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Abstract This chapter discusses the challenges of automating surveillance and
reconnaissance tasks for infra-red visual data obtained from aerial platforms. These
problems have gained significant importance over the years, especially with the
advent of lightweight and reliable imaging devices. Detection and tracking of objects
of interest has traditionally been an area of interest in the computer vision litera-
ture. These tasks are rendered especially challenging in aerial sequences of infra
red modality. The chapter gives an overview of these problems, and the associated
limitations of some of the conventional techniques typically employed for these
applications. We begin with a study of various image registration techniques that are
required to eliminate motion induced by the motion of the aerial sensor. Next, we
present a technique for detecting moving objects from the ego-motion compensated
input sequence. Finally, we describe a methodology for tracking already detected
objects using their motion history. We substantiate our claims with results on a wide
range of aerial video sequences.
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1 Introduction

Detection and tracking of interesting objects has been a very important area of
research in classical computer vision where objects are observed in various sen-
sor modalities, including EO and IR, with static, hand-held and aerial platforms
[34]. Many algorithms have been proposed in the past that differ in problem sce-
narios especially in camera dynamics and object dynamics [14, 15]. Tracking of a
large, variable number of moving targets has been a challenging problem due to the
sources of uncertainty in object locations, like, dynamic backgrounds, clutter and
occlusions, and especially in the scenario of aerial platforms, measurement noise. In
recent years, a significant amount of published literature has attempted to deal with
these problems, and novel approaches like tracking-by-detection have been increas-
ingly popular [17]. Such approaches involve the process of continuously applying
a detection algorithm on single frames and associating detections across frames.
Several recent multi-target tracking algorithms address the resulting data associa-
tion problem by optimizing detection assignments over a large temporal window
[2, 5, 17, 24].

Aerial tracking of multiple moving objects is however much more challenging
because of the small object sizes, lack of resolution, and low quality imaging. Appear-
ance based detection methods [10] are therefore, readily ruled out in such scenarios.
The motion based object detection approaches rely on camera motion stabilization
using parametric models [20], but in addition to parallax, cases of abrupt illumination
changes, registration errors, and occlusions severely affect detection and tracking in
airborne videos. Many algorithms have been proposed to overcome these problems
of detection and tracking on frame to frame and pixel to pixel bases, including global
illumination compensation [32], parallax filtering [37], and employing contextual
information for detection [13, 29]. Some existing algorithms have performed well
in planar scenes where adequate motion based foreground–background segmenta-
tions are achievable [36]. Most of the existing methods however have concentrated
on medium and low altitude aerial platform sequences. Although such sequences
suffer from the problem of strong parallax induced by structures perpendicular to the
ground plane, like trees, towers, they do offer more pixels per target.

Effective use of visual data generated by UAVs requires design and development
of algorithms and systems that can exhaustively explore, analyze, archive, index,
and search this data in a meaningful way. In today’s UAV video exploitation process,
a ground station controls the on-board sensors and makes decisions about where
the camera mounted on the bottom of the UAV should be looking. Video is relayed
back to the intelligence center or some standard facility for assessment by the ana-
lysts. Analysts watch the video for targets of interest and important events which
are communicated back to soldiers and commanders in the battle zone. Any post
collection review of the video normally takes several hours for analysts to inspect
a single video. The inherent inefficiency of this process and sheer magnitude of
the data leads to an inability to process reconnaissance information as fast as it
becomes available. The solution to this problem lies in augmenting the manual video
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exploitation process with computer vision based systems that can automatically man-
age and process ever increasing volume of aerial surveillance information without or
with minimal involvement of human analyst. Such systems should handle all tasks
from video reception to video registration, region of interest (ROI) detection to tar-
get tracking and event detection to video indexing. It should also be able to derive
higher level semantic information from the videos which can be used to search and
retrieve a variety of videos. Unfortunately, however there is still a gap between the
operational requirements and the available capabilities in today’s system for dealing
with the UAV video stream.

A system capable of performing the above mentioned tasks for UAV videos will
have to grapple with significantly higher levels of complexity as compared to the static
camera scenario, as both the camera and the target objects are mobile in a dynamic
environment. A significant amount of literature in the computer vision community
has attempted to deal with some of these problems individually. We present a brief
overview of these methods individually, along with the challenges and limitations
involved.

1.1 Ego-Motion Compensation

Tracking of moving objects from a static camera platform is a relatively easier task
than those from mobile platforms and is efficiently accomplished with sophisti-
cated background subtraction algorithms. For a detailed study of these tracking
techniques, the interested reader is requested to refer to [25]. Cameras mounted
on mobile platforms, as observed in most aerial surveillance or reconnaissance, tend
to capture unwanted vibrations induced by mechanical parts of the platform coupled
with directed translation or rotation of the whole platform in 3-dimensional space.
All the aforementioned forms of motion render even the most robust of the back-
ground subtraction algorithms ineffective in scenarios that involve tracking from
aerial imagery.

A straightforward approach to overcome this problem is to eliminate the motion
induced in the camera through the aerial platform, which is also known as ego-motion
compensation in computer vision literature [12, 33, 35]. The efficacy of almost all
image-based ego-motion compensation techniques depends on the underlying image
registration algorithms they employ.

This step is also known as video alignment [9, 26] where objective is to determine
the spatial displacement of pixels between two consecutive frames. The benefit of
performing this step comes from the fact that after aligning the video, the intensity of
only those pixels will be changing that correspond to moving objects on the ground.
A detailed survey of various image alignment and registration techniques is avail-
able in [26]. Ideally an alignment algorithm should be insensitive to platform motion,
image quality, terrain features and sensor modality. However, in practice these algo-
rithms come across several problems:
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• Large camera motion significantly reduces the overlap between consecutive frames
which does not provide sufficient information to reliably compute the spatial trans-
formation between the frames.

• Most of the alignment algorithms assume presence of dominant plane which is
defined as a planar surface covering majority of pixels in an image. This assumption
does not remain valid when a UAV views a non-planar terrain or takes a close up
view of the object, which results in presence of multiple dominant planes. This
causes parallax which often is hard to detect and remove.

• Sudden illumination changes result in drastic pixel intensity variations and make
it difficult to establish feature correspondences across different frames. Gradient
based methods for registration are more robust to an illumination change, rather
than the feature based methods. Motion blur in the images can also throw off the
alignment algorithm.

1.2 Regions of Interest Detection

Once the motion of the moving platform is compensated the next task is to identify
‘regions of interest’ (ROIs) from the video, the definition of which varies with appli-
cation. In the domain of wide area surveillance employing UAVs, all the moving
objects fall under the umbrella of ROI. Reliable detection of foreground regions in
videos taken by UAVs poses a number of challenges, some of which are summarized
below:

• UAVs often fly at a moderate to high altitude thus gathering the global context of
the area under surveillance. Therefore, sizes of the potential target objects often
appear very small in the range of 20–30 pixels. Small number of pixels on a target
makes it difficult to distinguish it from the background and noise.

• As a UAV flies around the scene, the direction of illumination source (Sun) is
continuously changing. If the background model is not constantly updated that
may results in spurious foreground regions.

• Sometimes there are uninteresting moving objects present in the scene e.g., waving
fags, flowing water, or moving leaves of a tree. If a background subtraction method
falsely classifies such a region as a foreground region, then this region will be falsely
processed as a potential target object.

1.3 Target Tracking

The goal of tracking is to track all the detected foreground regions as long as they
remain visible in the field of view of the camera. The output of this module consists of
trajectories that depict the motion of the target objects. In case of UAV videos several
tracking options are available. One can perform tracking in a global mosaic or opt
for tracking using geographical locations of the objects. Tracking in geographical
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locations is often called geo-spatial tracking and requires sensor modeling. Tracking
algorithms also have to deal with number of challenges:

• Due to the unconstrained motion of the camera it is hard to impose constraints of
constant size, shape, intensity, etc., on the tracked objects. An update mechanism
needs to be incorporated to handle the dynamic changes in appearance, size and
shape models.

• Occlusion is another factor that needs to be taken into account. Occlusions can be
inter-object or caused by the terrain features e.g trees, buildings, bridges, etc.

• Restricted field of view of the camera adds to the complexity of the tracking
problem. Detected objects are often geographically scattered. Restricted field of
view of the camera allows UAV to track only certain number of objects at a time.
It either has to move back and forth between all previously detected object or has
to prioritize which target to pursue based upon the operational requirement.

• Tracking algorithms also have to deal with the imperfections of the object detection
stage.

While designing a computer vision system that is capable of performing all the
above mentioned tasks effectively in infra-red sequences, we need to consider the
following additional issues:

• FLIR images are captured in significantly lower resolution compared to their EO
counterparts as for a given resolution, infra-red sensor equipments are compara-
tively more expensive to install and maintain.

• FLIR sensing produces noisier images than regular EO imaging systems.
• As FLIR images tend to have lower contrast, they require further processing to

improve the performance of algorithms used in ego-motion compensation, ROI
detection and tracking.

The rest of this chapter is organized as follows: in Sect. 2 we discuss some of the
prominent advances in the field of automatic target detection and tracking from aerial
imagery. Section 3 provides a detailed description of our system that we have devel-
oped for tracking of objects in aerial EO/FLIR sequences. This section is followed
by experimental results on 38 sequences from the VIVID-3 and AP-HILL datasets,
obtained under permission from the Army Research Lab and US Govt.’s DARPA
programs, respectively. We conclude the chapter with some of the limitations that
we intend to address in future.

2 Related Work

Tracking moving objects from an aerial platform has seen numerous advances
[1, 3, 16, 18, 30, 31, 38] in recent years. We confine our discussion to only a sub-
set of the literature that has strong relevance with the context of this chapter. The
authors of [16] present a framework that involves separating aerial videos into the
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static and dynamic scene components using 2-D/3-D frame-to-frame alignment fol-
lowed by scene change detection. Initially, local tracks are generated for detected
moving objects which are then converted to global tracks using geo-registration with
a controlled reference imagery, elevation maps and site models. The framework is
also capable of generating mosaics for enhanced visualization.

Zhang and Yuan [38] address the problem of tracking vehicles from a single mov-
ing airborne camera under occluded and congested circumstances using a tracker that
is initialized from point features extracted from selected region of interest. In order to
eliminate outliers that are introduced due to partial occlusion, an edge feature based
voting scheme is used. In case of total occlusion, a Kalman predictor is employed.
Finally, an appearance based matching technique is used to ensure that the tracker
correctly re-associates objects on their re-entry into the field of view.

In [3], the authors use a video processor that has embedded firmware for object
detection and feature extraction and site modeling. A multiple hypothesis tracker
is then initialized using the positions, velocities and features to generate tracks of
current moving objects along with their history.

The authors of [18] address the issue of urban traffic surveillance from an aer-
ial platform employing a coarse-to-fine technique consisting of two stages. First,
candidate regions of moving vehicle are obtained using sophisticated road detection
algorithms followed by elimination of non-vehicle regions. In the next stage, candi-
date regions are refined using a cascade classifier that reduces the false alarm rate
for vehicle detection.

Yalcin et al. [31] propose a Bayesian framework to model dense optical flow over
time which is used to explicitly estimate the appearance of pixels corresponding to the
background. A new frame is segregated into background and foreground object using
an EM-based motion segmentation which is initialized by the background appear-
ance model generated from previous frames. Vehicles on ground can be eventually
segmented by building a mosaic of the background layer.

Xiao et al. [30] in their paper on moving vehicle and person tracking in aerial
videos present a combination of motion layer segmentation with background sta-
bilization, for efficient detection of objects. A hierarchy of gradient based vehicle
versus person classifier is used on the detected objects prior to the generation of
tracks.

The COCOA system [1] presented by Ali et al. is a 3-staged framework built using
MATLAB, capable of performing motion compensation, moving object detection
and tracking on aerial videos. Motion compensation is achieved using direct frame
to frame registration which is followed by an object detection algorithm that relies
on frame differencing and background modeling. Finally, moving blobs are tracked
as long as the objects remain in the field of view of the aerial camera. The system
has demonstrated its usability in both FLIR and EO scenarios.

The COCOALIGHT system is built from scratch keeping speed and portability
into consideration while supporting the core functionalities of [1]. A detailed analysis
of the algorithms employed for motion compensation, object detection and tracking
with the justification behind their selection is provided in this chapter. We intend
to disburse the technical insight while developing a practical system that is targeted
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to solve some of the predominant problems encountered while tracking in aerial
imagery both within and beyond visible spectrum.

3 COCOALIGHT System Overview

The COCOALIGHT system shares the concept of modularity from its predecessor
COCOA with complete change in design and implementation to facilitate tracking
with near real-time latency. The software makes use of a widely popular open-source
computer vision library which helps in seamlessly building the application both
in 32 and 64-bit Windows and Linux PC platforms. Since the system is compiled
natively, it is inherently much faster than interpreted MATLAB instructions present in
COCOA. Furthermore, the software is packaged as an easy to use command-line con-
sole application eliminating memory intensive user interfaces from COCOA, render-
ing it a program with a low memory footprint, justifying the name COCOALIGHT.
The design also exploits computational benefits from multi-threading during impor-
tant fundamental image processing operations, e.g., gradient computation, feature
extraction, computation of image pyramids.

Similar to COCOA, this system also consists of three independent components.
However, unlike the COCOA system, which only supports processing in batch mode
(an entire sequence needs to be processed to generate tracks), COCOALIGHT has
capability for both batch and online processing. In the online mode, the tracking algo-
rithm can be initialized with as few as only first ten frames from the video sequence.
In addition, the software can leverage FFMPEG library support to process encoded
videos without decompressing the video into image frames which is a significant
improvement in usability over its MATLAB counterpart.

Having provided some knowledge about the implementation, we proceed towards
a detailed discussion of the individual modules of the system.

3.1 Motion Compensation

The motion compensation module is the first and foremost module of the COCOA-
LIGHT software framework. Any errors incurred in this module while eliminating
camera motion get propagated to the subsequent modules namely the object detection
and tracking modules. Due to this fact, the motion compensation stage necessitates
employing highly accurate image alignment algorithms. Motivated solely by this
objective we investigated several image alignment algorithms to suit our require-
ment. All our experiments are performed on sequences from VIVID dataset and
from three other datasets, each collected using different aerial platforms flying over
different geographical locations under different illumination conditions.

A study of the image registration techniques [9, 26] reveals that a registration
algorithm must address the following issues which need careful consideration:
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Fig. 1 Effect of histogram equalization on the detection of SURF interest points on a low contrast
FLIR image. a Original FLIR image, b has a total of 43 SURF interest points whereas, c has a total
number of 174 interest points after histogram equalization

• detecting candidate features also known as control points, from image pair to be
registered,

• establishing correspondence between pairwise candidate features,
• estimating transformation model from point correspondence, and
• mapping image pair using the computed transformation model.

From our collection of video sequences, we observe that most of the frames
demonstrate perspective projection artifacts. For this reason, we set our registration
algorithm to estimate projective transformation parameters, also known as homog-
raphy. Once homography parameters are obtained, a standard technique is available
to perform the mapping operation between image pairs. In this section, we concen-
trate on the steps that involve proper selection of candidate features and establishing
correspondence between the feature pairs.

In order to enhance feature detection in FLIR imagery, all the frames are sub-
jected to a pre-processing stage. Histogram equalization is a widely popular tech-
nique to improve contrasts of IR images that are usually blurry. The effect of
histogram equalization is clearly evident in the images shown in Fig. 1 with the his-
togram equalized image producing more interest points denoted by red–green circular
cross-hairs.

3.1.1 Gradient-Based Method

Featureless spatio-temporal gradient-based methods are widely popular in image
registration literature [9, 26] because of their ease of implementation. We use the
unweighted projective flow algorithm proposed by Mann and Piccard in [20] to
compute the homography parameters.

A homography H = {hi j }, is a 3 × 3, 8 DOF projective transformation that
models the relationship between the location of a feature at (x, y) in one frame, and
the location (x ′, y′) of the same feature in the next frame with eight parameters,
such that,
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x ′ = h11x + h12 y + h13

h31x + h32 y + 1
, y′ = h21x + h22 y + h23

h31x + h32 y + 1
. (1)

The brightness constancy constraint results in a non-linear system of equations
involving all pixels in the overlap range (region where the source and target images
overlap). Using the method of [20], this system can be linearized for a least squares
solution, such that, given two images, I (x, y) and I ′(x, y), each pixel i ∈ [1, Np],
then contributes an equation to the following system,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .

xi Ix (xi , yi )

yi Ix (xi , yi )

Ix (xi , yi )

xi Iy(xi , yi )

yi Iy(xi , yi )

Iy(xi , yi )

xi It (xi , yi ) − x2
i Ix (xi , yi ) − xi yi Iy(xi , yi )

yi It (xi , yi ) − xi yi Ix (xi , yi ) − y2
i Iy(xi , yi )

. . .

⎤
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=

⎡
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.

.

xi Ix (xi , yi ) + yi Iy(xi , yi )

−It (xi , yi )

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(2)

ANp×8x8×1 = BNp×1, (3)

where It (xi , yi ) = I (xi , yi ) − I ′(xi , yi ), Ix (xi , yi ) = ∂ I (xi ,yi )
∂x , and Iy(xi , yi ) =

∂ I (xi ,yi )
∂y , while h33 is 1. The least squares solution to this over-constrained system

can be obtained with a singular value decomposition or pseudo-inverse. A coarse to
fine estimation is achieved using three levels of Gaussian Pyramids. The spatial and
temporal derivatives are also computed after smoothing using a Gaussian kernel of
fixed variance. This process is fairly computation intensive as it involves solving a
linear system of Np equations where Np is the number of pixels in each layer of
the Gaussian pyramid. We used this technique as a baseline for comparison with our
feature based registration algorithm in terms of speed and accuracy.

3.1.2 Feature-Based Method

As alternative to featureless gradient based methods, we study the performance of
some feature-based alignment algorithms. We use two different algorithms to esti-
mate homography with several types of feature detector algorithms. These two algo-
rithms differ in the way they obtain correspondence between candidate feature-pairs
of source and target images. Here is a detailed description of both the algorithms:

Flow based feature correspondence. In this algorithm, we extract invariant fea-
tures from source image by applying one of the following methods:

• KLT [27] features. We obtain interest points in the image with significantly large
eigenvalues by computing minimal eigenvalue for every source image pixel fol-
lowed by non-maxima suppression in a local d × d neighborhood patch. Interest
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points with minimal value less than an experimentally determined threshold are
eliminated prior to a final filtering based on spatial proximity of the features in
order to extract only strong candidate interest points.

• SIFT [19] features. These features are extracted by computing the maxima and
minima after applying difference of Gaussians at different scales. Feature points
that lie along edges and points with low contrast are eliminated from the list
of potential interest points. The dominant orientations are assigned to localized
feature points. A 128-dimensional feature descriptor is obtained at each interest
point extracted in this manner. We modify an open-source implementation of the
SIFT algorithm1 for extracting interest points.

• SURF [4] features. Speeded Up Robust Features are computed based on sums
of responses obtained after applying a series of predefined 2-dimensional Haar
wavelet responses on 5×5 image patches. The computation efficiency is enhanced
up using integral images. A 128-dimensional vector is finally generated for each
interest point.

• Random MSER [21] contour features. As the name suggests, we extract ran-
dom points from contours returned after determining Maximally Stable Extremal
Regions from an image. The MSERs are determined by first sorting image pix-
els according to their intensity, followed by a morphologically connected region
merging algorithm. The area of each connected component is stored as a function
of intensity. A larger connected component engulfs a smaller component until a
maximally stable criterion is satisfied. Thus, MSERs are those parts of the image
where local binarization is stable over a large range of thresholds.

Pixel locations corresponding to the features extracted using one of the above
algorithms are stored in an N ×2 matrix. These pixel locations are iteratively refined
to find the interest point locations accurate to subpixel level. Using these sparse set
of points from the source image, we compute respective optical flows in the target
image. A pyramidal implementation [8] of Lucas Kanade’s method is employed for
this task which returns us corresponding points in the subsequent frame from the
video sequence. A block diagram describing the important steps of this algorithm is
shown in Fig. 2.

Descriptor similarity based feature correspondence. This algorithm works for
those feature extraction methods that yield well defined descriptors for all detected
interest points for e.g., SIFT and SURF, in a given source image. We first compute
interest points in both source and destination images using either of the two meth-
ods. Thus we obtain two sets, which may not have equal number of interest points.
Since each interest point is described in high-dimensional space, correspondences
could be estimated using an approximate nearest neighbor search. We use a fast,
freely available implementation [22] for this purpose. A block diagram is provided in
Fig. 3 which explains this process. This technique is more robust as compared to the
flow based mapping technique since it considers several attributes of the extracted
feature points while generating the correspondence. However, it is computationally

1 http://web.engr.oregonstate.edu/hess/downloads/sift/sift-latest.tar.gz

http://web.engr.oregonstate.edu/hess/downloads/sift/sift-latest.tar.gz
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Fig. 2 Schematic diagram of the optical flow based correspondence mapping algorithm used for
the motion compensation stage

Fig. 3 Demonstration of the corresponding mapping algorithm based on descriptor similarity. This
is used as an error correction mechanism in the cummulative homography computation step, within
the motion compensation technique proposed here

more expensive than the former. We determine the accuracy of the registration algo-
rithm by measuring the frame difference (FD) score. Formally, the FD score between
a pair of consecutive intensity images It and It+1 can be defined as:

FD = 1

Np

Np∑
j=1

|I j
t × M(I j

t+1) − W (I j
t+1)|, (4)

where M(It+1), W (It+1) are the outlier mask and the warped output of It+1 with
respect to It , respectively and Np being the total number of pixels in a frame.

From the point correspondences established using either of the two methods dis-
cussed, we obtain respective pixel locations that are used to compute homography
with the help of the following set of equations:

H = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T , (5)

ax = [−xi ,−yi ,−1, 0, 0, 0, x ′
i xi , x ′

i yi , x ′
i ]T , (6)
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ay = [0, 0, 0,−xi ,−yi ,−1, y′
i xi , y′

i yi , y′
i ]T . (7)

For a given set of N corresponding point pairs {(xi , yi ), (x ′
i , y′

i )} for 1 ≤ i ≤ N , the
following linear system of equations hold good:

Given a set of corresponding points, we can form the following linear system of
equations:

[ax1
T , ay1

T , ax2
T , ay2

T , . . . , axN
T , ayN

T ]T H = 0, (8)

which is usually solved using random sampling technique [11] that iteratively mini-
mizes the back-projection error, defined as:

∑
i

(
x ′

i − h11xi + h12 yi + h13

h31xi + h32 yi + h33

)2

+
(

y′
i − h21xi + h22 yi + h23

h31xi + h32 yi + h33

)2

, (9)

where xi , yi and x ′
i , y′

i are the actual and estimated 2D pixel locations and h11 . . . h33
are the nine elements of the homography matrix. It is interesting to note that the
homography computation time in this case is significantly smaller than that observed
in the feature-less method because the linear system formed here has significantly
lesser number of equations than the former method.

The homography computed using the above methods reflects the transformation
parameter from one frame to other and are only relative to a pair of subsequent frames.
In order to have an understanding of the global camera motion, it is desired to obtain
the transformation parameters of all subsequent frames with respect to the initial
frame in the sequence. Therefore, we need to perform a cumulative multiplication
of the homography matrices. Thus, the relative homography between image frame
I0 and In is

H0,n = H0,1 × H1,2 × H2,3 × · · · × Hn−1,n, (10)

where, corresponding sets of points xt and xt+1 in homogenous coordinates, for two
frames It and It+1, can be related by

xt+1 ≈ Ht,t+1xt . (11)

Now, for each of the cumulative homography matrix computed as above,
we measure the curl and deformation metrics [28], using the following equations:

curl = |h12 − h21|, (12)

deformation = |h11 − h22|. (13)

These metrics are an approximate measure of the change in camera viewpoint
in terms of camera orientation and translation. If either of these metrics are larger
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Algorithm 1 Pseudo-code describing the motion compensation algorithm used by COCOA- 
LIGHT on FLIR imagery with KLT features for establishing flow based correspondence and
SURF used to regulate cumulative homography drift

than an empirical threshold, the consecutive frames indicate a significant change in
view-point, and therefore a higher likelihood of erroneous alignment. Under these
circumstances we reset the relative homography matrix to identity and frames from
here on are treated as a new sub-sequence.

However, the cumulative homography computation as discussed is not robust to
errors. Slight noise in the estimation of homography in one pair of frames can be
easily propagated through the cumulative homography matrix resulting in errors
that could affect the overall accuracy of the motion compensation, thereby causing
errors in the object detection stage. In order to alleviate the effect of such erroneous
calculations, we introduce a small error correction measure after every K frames,
where the cumulative homography is replaced with homography estimated directly
from descriptor mapping. This enhances the overall accuracy with the cost of a slight
computation overhead. The results of applying motion compensation on an example
three vehicle sequence are shown in Fig. 4. Each image in the figure is generated
by allocating the first two channels of an RGB image matrix with reference frame
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Fig. 4 Comparing alignment using cummulative homography computed using gradient based and
KLT-feature based methods: images labeled a–f are aligned using the gradient feature based reg-
istration algorithm while images from g–l are aligned using the KLT-feature based algorithm. The
real-valued number in parentheses corresponding to each image is its normalized frame difference
scores obtained by subtracting aligned destination frame from the initial frame in the sequence.
A smaller score indicates a better accuracy in alignment. a Frame 0 (0.0000), b Frame 0–10 (1.0110),
c Frame 0–20 (1.1445), d Frame 0–30 (1.6321), e Frame 0–40 (1.9821), f Frame 0–50 (2.3324),
g Frame 0 (0.0000), h Frame 0–10 (0.9121), i Frame 0–20 (1.1342), j Frame 0–30 (1.5662), k
Frame 0–40 (1.8995), l Frame 0–50 (2.3432)
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Fig. 5 Global mosaics generated after image alignment are shown for a the three vehicle sequence,
and b the distant view sequence

and its subsequent aligned counterpart in grayscale, respectively. Regions that do
not align properly are visible as green patches. Hence, in a set of correctly motion
compensated frames, the green patches correspond to the moving objects as evident
in Fig. 4. Global mosaics corresponding to the two different sequences discussed in
this paper are shown in Fig. 5a and b. The complete motion compensation algorithm
is listed in Algorithm 1.

With this knowledge, we proceed to our next section that discussed the methods
we have employed to detect moving objects from a set of ego-motion compensated
frames.

3.2 Object Detection

Given a sequence of frames, the goal of object detection is to obtain blobs for fore-
ground objects. Background subtraction is a popular approach for static cameras
where the background at each pixel can be modeled using mean, median, Gaussian,
or a mixture of Gaussians. In aerial videos, background modeling is hindered due to
camera motion. Although the aligned frames seem visually similar to a sequence of
frames from a static camera, there are marked differences at the pixel level where
errors in alignment cause small drifts in the pixel values. Such drifts are more pro-
nounced near sharp edges. Furthermore, these drifts can be in different directions in
different parts of the scene for each frame.

The most significant amongst the issues that pose challenge to background mod-
eling in aerial videos are the errors due to parallax. Since we use features-based
alignment, there are many features which come from out-of-plane objects such as
buildings and trees. These features affect the computation of homography which is
computed using all feature correspondences between a pair of consecutive frames.
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Fig. 6 The first row shows the original frames (10, 50, 100 and 150) from Sequence 1 while the
second and third rows show accumulative frame difference (AFD) and AFD after thresholding
respectively

This is the inherent source of error whose effect is visible near high gradients in
a frame. Since all the homographies are computed between consecutive frames,
the error in alignment accumulates with time. Even if we choose a small yet
reasonable number of frames for constructing the background, the drift in the scene
due to accumulated errors hampers the computation of background. (See discussion
for Fig. 18).

Another reason is the limitation on the number of frames available for modeling
the background. A region has to be visible for a reasonable number of frames to be
learned as background. In the case of a moving camera, the field-of-view changes at
every frame which puts restraints on the time available for learning. If the learning
time is too short, some pixels from foreground are modeled as background. A constant
change in field-of-view is also the reason that it is not possible to choose a single
reference frame when performing alignment doing which can allow us to get rid of
accumulated errors. After a few frames, the field-of-view of the new frame might
not overlap with that of the reference frame and will thus disallow the computation
of homography.

In addition to the two issues mentioned above, background modeling is com-
putationally expensive for registered images which are usually greater in size than
the original frames, and is thus prohibitive for longer sequences. In order to make
foreground detection close to real time and cater for the non-availability of color
information in FLIR imagery, we use a more feasible alternative of accumulative
frame differencing (AFD), which takes as input only a neighborhood of n frames for
detection at each time step (Fig. 6).

For each frame, the algorithm is initialized using a constant number of frames
called temporal window of size of 2n + 1 with n frames on both sides of the



Moving Object Detection and Tracking 237

Fig. 7 a The first column shows AFD for two frames from Distant view Sequence whereas second
column shows AFD after thresholding. As can be seen from the third column, mean gray area
(normalized between 0 and 1) of blobs corresponding to moving objects is high which can be used
to separate moving objects from noisy blobs. b shows the gray-map used for all the figures in this
section

current frame. This means the detection procedure will have a lag of n frames. The
accumulative frame difference for ith frame (Ii ) for temporal window from −n to n
is given by

AFD(Ii , n) =
i+n∑

k=i−n

|Ii − W (Ii , Ik)|, (14)

where W (Ii , Ik) is a function to warp kth frame to the ith frame.
We experimented with different size of temporal window with the conclusion that

n = 10 is empirically the most suitable value. If n is close to 2 , the blobs are small,
incomplete and missing. If we go beyond 10, the blobs start to merge and sharp edges
of the background begin to appear as false positives.

The grayscale image obtained after accumulative frame differencing is normalized
between 0 and 1 followed by thresholding (with discardThreshold T). Blobs are
obtained using connected-component labeling. Since pixels belonging to moving
objects have higher values in accumulative frame difference than noise (see Fig. 7),
mean gray area of such blobs is correspondingly high. Moreover, it can be observed
that blobs corresponding to moving objects are compact and regular in shape when
compared against irregular shaped blobs due to noise (see Fig. 8). However, an
exception to this are the noisy blobs that come from regions of high gradients some
of which might not be irregular in shape. Instead, they have a prominent characteristic
of being elongated with higher eccentricity. Figure 9 explains the use of eccentricity
as a measure to cater for such blobs.
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Fig. 8 This figure illustrates the advantage of using compactness for removing false positives.
From left to right: AFD, AFD > T, MGA, and compactness. In the third column, notice that both the
highlighted irregular shaped blobs due to parallax error and the nearby moving object have similar
MGA. However, blobs due to moving objects are more compact (fourth column) and will therefore
get higher weight

Fig. 9 From left to right: AFD, compactness, eccentricity and weights of final blobs. The high-
lighted elongated blobs due to noise do not get suppressed using compactness in the second column
but do get lower eccentricity weight as shown in the third column

We will now give definitions for the three measures. If bi
t ∈ Bt denotes the ith

blob at frame t, then its mean gray area, compactness and eccentricity are computed
using the following formula:

Mean Gray Areai =
∑

∀p(x,y)∈bi
t

AFD(x, y)

|bi
t |

, (15)

Compactnessi = |P(bi
t )|

2π

√
|bi

t |/π
, (16)
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Eccentricityi =
√

2Cxy

uxx + uyy + Cxy
, (17)

where P gives perimeter of the blob. uxx , uyy and Cxy are given by

uxx =
∑

∀p(x,y)∈bi
t
(x − x̄)2

|bi
t |

+ 1

12
, uyy =

∑
∀p(x,y)∈bi

t
(y − ȳ)2

|bi
t |

+ 1

12
(18)

Cxy =
√

(uxx − uyy)2 + 4uxy where uxy =
∑

∀p(x,y)∈bi
t
(x − x̄)(y − ȳ)

|bi
t |

(19)

where 1/12 is the normalized second central moment of a pixel with unit length.
The following equation describes the scheme to combine weights from mean gray

area, compactness and eccentricity:

W i = α1 × MGAi + α2 × (2 − Compactnessi ) + α3 × (1 − Eccentricityi ), (20)

where α1, α2, and α3 are empirically determined constants with relatively higher
weight given to MGA. The blobs are sorted according to their weights W i and
normalized between 0 and 1 and only min(maxObjects, |bi

t | |W i > T ) are returned
where maxObjects is a hard limit on the maximum number of output objects. The
reason AFD and W i are normalized by their respective maximum values is to keep
T constant across different sequences. The empirical value of discardThreshold T is
.005 or .5% of maximum value. If T is too low for some frame, it can cause blobs
from moving objects to merge with those from the noise (see Fig. 10). Since pixels
from high motion objects will have higher values in AFD, all such pixels should
be output as foreground. If the detection procedure discards pixels that should have
been included in output, T is progressively increased till all high motion objects are
included in the output.

Though the proposed approach gives reasonable results across a wide variety of
sequences without changing any weights and the threshold T, information regarding
minimum and maximum blob size can be incorporated in Eq. 20 to fine tune the
results for a particular configuration of camera altitude and scene clutter. Figure 19
provides intermediate for the detection in three frames from Distant View Sequence.

We evaluate the performance of our detection algorithm, using Multiple Object
Detection Precision (MODP) [6] scores in addition to the standard Probability of
Detection (PD) and False Alarm Rate (FAR) metrics from Automatic Target Recog-
nition literature [23]. The MODP is calculated on a per frame basis and is given as:

MODPt = 1

Nt

Nt∑
i=1

|Gi
t ∩ Bi

t |
|Gi

t ∪ Bi
t |

, (21)
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Fig. 10 Progressive thresholding: top row shows the connected component labels obtained with
discardThreshold = .5%, .8% and 1%. The invisible top-left region corresponds to blobs with
smaller labels (close to zero). Bottom row depicts the corresponding detections. discardThreshold
is progressively increased from .5% to 1% till the objects and noise form separate blobs
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Fig. 11 Detection evaluation obtained on Distant View Sequence with varying overlap ratio from
0.1 to 1. a Probability of detection scores, b false alarm rate

where Bt and Gt are the respective set of corresponding objects output by the detec-
tion stage and that present in Ground Truth, at frame t, Nt being the cardinality
of the correspondence. The fractional term in Eq. 21 is also known as the spatial
overlap ratio between a corresponding pair of bounding boxes of ground-truthed
and detected objects. Figure 11 reports the PD and FAR scores for Distant View
Sequence, obtained by varying the bounding box overlap ratio.
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Fig. 12 Tracking results for three vehicle sequence. Tracks of multiple objects are overlaid on
every 50th frame. All three visible objects are tracked correctly for the duration of the sequence. A
fourth object just entering the camera’s field of view is visible in frame 300. a Frame 50, b Frame
100, c Frame 150, d Frame 200, e Frame 250, f Frame 300

3.3 Tracking

The process of object detection provides a set of unique labels assigned to mutu-
ally exclusive groups of pixels for each image, where each label ideally corresponds
to a single moving object. Given that the set of observed objects is denoted by
Bt = {bi }, where 1 ≤ i ≤ Ot , and Ot is the number of objects detected in
frame t, the problem of tracking is defined as computation of a set of correspon-
dences that establishes a 1–1 relationship between bi ∈ Bt for all i, with an object
b j ∈ Bt+1. In addition to problems like occlusions, non-linear motion dynamics,
and clutter, that are traditionally encountered in object tracking in static, surveil-
lance cameras, tracking in aerial FLIR imagery is made much harder because of low
image resolution and contrast, small object sizes, and artifacts introduced in images
during the platform motion compensation phase. Even small errors in image stabi-
lization can result in a significant number of spurious object detections, especially
in regions with high intensity gradients, further complicating the computation of the
optimal object correspondence across frames (Fig. 12).
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3.3.1 Kinematic Constraint

Our tracking algorithm employs a constant velocity motion model, and various cues
for object correspondence, including appearance, shape and size. Furthermore, due to
severe splitting and merging of objects owing to potential errors in detection, as well
as apparent entry and exit events due to object to object, and object to background
occlusions, our tracking method handles blob splitting and merging, and occlusions
explicitly. At any given frame t, the state Xi

t of an object bi ∈ Bt being tracked, can
be represented by its location and motion history. We write the state as,

Xi
t = [xi

t , yi
t , ρ

i
t , θ

i
t ], (22)

where (xi , yi ) represents the 2d location of the object on the image plane at time
(frame) t, and (ρi , θ i ) are the magnitude and orientation of the mean velocity vector
of the object. The state vector for object i at frame t +1, Xi

t+1 is predicted as follows:

[
xt+1
yt+1

]
=

[
xt

yt

]
+

[
ρt cos θt

ρt sin θt

]
+

[
γx

γy

]
, (23)

where (γx , γy) depict Gaussian process noise with zero mean and standard deviations
σx and σy in x and y directions, which are derived from the variation in (ρ, θ) over
time (the correlation is assumed to be zero). Assuming the magnitude and orientation
of the velocity vector between an object’s location at time frame t and t − 1 to be ρ̂t

and θ̂t respectively, the velocity history in the state vector is updated by computing
the weighted means of object’s velocity magnitude and orientation in the current and
previous frames, i.e., ρt and ρ̂t . The orientation of the object’s velocity is similarly
updated, by phase change invariant addition, subtraction and mean functions.

The motion model based probability of observing a particular object with state
Xi

t in frame t, as object b j ∈ Bt+1 with centroid (x j
t+1, y j

t+1) in frame t + 1 can then
be written as

Pm(b j
t+1|Xi

t ) = 1

2πσxσy
exp

{
−1

2

[
(xi

t+1 − x j
t+1)

2

σ 2
x

+ (yi
t+1 − y j

t+1)
2

σ 2
y

]}
. (24)

Notice that we can compute (xi
t+1, yi

t+1) from the constant velocity motion model
as described before.

3.3.2 Observation Likelihood

In addition to the motion model described above, the key constituent of correspon-
dence likelihood between two observation in consecutive frames is the observation
model. Various measurements can be made from the scene to be employed for use
in observation model, which combined with the kinematics based prediction defines
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the cost of association between two object detections. As described earlier, we used
appearance, shape and size of objects as measurements. These observations for an
object denoted by bi are denoted by δi

c, δi
g, δi

s, and δi
a, for intensity histogram, mean

gray area (from frame difference), shape of blob, and pixel area of the blob respec-
tively. The probability of association between two blobs using these characteristics
can then be computed as follows. Pc(b

j
t+1|Xi

t ) denotes the histogram intersection
between histograms of pixels in object’s bounding box in the previous frame, and
the detection under consideration, i.e., b j

t+1.

The probability Pg(b
j
t+1|Xi

t ) can simply be computed using the difference in the
mean gray values of each blob after frame differencing, normalized by maximum
difference possible. The shape based likelihood is computed by aligning the centroids
of blobs bi

t and b j
t+1, and computing the ratio of blob intersection and blob union

cardinalities, and is represented by Ps(b
j
t+1|Xi

t ). Finally the pixel areas for the blobs
can be compared directly using the variance in an object’s area over time which is
denoted by σ i

a . The probability of size similarity is then written as, Pa(b j
t+1|Xi

t ) =
N (δ

j
a |δi

a, σ i
a), where N represents the Normal distribution.

Assuming the mutual independence of motion, appearance, shape and size, we
can write the probability of a specific next object state (the blob detection b j

t+1),
given all the observations, to be,

P(b j
t+1|Xi

t , δ
i
c, δ

i
g, δ

i
s, δ

i
a)X = Pm(b j

t+1|Xi
t )Pc(b

j
t+1|Xi

t )Pg(b
j
t+1|Xi

t )

× Ps(b
j
t+1|Xi

t )Pa(b j
t+1|Xi

t ), (25)

which gives the aggregate likelihood of correspondence between the blob bi
t ∈ Bt in

frame t represented by state Xi
t , and the blob b j

t+1 ∈ Bt+1 in frame t + 1.

3.3.3 Occlusion Handling

Tracking in traditional surveillance scenarios and especially in aerial FLIR imagery
suffers from the problems of severe object to object and object to background occlu-
sions. Furthermore, the low resolution and low contrast of these videos often induce
high similarity between objects of interest and their background, thus resulting in
mis-detections. Consequently, a simple tracker is likely to initialize a new track for
an object undergoing occlusion every time it reappears. To overcome this problem,
our tracking algorithm continues the track of occluded object by adding hypothetical
points to the track using its motion history. In actuality, the track of every object in
the current frame, that does not find a suitable correspondence in the next frame,
within an ellipse defined by five times the standard deviations σx and σy, is prop-
agated using this method. In particular, it is assumed that the occluded object will
maintain persistence of appearance, and thus have the same intensity histogram, size,
and shape. Obviously, according to the aggregate correspondence likelihood, such
a hypothetical object will have nearly a 100% chance of association. It should be
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noted however that an implicit penalty is associated with such occlusion reasoning
that arises from the probability term Pg(·), which in fact can be computed regardless
of detection. In other words, the mean gray area of the hypothetical blob (deduced
using motion history) is computed for the frame in question, which reduces the over-
all likelihood of association as compared to an actual detected blob which would
have a relatively low likelihood otherwise. This aggregate probability is denoted by

Po(bk̂
t+1|Xk

t ), where bî
t+1 is the hypothetical blob in frame t + 1, resulting from

motion history based propagation of the blob bi
t described by the state vector Xi

t .

The track of an object that has exited the camera view can be discontinued by either
explicitly testing for boundary conditions, or by stopping track propagation after a
fixed number of frames.

3.3.4 Data Association

Given blobs in consecutive frames t and t + 1 as Bt and Bt+1, their state and mea-
surement vectors, probability of association between every possible pair of blobs is
computed. The goal of the tracking module then is to establish 1–1 correspondence
between the elements of the sets Bt and Bt+1. Numerous data association techniques
have been proposed in the computer vision literature, including methods for single,
few, or a large number of moving targets. Many of these methods (e.g., bipartite
graph matching) explicitly enforce the 1–1 correspondence constraint, which may
not be ideal in the FLIR sequences scenario, since a non-negligible number of false
positive and false negative detections can be expected.

We, therefore, employ an object centric local association approach, rather than
a global association likelihood maximization. This technique amounts to finding
the nearest measurement for every existing track, where ‘nearest’ is defined in the
observation and motion likelihood spaces (not the image space). This approach is
also known as the greedy nearest neighbor (GNN) data association [7]. Formally, for
the trajectory i, containing the measurement bi

t ∈ Bt , described by the current state
Xi

t , the next associated measurement can be computed as

bi
t+1 = argmax

j∈[1,Ot+1]
P(b j

t+1|Xi
t , δ

i
c, δ

i
g, δ

i
s, δ

i
a). (26)

The objects in the set Bt+1, that are not associated with any existing track can
be initialized as new trajectories, while existing tracks not able to find a suitable
correspondence are associated with a hypothetical measurement as described earlier.
If a track cannot find real measurements after addition of a predetermined number
of hypothetical blobs, the track is discontinued.

The performance of the tracking algorithm discussed here is evaluated using
a metric similar to the one shown in Eq. 21. Multiple Object Tracking Precision
(MOTP) is given by
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Fig. 13 Tracking of vehicles in distant field of view. Tracks of multiple objects are overlaid on
frames of the sequence at regular intervals. The same gray-scale indicates consistent labeling of
the object. Most of the objects are tracked throughout their observation in the camera’s field of
view. Notice the low resolution and contrast. a Frame 56, b Frame 139, c Frame 223, d Frame 272,
e Frame 356, f Frame 422, g 500, h 561, i 662

MOTPt =
∑Nt

i=1

∑N f
t=1

[ |Gi
t ∩Bi

t |
|Gi

t ∪Bi
t |
]

∑Nt
j=1 N j

t

(27)

where Nt refers to the mapped objects over an entire trajectory as opposed to a single
frame. The MOTP scores for a subset of 12 sequences are shown in Fig. 13, in the
following section.

4 Discussion

In this section we provide an in-depth analysis of the various algorithms that are
used in cocoalight in terms of their individual performance followed by an overall
execution summary of the system. All the following experiments are conducted on a
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Fig. 14 Effect of histogram equalization on the accuracy of alignment and computation time.
a Accuracy achieved in alignment after histogram equalization three vehicle sequence. The results
shown here indicate that histogram equalization is beneficial for feature extraction in FLIR imagery.
b Although the histogram equalization stage increases some computation overhead, overall we
notice negligible change in alignment speed as with more number of KLT features extracted, the
homography estimation routine takes fewer RANSAC iterations to generate optimal solution

desktop computing environment with a 1.6 GHz Intel x86 dual core CPU and 2 GB
physical memory. The two sequences containing vehicular traffic, shown earlier in
this paper are acquired from the VIVID 3 dataset. In addition, we use a more chal-
lenging AP-HILL dataset, containing both pedestrian and vehicular traffic, acquired
by Electro-optic and FLIR cameras, to test our system.

A quantitative improvement in alignment accuracy and computational perfor-
mance due to contrast enhancement is shown in Fig. 14. It can be noted that the total
frame difference per frame is reduced after alignment using histogram equalization,
due to an increased number of relevant feature points in regions of previously low
contrast. On the other hand, this process is not a computational burden on the sys-
tem, and in some cases can even improve the transformation computation time. In
Fig. 15, we analyze the drift or error in estimation that is introduced in the cumulative
homography computation stage. For the sake of simplicity, we only show the results
corresponding to the parameters that only determine translation across frames in a
sequence. We observe that curves corresponding to either parameters, have similar
slopes which indicates that the proposed algorithm 1 achieves results closer to the
gradient based method. It is worthwhile to note that our algorithm is more robust
to change in background than the gradient based method as it has lesser number of
homography reset points (where the curves touch the x-axis).

Figure 16 summarizes the impact of increasing the number of KLT features in
the motion compensation stage. As the number of features are increased, we observe
a drop in the computation speed in Fig. 16b. The accuracy in alignment, which
is measured in terms of normalized frame difference scores, however shows mar-
ginal improvement beyond 512 features. In a slightly different setting, we evaluate
different types of feature extraction strategies against the gradient based method. In
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Fig. 15 Comparing homography parameters estimated using KLT feature based method against the
gradient-based method. Parameters corresponding to the translation along x and y axes, represented
by curves of different gray-scale values. It is interesting to observe the frame locations along x-
axis where the parameter curves touch the x-axis. These locations indicate the positions when the
homography is reset to identity because of large frame motion

Fig. 16 Effect of increasing KLT features on alignment: a accuracy achieved in alignment on three
vehicle sequence with different number of KLT features. As number of features are increased, the
alignment accuracy reaches close to that achieved using gradient based method. b Computation time
of homography is maximum with gradient based method and reduces significantly with decrease in
number of KLT features

Fig. 17a, we notice that both KLT and SIFT feature based methods achieve accuracies
comparable to the gradient based scheme with the KLT feature based method being
twice as computationally efficient as the gradient and SIFT feature based methods.

The alignment algorithm used by Cocoalight makes a planarity assumption on the
input scene sequences. This implies that pixels from ground plane, that contribute to
the linear system of equations for computing homography, should outnumber those
from outside the ground plane. If this criterion is not satisfied, homography between
two frames cannot be computed accurately. This is usually observed in typical urban
scenarios that consist of tall buildings imaged by low flying UAVs. We demonstrate
this issue in Fig. 18. The alignment error is largely visible as we proceed towards the
end of the sequence in Fig. 18c.
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Fig. 17 Effect of different types of features on alignment: a accuracy achieved with different feature
extraction algorithms (KLT, SIFT, SURF, MSER) in comparison to the gradient based method, and
b their respective homography computation time

Fig. 18 Erroneous alignment due to pixels outside the ground plane contributing in homography
estimation. c Green visible patches near the circular drainage holes did not align properly. a Frame
0/20, b Frame 0/40, c Frame 0/60

In Table 1, we report the performance of our detection and tracking setup
against different evaluation metrics, namely PD, MODP, MOTP and FAR for a
subset of 12 sequences from our datasets. These sequences are characterized by
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Table 1 Quantitative evaluation of runtime for individual modules, namely Motion compensation
(alignment), ROI detection and Tracking for 12 FLIR aerial sequences from the AP-HILL dataset
containing moving vehicles and human beings

Sequence Frames Alignment Detection Tracking FDA PD FAR MOTP MOTA

Seq. 01 742 23.3 8.3 36.1 4.89 0.81 0.12 0.67 0.74
Seq. 02 994 21.6 7.9 39.6 6.77 0.89 0.08 0.69 0.71
Seq. 03 1138 24.0 6.1 38.1 10.89 0.88 0.09 0.65 0.76
Seq. 04 1165 22.2 6.5 40.6 11.32 0.78 0.05 0.69 0.81
Seq. 05 1240 24.3 9.4 40.2 4.22 0.83 0.13 0.75 0.82
Seq. 06 1437 25.1 6.2 41.0 7.95 0.91 0.06 0.63 0.69
Seq. 07 1522 21.4 8.3 36.7 6.83 0.87 0.04 0.61 0.78
Seq. 08 1598 25.6 7.9 38.2 5.39 0.76 0.06 0.64 0.75
Seq. 09 1671 24.8 6.1 36.1 7.94 0.73 0.11 0.61 0.74
Seq. 10 1884 22.8 6.1 42.1 8.83 0.75 0.09 0.59 0.78
Seq. 11 1892 23.6 6.7 39.4 12.56 0.82 0.12 0.66 0.69
Seq. 12 1902 21.7 8.4 41.5 10.21 0.89 0.06 0.72 0.73

Each video sequence has a spatial resolution of 320 × 240 and are arranged in ascending order
of the number of frames contained in them for better readability. The Frame Difference Score
averaged over the total number of frames in a given sequence serves as the performance metric
for the alignment module. Probability of Detection (PD) and False Alarm Rate (FAR) measures
provide vital insights on the performance of the detection module. Finally, Multiple Object Tracking
Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA) scores are presented for each
of these sequences to measure the performance of the Tracking module

the following: (a) small and large camera motion, (b) near and distant field of
views, (c) varying object sizes (person, motorbike, cars, pick-ups, trucks and tanks),
(d) background clutter.

Some qualitative tracking results for near and far field sequences are shown in
Figs. 12 and 13 respectively. Object tracks are represented as trajectories, which
are lines connecting the centroids of blobs belonging to the object in all frames.
The same color of a track depicts consistent labeling and thus correct tracks. Notice
the extremely small object sizes and the low contrast relative to the background.
Background subtraction based methods fail in such scenarios where the lack of
intensity difference between object and background result in a large number of false
negatives (Fig. 19).

5 Conclusion

The chapter has presented a detailed analysis of the various steps in the aerial video
tracking pipeline. In addition to providing an overview of the related work in the
vision literature, it lists the major challenges associated with tracking in aerial videos,
as opposed to static camera sequences, and elaborates as to why the majority of
algorithms proposed for static camera scenarios are not directly applicable to the
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Fig. 19 Intermediate results
for three frames from
Distance View
Sequence. Bounding
rectangles in the original
frames show the positions of
groundtruth. a Original
frames, b accumulative
frame difference, c AFD > T,
d connected components
(30, 17 and 23), e mean gray
area, f compactness,
g eccentricity, h output blobs
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aerial video domain. We have presented both the theoretical and practical aspects of
a tracking system, that has been validated using a variety of infrared sequences.
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