustration of these methods are provided in Fig. 2.

Using our techniques we achieve high recognition rates on the
UCF50 1, and HMDB51 [7]) datasets, which are considered bench-
marks for action recognition in unconstrained scenarios. A sum-
mary of our results is provided in Tab. 1, where the bottom row

1
http://server.cs.ucf.edu/~vision/data/UCF50.rar
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Datasets
Method Desc. KTH UCF50 HMDB51

BoVW+SVM HOG-HOF [8] 92.0% 48.0% 20.2%
BoVW+SVM COV 81.3% 39.3% 18.4%
SVM COV 82.4% 40.4% 18.6%
SVM LCOV 86.2% 47.4% 21.03%
OMP LCOV 88.2% 53.5% 24.09%
TSC MAT 93.4% 57.8% 27.16%

Table 1: Comparison with the state-of-the-art methods: Last two rows show
proposed methods against different representations and classification strategies.

shows two variants of our method, while the top four rows indicate
conventional approaches with different feature representations.

Camera-motion is often an under-exploited cue when it comes
to the analysis of videos of our concern. Complex events like “At-
tempting a board trick” and “Parkour” usually have a lot of jit-
tery camera motion coupled with pan and tilt motions. Similarly,
videos depicting events such as “Wedding Ceremony” and “Birth-
day Party” are mostly captured by stationary, tripod-mounted cam-
eras with limited pan and some amount of zoom. The objective of
this effort is to investigate an efficient set of methodologies, that
can be leveraged to represent videos in terms of their ambient cam-
era motion in large scale, without resorting to computationally pro-
hibitive full-3D reconstruction techniques.

Camera Motion using Homographies Proposed Camera Motion Representation 

Separability in Original Feature Space Separability in Proposed Feature Space 

  

Figure 3: Discriminativity of our proposed representation of shots in contrast
to pure frame-to-frame homographies. Figures on top show four classes of shots
(Establishing, pan, tilt and zoom) in both feature space. Bottom figures show clear
separability of “aerial” and “pan” shot classes in the proposed feature space.

We devise this novel representation on top of inter-frame homo-
graphies which serve as coarse indicators of the camera motion.
Next, using Lie algebra of projective groups, we transform the ho-
mography matrices to an intermediate vector space that preserves
the intrinsic geometric structure of the transformation (Fig. 3). Mul-
tiple time series are then constructed from these mappings. Fea-
tures computed on these time series are used for discriminative
classification of video shots. Our proposed camera motion based
shot classification outperforms previously published algorithms and
achieves comparable performance to an implementation that in-
volves recovery of structure from motion on our dataset of eight
shot categories. This encourages us to evaluate our method for
complex event recognition in challenging datasets [3, 4], which
demonstrates conclusive evidence towards its applicability in open-
source video analysis (Fig. 4).

2.3 Intermediate representations
Designing intermediate representations on top raw features is

very crucial for any recognition algorithm to handle outliers ef-
ficiently and reduce processing of large volumes of high dimen-
sional data. We present an efficient alternative [1] to the traditional

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

1 2 5 10 20 40 60 80 90 95 98 99
1

2

5

10

20

40

60

80

90

95

98

99

Working on a Sewing Project (PAUC 0.10)

Changing A Vehicle Tire (PAUC 0.09)

Attempting a Board Trick(PAUC 0.07)

Parade (PAUC 0.09)

Birthday Party (PAUC 0.08)

(a)
False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

1 2 5 10 20 40 60 80 90 95 98 99
1

2

5

10

20

40

60

80

90

95

98

99

Parade (PAUC 0.07)

Birthday Party (PAUC 0.06)

Attempting a Board Trick (PAUC 0.10)

Changing a Vehicle Tire(PAUC 0.10)

Working on a Sewing Project (PAUC 0.10)

(b)Figure 4: Detection-Error Trade off (DET) curves for (a) 5 event classes best
represented using our camera motion based features. (b) Curves for correspond-
ing event classes obtained using Bag of SIFT features. .

vocabulary based on BoVW methods used for visual classification
tasks. Our representation (Fig. 5) is both conceptually and com-
putationally superior to the bag-of-visual words: (1) We iteratively
generate a Maximum Likelihood estimate of an instance given
a set of characteristic features in contrast to the BoVW methods
(2) We randomly sample a set of characteristic features called an-
chors instead of employing computation intensive clustering algo-
rithms used during the vocabulary generation step of BoVW meth-
ods. Since our proposed representation is based on MLE over a
large set of supporting datapoints, we are able to capture more di-
versity in the data as opposed to conventional vector quantization
based representations. This is indicated in Tab. 2.
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Figure 5: Toy example contrasting the proposed representation against tradi-
tional BoVW and soft-assignment BoVW. Note that the proposed representation
is initially identical to soft BoW but diverges since it maximizes an instance-level
likelihood score.

We integrate the above representation scheme to detect seman-
tically accurate, human-understandable mid-level spatio-temporal
concepts for modeling complex events. To this end, we introduce
a benchmark dataset for spatio-temporal concepts, explicitly cater-
ing to the event recognition problem. This dataset consists of 62
mutually exclusive, concept categories over 10, 000 annotated au-
dio visual samples extracted from NIST’s TRECVID MED 2011
event corpus that replicates complex events observed in common
video footages. Detectors are trained on the proposed representa-
tion [1] specific to each concept category on different information
modalities (motion, static, and audio). This approach achieved re-
spectable target detection [4] in the annual NIST TRECVID Mul-
timedia Event Detection 2011 competition.

2.4 Formulating complex event models
Just as low-level features and the associated intermediate repre-

sentations are crucial for recognition, efficient complex event mod-
els can be created if temporal dynamics are effectively exploited.
To this end we propose the use of Linear Dynamical systems to
create complex events. We hypothesize that a video depicting a
complex event, can be expressed as an ordered vector time-series,
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Representation
Bag-of-Features Anchors

Modality Avg. PAUC AP(%) Avg. PAUC AP(%)

Static [SIFT] 0.2203 22.01 0.1949 23.52
Static [GIST] 0.2718 18.21 0.2223 18.15
Motion [Dollar] 0.1948 16.22 0.1735 19.24
Motion [STIP] 0.1869 17.31 0.1878 19.42
Motion [MBH] 0.1721 19.21 0.1639 20.21
Audio [MFCC] 0.3121 11.13 0.2936 11.12
Fusion [SIFT+MBH] 0.1615 19.41 0.1524 21.02

Table 2: Spatio temporal concept detector performance evaluation summary:
We summarize the performance of 62 concept detectors constructed from BoW
(Baseline) and our proposed representation [1], across different feature modal-
ities. Two different metrics – average area under DET curve (Avg. AUC), and
average precision (AP) are used for evaluation. The lower the AUC measure (on
a scale of 0− 1) the more reliable the detector while for AP, the greater indicates
better performance.

where each time-step is a vector containing confidences returned by
a set of pre-trained spatio-temporal concept detectors [4]. Observ-
ing carefully, even for two visually similar events as shown in Fig.
6, we notice subtle differences in the concept evolution pattern for
these two events – Repairing vs Cleaning an appliance.
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Figure 6: Temporal dynamics of spatio-temporal concepts within a pair of
complex events. Each column illustrates cumulative distribution of concept de-
tector responses from a video (color coded to enhance readability). Top 5 relevant
concepts in both events are indicated as inset legend.

Hence, these evolving sequences can be modeled efficiently us-
ing linear dynamical systems (LDS). Now, direct estimation of LDS
parameters – hidden state vector, state transition matrix etc. Con-
ventional techniques use generative approaches – variants of dis-
crete and continuous hidden markov models (HMM) to achieve
this, however they are extremely sensitive to noise in training data.
Since, concept detector responses are noisy, we propose to use
alternative strategies that bypass this direct parameter estimation
step. One technique is to construct a block-Hankel matrix for a vec-
tor time series which captures dependencies between each observa-
tion vector, within the context of the entire time-series. Eigenspaces
of this matrix contains vital information which can be used to com-
pute discriminative features to train any linear SVM classifier model,
specific to a given event. Also, we can obtain meaningful statistics
- such as periodicity, frequency, shift etc. and cluster the vector
time-series into meaningful harmonic categories. Tab. 3 demon-
strates the merits of our temporal models – Hankel Matrix based
descriptors (HNK), Temporal Signatures (TS), and Late Fusion of
HNK and TS based classifiers (FUSED), against some well known
approaches – Discrete Cosine Transform based features computed
from vector time-series (DCT), Discrete HMM (DHMM), and Con-
tinuous HMM (CHMM); from some preliminary experiments on
TRECVID MED 2011 events collection dataset.

Avg. Prec. from Method
Event DCT DHMM CHMM HNK TS FUSED

E001 0.46 0.66 0.72 0.85 0.87 0.89

E002 0.44 0.64 0.71 0.89 0.91 0.91

E003 0.43 0.32 0.52 0.68 0.71 0.73

E004 0.39 0.39 0.39 0.61 0.59 0.59

E005 0.36 0.38 0.37 0.58 0.55 0.59

E006 0.34 0.38 0.51 0.87 0.87 0.85

E007 0.43 0.41 0.48 0.77 0.74 0.76

E008 0.67 0.69 0.71 0.88 0.89 0.87

E009 0.44 0.48 0.49 0.83 0.86 0.86

E010 0.38 0.48 0.51 0.74 0.75 0.75

E011 0.51 0.62 0.63 0.79 0.71 0.74

E012 0.37 0.73 0.68 0.78 0.76 0.78

E013 0.31 0.35 0.41 0.84 0.88 0.86

E014 0.34 0.46 0.48 0.68 0.68 0.67

E015 0.32 0.31 0.38 0.58 0.57 0.59

mAP 0.41 0.48 0.53 0.75 0.76 0.76

Table 3: Average Precision scores (MED11EC) Performance of our proposed
temporal features with contemporary methods that model temporal interactions
on all 15 events in the MED11EC dataset.

3. CONCLUSION
We presented a set of novel methodologies to perform semantic

analysis of web videos. We introduced a principled decomposi-
tion of these videos into hierarchical components, highlighting our
contributions in three key stages. As part of the first stage, we intro-
duced two novel semi-global features which can be used to capture
complementary information from videos. After that, we proposed
an intermediate representation replacing the Bag-of-words model
and demonstrated how this representation can be used to detect se-
mantic concepts from videos. In the concluding section, we insin-
uated two discriminative feature spaces to model temporal interac-
tions between detected concepts which can be efficiently integrated
into existing classifiers for complex event recognition. In princi-
ple, the stages in the bottom-up approach suggested here, can be
integrated in a common framework to perform semantic analysis of
Internet videos.
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