
Lecture 9

LVCSR Search

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen,
Markus Nussbaum-Thom

Watson Group
IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen,nussbaum}@us.ibm.com

23 March 2016

Administrivia

Lab 2 sample answers.
/user1/faculty/stanchen/e6870/lab2_ans/

Lab 3 not graded yet.
Lab 4 out today.

Due nine days from now (Friday, Apr. 1) at 6pm?
Lab 5 cancelled.
Visit to IBM Watson Astor Place in 1.5 weeks.

April 1, 11am-1pm.

2 / 139

Feedback

Clear (2); mostly clear (1).
Pace: fast (1).
Muddiest: moving from small to large vocab (1).
No comments with 2+ votes; 6 responses total.

3 / 139

Road Map

4 / 139

Review, Part I

What is x?
The feature vector.

What is ω?
A word sequence.

What notation do we use for acoustic models?
P(x|ω)

What does an acoustic model model?
How likely feature vectors are given a word sequence.

What notation do we use for language models?
P(ω)

What does a language model model?
How frequent each word sequence is.

5 / 139

Review, Part II

What is the fundamental equation of ASR?

(answer) = arg max
ω∈vocab∗

(language model)× (acoustic model)

= arg max
ω∈vocab∗

(prior prob over words)× P(feats|words)

= arg max
ω∈vocab∗

P(ω)P(x|ω)

6 / 139

Match the Lecture With The Topic

Language modeling Estimate P(x|ω)

LVCSR training arg maxω∈vocab∗ P(ω)P(x|ω)

LVCSR search Estimate P(ω)

Which of these are offline? Online?

7 / 139

Demo: Speed Kills

8 / 139

This Lecture

How to do LVCSR decoding.
How to make it fast.

9 / 139

Part I

Making the Decoding Graph

10 / 139

LVCSR Search a.k.a. Decoding

(answer) = arg max
ω∈vocab∗

(language model)× (acoustic model)

= arg max
ω∈vocab∗

P(ω)P(x|ω)

How to compute the argmax?
Run Viterbi/Forward/Forward-Backward?
One big HMM/one small HMM/lots of small HMM’s?

The whole ballgame: how to build the HMM!!!

11 / 139

One Big HMM: Small Vocabulary

one

two

three

four

�ve

six

seven
eight

nine

zero

12 / 139

Small⇒ Large Vocabulary

How to build the big HMM for LVCSR?
What’s missing? Are there any scores we need to add?

13 / 139

Idea: Add LM Scores to HMM

(answer) = arg max
ω∈vocab∗

(language model)× (acoustic model)

= arg max
ω∈vocab∗

P(ω)P(x|ω)

Viterbi: without LM.

arg max
ω

P(x|ω)⇔ max
T∏

t=1

(arc cost)

Viterbi: with LM.

arg max
ω

P(ω)P(x|ω)⇔ arg max
T∏

t=1

(arc cost)× (LM score)

14 / 139

Adding in Unigram LM Scores P(wi)

one

two

three

four

�ve

six

seven
eight

nine

zero

What about bigram P(wi |wi−1)? Trigrams P(wi |wi−2wi−1)?

15 / 139

Adding Language Model Scores

Solution: multiple copies of each word HMM!
Old view: add LM scores to word HMM loop.
New view: express LM as HMM. Sub in word HMM’s.

16 / 139

Example: Unigram LM

Take (H)MM representing language model.

one

two

three

.

�

Replace each word with phonetic word HMM.

HMMone

HMMtwo

HMMthree

.

�

one

two

three

four

�ve

six

seven
eight

nine

zero

17 / 139

N-Gram Models as (H)MM’s

18 / 139

Substituting in Word HMM’s

AACHEN

AA K AX N

AA-|+K K-AA+AX AX-K+N N-AX+|

gAA.1,9 gAA.2,2 gK.1,6 gK.2,7 gAX.1,15 gAX.2,3 gN.1,4 gN.2,1

gAA.1,9 gAA.2,2 gK.1,6 gK.2,7 gAX.1,15 gAX.2,3 gN.1,4 gN.2,1

19 / 139

Recap: Small vs. Large Vocabulary Decoding

It’s all about building the one big HMM.
Add in LM scores in graph; Viterbi unchanged.
Start from word LM; substitute in word HMM’s.

20 / 139

Where Are We?

1 Introduction to FSA’s, FST’s, and Composition

2 What Can Composition Do?

3 How To Compute Composition

4 Composition and Graph Expansion

5 Weighted FSM’s

21 / 139

Substituting in Word HMM’s

AACHEN

AA K AX N

AA-|+K K-AA+AX AX-K+N N-AX+|

gAA.1,9 gAA.2,2 gK.1,6 gK.2,7 gAX.1,15 gAX.2,3 gN.1,4 gN.2,1

gAA.1,9 gAA.2,2 gK.1,6 gK.2,7 gAX.1,15 gAX.2,3 gN.1,4 gN.2,1

What about cross-word dependencies?
e.g., no boundary token; quinphones.

22 / 139

Cross-Word Dependencies

Tricky: single-phone words; depend on two words away.

23 / 139

Graph Expansion Issues

How to handle context-dependency?
How to "glue in" HMM’s, e.g., word HMM’s into an LM?
How to do graph optimization?
And handle scores/probs.
Is there an elegant framework for all this?

24 / 139

Finite-State Machines!

A way of representing graphs/HMM’s.
e.g., LM’s, one big HMM.

A way of transforming graphs.
e.g., substituting word HMM’s into an LM.

A set of graph operations.
e.g., intersection, determinization, minimization, etc.

Weighted graphs and transformations, too.

25 / 139

Graph Expansion and FSM’s

Design a bunch of “simple” finite-state machines.
Apply standard FSM operations . . .
To compute the one big HMM, and optimize it, too!

26 / 139

How To Represent a Graph/HMM?

Finite-state acceptor (FSA).
Just like HMM with symbolic outputs.
Exactly one initial state; one or more final states.
Arcs can be labeled with ε.
Ignore probabilties for now.

a

a

�

c

b

27 / 139

What Does an FSA Accept?

An FSA accepts a string i . . .
If path from initial to final state labeled with i .
Does this FSA accept abb? acccbaacc? aca? ε?
Can an FSA accept an infinite number of strings?

a

a

�

c

b

28 / 139

How To Represent a Graph Transformation?

Finite-state transducer (FST).
Like FSA, except each arc has two symbols.

An input label (possibly ε).
An output label (possibly ε).

Intuition: rewrites input labels as output labels.

a:a

a:�

�:b

c:c

b:a

29 / 139

What Does an FST Accept?

An FST accepts a string pair (i ,o) . . .
If path from initial to final state . . .
Labeled with i on input side and o on output side.
Does this FST accept (acb, ca)? (acb, a)?

a:a

a:�

�:b

c:c

b:a

30 / 139

How To Apply a Graph Transformation?

Composition!
Given FSA graph A, e.g.,

a b

c

And FST transformation T , e.g.,

a:A b:B

c:C

Their composition A ◦ T is an FSA, e.g.,

A B

C

31 / 139

Composition Intuition

If A accepts string i , e.g., ab . . .

a b

c

And T accepts pair (i ,o), e.g., (ab, AB) . . .

a:A b:B

c:C

Then A ◦ T accepts string o, e.g., AB.

A B

C

Perspective: trace paths in A and T together.

32 / 139

Recap

Graphs: FSA’s.
One label on each arc.

Graph transformations: FST’s.
Input and output label on each arc.

Use composition to apply FST to FSA; produces FSA.

33 / 139

Where Are We?

1 Introduction to FSA’s, FST’s, and Composition

2 What Can Composition Do?

3 How To Compute Composition

4 Composition and Graph Expansion

5 Weighted FSM’s

34 / 139

A Simple Class of FST’s

Replacing single symbol with single symbol, everywhere.

1

a:A
b:B
c:C
d:D

35 / 139

Rewriting Single String A Single Way

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1 2A 3B 4D

36 / 139

Rewriting Many Strings At Once

A 1

2c

d

6

b

3a

5

a

a

4

b

d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1

3
B

2

C

D

4

A

A

5
A 6

D

B

37 / 139

Rewriting Single String Many Ways

A 1 2a 3b 4a

T
1

a:a
a:A
b:b
b:B

A ◦ T 1 2a
A

3b
B

4a
A

38 / 139

Rewriting Some Strings Zero Ways

A 1

2a

d

6

b

3a

5

a

a

4

b

a

T 1

a:a

A ◦ T 1 2a
3a

4

a

5a

39 / 139

Generalizing Replacement

Instead of replacing single symbol with single symbol . . .
Can replace arbitrary string with arbitrary string.
e.g., what does FST on right do?

1

a:A
b:B
c:C
d:D

�:AH

�:IY

THE:DH

DOG:D

�:G

�:AO

40 / 139

Context-Dependent Replacement

Instead of always replacing symbol with symbol . . .
Only do so in certain context.
e.g., what does this FST do? (Think: bigram model.)

a

a:a bb:b

c
c:c

a:a

b:b

c:c

a:A

b:B
c:C

41 / 139

Discussion

Transforming a single string to a single string is easy.
e.g., change color to colour everywhere in file.

Composition: rewrites every string accepted by graph.
Things composition can do:

Transform (possibly infinite) set of strings!
Not just 1:1, but 1:many and 1:0 transforms!
Can replace arbitrary strings with arbitrary strings!
Can do context-dependent transforms!
Expresses output compactly, as another graph!

42 / 139

Where Are We?

1 Introduction to FSA’s, FST’s, and Composition

2 What Can Composition Do?

3 How To Compute Composition

4 Composition and Graph Expansion

5 Weighted FSM’s

43 / 139

How To Define Composition?

A ◦ T accepts the string o iff . . .
There exists a string i such that . . .
A accepts i and T accepts (i ,o).

A
a b

c

T
a:A b:B

c:C

A ◦ T
A B

C

44 / 139

A Simple Case

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T 1,1 2,2
A

3,3
B

Intuition: trace through A, T simultaneously.

45 / 139

Another Simple Case

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1,1 2,1
A

3,1
B

4,1
D

Intuition: trace through A, T simultaneously.

46 / 139

Composition: States

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1,1 2,1
A

3,1
B

4,1
D

What is the possible set of states in result?
Cross product of states in inputs, i.e., (s1, s2).

47 / 139

Composition: Arcs

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1,1 2,1
A

3,1
B

4,1
D

Create arc from (s1, t1) to (s2, t2) with label o iff . . .
Arc from s1 to s2 in A with label i and . . .
Arc from t1 to t2 in T with input i and output o.

48 / 139

The Composition Algorithm

For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T .
Create arc from (s1, t1) to (s2, t2) with label o iff . . .

Arc from s1 to s2 in A with label i and . . .
Arc from t1 to t2 in T with input i and output o.

(s, t) is initial iff s and t are initial; similarly for final states.
What is time complexity?

49 / 139

Example

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

50 / 139

Another Example

A
1

2
a

3a

b

b

T 1 2

a:A

b:B

a:a

b:b

A ◦ T 1,1 3,2

A

2,2A

b

3,1b 1,2B

a
2,1a B

51 / 139

Composition and ε-Transitions

Basic idea: can take ε-transition in one FSM . . .
Without moving in other FSM.

Tricky to do exactly right.
Do readings if you care: (Pereira, Riley, 1997)

A,T 1 2<epsilon>

A
3B 1 2<epsilon>:B

A:A
3B:B

A ◦ T

1,1

2,2

A

1,2

B

2,1
eps

3,3

B

eps

1,3 2,3
eps

B

3,1

3,2

B

52 / 139

Recap

Composition is easy!
Composition is fast!
Worst case: quadratic in states.

Optimization: only expand reachable state pairs.

53 / 139

Where Are We?

1 Introduction to FSA’s, FST’s, and Composition

2 What Can Composition Do?

3 How To Compute Composition

4 Composition and Graph Expansion

5 Weighted FSM’s

54 / 139

Building the One Big HMM

Can we do this with composition?
Start with n-gram LM expressed as HMM.
Repeatedly expand to lower-level HMM’s.

55 / 139

A View of Graph Expansion

Design some finite-state machines.
L = language model FSA.
TLM→CI = FST mapping to CI phone sequences.
TCI→CD = FST mapping to CD phone sequences.
TCD→GMM = FST mapping to GMM sequences.

Compute final decoding graph via composition:

L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM

How to design transducers?

56 / 139

Example: Mapping Words To Phones

THE DH AH
THE DH IY
DOG D AO G

THE:DH.AH

THE:DH.IY

DOG:D.AO.G

�:AH

�:IY

THE:DH

DOG:D

�:G

�:AO

57 / 139

Example: Mapping Words To Phones

A
THE DOG

T

�:AH

�:IY

THE:DH

DOG:D

�:G

�:AO

A ◦ T
GDH AOAH

IY

D

58 / 139

Example: Inserting Optional Silences

A 1 2C 3A 4B

T
1

<epsilon>:~SIL
A:A
B:B
C:C

A ◦ T
1

~SIL

2C

~SIL

3A

~SIL

4B

~SIL

Don’t forget identity transformations!
Strings that aren’t accepted are discarded.

59 / 139

Example: Rewriting CI Phones as HMM’s

A
D AO G

T

�:gD.2

�:gD.1

�:gG.2
�:gG.2

�:gAO.2

�:gAO.2

G:gG.1

�:gG.1

�:�

AO:gAO.1

�:�

�:gD.2D:gD.1

�:�

�:gAO.1

A ◦ T gD.2

gAO.1
gG.2

gG.1 gG.2

gAO.2

gAO.2

gG.1gD.2

gD.1 gAO.1

gD.1

60 / 139

Example: Rewriting CI⇒ CD Phones

e.g., L⇒ L-S+IH
The basic idea: adapt FSA for trigram model.
When take arc, know current trigram (P(wi |wi−2wi−1)).
Output wi−1-wi−2+wi !

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

61 / 139

How to Express CD Expansion via FST’s?

A
T

D

AAAA T

D

T
�:AA-T+j

T:AA-D+T

�:AA-D+j

D:AA-D+D

AA:D-AA+AA

D:AA-T+D

T:AA-T+T

D:�

AA:T-AA+AA

T:�

AA:D-j+AA

AA:T-j+AA

j

j D

j T D AA

T AA AA D

AA T

AA j

A ◦ T AA-D+j

AA-D+D

D-AA+AA

T-AA+AA

D-j+AA

T-j+AA AA-T+jAA-T+D

AA-D+T

AA-T+T

62 / 139

How to Express CD Expansion via FST’s?

T

D

AAAA T

D

AA-D+j

AA-D+D

D-AA+AA

T-AA+AA

D-j+AA

T-j+AA AA-T+jAA-T+D

AA-D+T

AA-T+T

Point: composition automatically expands FSA . . .
To correctly handle context!

Makes multiple copies of states in original FSA . . .
That can exist in different triphone contexts.
(And makes multiple copies of only these states.)

63 / 139

Example: Rewriting CD Phones as HMM’s

A
D-|+AO AO-D+G G-AO+|

T

ε:gD.2,7

ε:gD.1,3

ε:gG.2,4
ε:gG.2,4

ε:gAO.2,3

ε:gAO.2,3

G-AO+|:gG.1,8

ε:gG.1,8

ε:ε

AO-D+G:gAO.1,5

ε:ε

ε:gD.2,7D-|+AO:gD.1,3

ε:ε

ε:gAO.1,5

A ◦ T gD.2,7

gAO.1,5
gG.2,4

gG.1,8 gG.2,4

gAO.2,3

gAO.2,3

gG.1,8gD.2,7

gD.1,3 gAO.1,5

gD.1,3

64 / 139

Recap: Whew!

Design some finite-state machines.
L = language model FSA.
TLM→CI = FST mapping to CI phone sequences.
TCI→CD = FST mapping to CD phone sequences.
TCD→GMM = FST mapping to GMM sequences.

Compute final decoding graph via composition:

L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM

65 / 139

Where Are We?

1 Introduction to FSA’s, FST’s, and Composition

2 What Can Composition Do?

3 How To Compute Composition

4 Composition and Graph Expansion

5 Weighted FSM’s

66 / 139

What About Those Probability Thingies?

e.g., to hold language model probs, transition probs, etc.
FSM’s⇒ weighted FSM’s.

WFSA’s, WFST’s.
Each arc has score or cost.

So do final states.

a/0.2

a/0.3

�/0.6

c/0.4

b/1.3

1
3/0.4

2/1.0

67 / 139

What Is A Cost?

HMM’s have probabilities on arcs.
Prob of path is product of arc probs.

a/0.1 b/1.0 d/0.01
1 32 4

WFSM’s have negative log probs on arcs.
Cost of path is sum of arc costs plus final cost.

a/1 b/0 d/2
1 32 4/0

68 / 139

What Does a WFSA Accept?

A WFSA accepts a string i with cost c . . .
If path from initial to final state labeled with i and with cost c.
How costs/labels distributed along path doesn’t matter!
Do these accept same strings with same costs?

1 2a/1 3/3b/2 1 2a/0 3/6b/0

69 / 139

What If Two Paths With Same String?

How to compute cost for this string?
Use “min” operator to compute combined cost?

Combine paths with same labels.

1 2

a/1

a/2

b/3
3/0c/0 1 2a/1

b/3
3/0c/0

Operations (+,min) form a semiring (the tropical semiring).

70 / 139

Which Is Different From the Others?

1 2/1a/0

1 2/0.5a/0.5

a/1

1 2<epsilon>/1 3/0a/0

1 2/-2a/3 3b/1

b/1

71 / 139

Weighted Composition

A
a/1 b/0 d/2

1 32 4/0

T a:A/2

b:B/1

c:C/0

d:D/0

1/1

A ◦ T
A/3 B/1 D/2

1 32 4/1

72 / 139

The Bottom Line

Place LM, AM log probs in L, TLM→CI, TCI→CD, TCD→GMM.
e.g., LM probs, pronunciation probs, transition probs.

Compute decoding graph via weighted composition:

L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM

Then, doing Viterbi decoding on this big HMM . . .
Correctly computes (more or less):

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

73 / 139

Recap: FST’s and Composition? Awesome!

Operates on all paths in WFSA (or WFST) simultaneously.
Rewrites symbols as other symbols.
Context-dependent rewriting of symbols.
Adds in new scores.
Restricts set of allowed paths (intersection).
Or all of above at once.

74 / 139

Weighted FSM’s and ASR

Graph expansion can be framed . . .
As series of (weighted) composition operations.

Correctly combines scores from multiple WFSM’s.
Building FST’s for each step is pretty straightforward . . .

Except for context-dependent phone expansion.
Handles graph expansion for training, too.

75 / 139

Discussion

Don’t need to write code?!
AT&T FSM toolkit⇒ OpenFST; lots of others.
Generate FST’s as text files.

1 2 C
2 3 A
3 4 B
4

1 2C 3A 4B

WFSM framework is very flexible.
Just design new FST’s!
e.g., CD pronunciations at word or phone level.

76 / 139

Part II

Making Decoding Fast

77 / 139

How Big? How Fast?

Time to look at efficiency.
How big is the one big HMM?
How long will Viterbi take?

78 / 139

Pop Quiz

How many states in HMM representing trigram model . . .
With vocabulary size |V |?

How many arcs?

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

79 / 139

Issue: How Big The Graph?

Trigram model (e.g., vocabulary size |V | = 2)

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

|V |3 word arcs in FSA representation.
Words are ∼4 phones = 12 states on average (CI).
If |V | = 50000, 500003 × 12 ≈ 1015 states in graph.
PC’s have ∼ 1010 bytes of memory.

80 / 139

Issue: How Slow Decoding?

In each frame, loop through every state in graph.
If 100 frames/sec, 1015 states . . .

How many cells to compute per second?
A core can do ∼ 1011 floating-point ops per second.

81 / 139

Recap

Naive graph expansion is way too big; Viterbi way too slow.
Shrinking the graph also makes things faster!
How to shrink the one big HMM?

82 / 139

Where Are We?

1 Shrinking the Language Model

2 Graph Optimization

3 Pruning

4 Other Viterbi Optimizations

5 Other Decoding Paradigms

83 / 139

Compactly Representing N-Gram Models

One big HMM size ∝ LM HMM size.
Trigram model: |V |3 arcs in naive representation.

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

Small fraction of all trigrams occur in training data.
Is it possible to keep arcs only for seen trigrams?

84 / 139

Compactly Representing N-Gram Models

Can express smoothed n-gram models . . .
Via backoff distributions.

Psmooth(wi |wi−1) =

{
Pprimary(wi |wi−1) if count(wi−1wi) > 0
αwi−1Psmooth(wi) otherwise

Idea: avoid arcs for unseen trigrams via backoff states.

85 / 139

Compactly Representing N-Gram Models

Psmooth(wi |wi−1) =

{
Pprimary(wi |wi−1) if count(wi−1wi) > 0
αwi−1Psmooth(wi) otherwise

three/P(threejtwo)

one/P(onejone)

two/P(twojtwo)

one/P(onejtwo)

one/P(onejthree)

�/�(one)

�/�(three)

one/P(one)

three/P(threejthree)

two/P(twojthree)

two/P(twojone)

two/P(two)

three/P(three)

three/P(threejone)

�/�(two)

one

three

two

�

86 / 139

Problem Solved!?

Is this FSA deterministic?
i.e., are there multiple paths with same label sequence?

Is this method exact?
Does Viterbi ever use the wrong probability?

87 / 139

Can We Make the LM Even Smaller?

Sure, just remove some more arcs. Which?
Count cutoffs.

e.g., remove all arcs corresponding to n-grams . . .
Occurring fewer than k times in training data.

Likelihood/entropy-based pruning (Stolcke, 1998).
Choose those arcs which when removed, . . .
Change likelihood of training data the least.

88 / 139

Discussion

Only need to keep seen n-grams in LM graph.
Exact representation blows up graph several times.

Can further prune LM to arbitrary size.
e.g., for BN 4-gram model, 100MW training data . . .
Pruning by factor of 50⇒ +1% absolute WER.

Graph small enough now?
Let’s keep on going; smaller⇒ faster!

89 / 139

Where Are We?

1 Shrinking the Language Model

2 Graph Optimization

3 Pruning

4 Other Viterbi Optimizations

5 Other Decoding Paradigms

90 / 139

Graph Optimization

Can we modify topology of graph . . .
Such that it’s smaller (fewer arcs or states) . . .
Yet accepts same strings (with same costs)?
(OK to move labels and costs along paths.)

91 / 139

Graph Compaction

Consider word graph for isolated word recognition.
Expanded to phone level: 39 states, 38 arcs.

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE

92 / 139

Determinization

Share common prefixes: 29 states, 28 arcs.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

93 / 139

Minimization

Share common suffixes: 18 states, 23 arcs.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ABU

DD

S

Z

DD

ABROAD

ABUSE

ABSURD

Does this accept same strings as original graph?
Original: 39 states, 38 arcs.

94 / 139

What Is A Deterministic FSM?

Same as being nonhidden for HMM.
No two arcs exiting same state with same input label.
No ε arcs.
i.e., for any input label sequence . . .

Only one state reachable from start state.

A

A <epsilon>

B

B
A B

95 / 139

Determinization: A Simple Case

1

2
a

3
a

4

b
1

2,3a

4

b

Does this accept same strings?
States on right⇔ state sets on left!

96 / 139

A Less Simple Case

1

2<epsilon>

4

a

3
a

b

5
b 1,2 3,4

a
4,5

b

b

Does this accept same strings? (ab∗)

97 / 139

Determinization

Start from start state.
Keep list of state sets not yet expanded.

For each, compute outgoing arcs in logical way . . .
Creating new state sets as needed.

Must follow ε arcs when computing state sets.

1

2A

3

A 5<epsilon>

4B

B
1 2,3,5A 4B

98 / 139

Example 2

1 2
a

3

a 4
a

5

aaa
bb

1 2,3a 2,3,4,5a

a

4,5b

b

99 / 139

Example 3

1

2
AX

7
AX

8
AX

3AE

4

AE

5

AE

6

AA

9B

14B

15B

10B

11
B

12
B

13
B

16R

17S

18Z

19
UW

20
UW

21Y

22Y

23AO

24ER

25ER

26
ABU

27
ABU

28UW

29UW

30DD

31
DD

32
DD

33S

34Z

35ABROAD

36
ABSURD

37
ABSURD

38ABUSE

39ABUSE

100 / 139

Example 3, Continued

1

2,7,8

AX

3,4,5AE

6

AA

9,14,15
B

10,11,12B

13

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

101 / 139

Pop Quiz: Determinization

For FSA with s states, . . .
What is max number of states when determinized?
i.e., how many possible unique state sets?

Are all unweighted FSA’s determinizable?
i.e., does algorithm always terminate . . .
To produce equivalent deterministic FSA?

102 / 139

Minimization

What should we minimize?
The number of states!

103 / 139

Minimization Basics

Algorithm only correct for deterministic FSM’s.
Output FSM is also deterministic.
Basic idea: suffix sharing.

Can merge two states if have same “suffix”.

104 / 139

Minimization: A Simple Case

1

2a

6

b

3
a

4
b

7
a

8

b

5
b

9
b

1 2,6
a

b
3,5,7,9

a

4,8

b b

Does this accept same strings?
States on right⇔ state sets on left! Partition!

105 / 139

Minimization: Acyclic Graphs

Merge states with same following strings (follow sets).

1

2A

6
B

3B

7C

8

D

4C

5

D

1

2A

3,6
B

B

4,5,7,8C

D

states following strings
1 ABC, ABD, BC, BD
2 BC, BD

3, 6 C, D
4,5,7,8 ε

106 / 139

General Minimization: The Basic Idea

Given deterministic FSM . . .
Start with all states in single partition.
Whenever states within partition . . .

Have “different” outgoing arcs or finality . . .
Split partition.

At end, each partition corresponds to state in output FSM.
Make arcs in logical manner.

1

2a

6

b

3
a

4
b

7
a

8

b

5
b

9
b

1 2,6
a

b
3,5,7,9

a

4,8

b b

107 / 139

Minimization

Invariant: if two states are in different partitions . . .
They have different follow sets.

First split: final and non-final states.
Final states have ε in their follow sets.

Two states in same partition have different follow sets if . . .
Different number of outgoing arcs or arc labels . . .
Or arcs go to different partitions.

1

2a

6

b

3
a

4
b

7
a

8

b

5
b

9
b

1 2,6
a

b
3,5,7,9

a

4,8

b b

108 / 139

Minimization

1

2a

4

d

c

3b

5
c

c

6b

action evidence partitioning
{1,2,3,4,5,6}

split 3,6 final {1,2,4,5}, {3,6}
split 1 has a arc {1}, {2,4,5}, {3,6}
split 4 no b arc {1}, {4}, {2,5}, {3,6}

1 2,5

a

4

d

c

3,6b
c

109 / 139

Discussion

Determinization.
May reduce or increase number of states.
Improves behavior of search⇒ prefix sharing!

Minimization.
Minimizes states, not arcs, for deterministic FSM’s.
Does minimization always terminate? How long?

Weighted algorithms exist for both FSA’s, FST’s.
Available in FSM toolkits.

Weighted minimization requires push operation.
Normalizes locations of costs/labels along paths . . .
So arcs that can be merged have same cost/label.

110 / 139

Weighted Graph Expansion, Optimized

Final graph: min(det(L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM))

L = pruned, backoff language model FSA.
TLM→CI = FST mapping to CI phone sequences.
TCI→CD = FST mapping to CD phone sequences.
TCD→GMM = FST mapping to GMM sequences.

Build big graph; minimize at end?
Problem: can’t hold big graph in memory.
Many existing recipes for graph expansion.

1015+ states⇒ 20–50M states/arcs.
5–10M n-grams kept in LM.

111 / 139

Where Are We?

1 Shrinking the Language Model

2 Graph Optimization

3 Pruning

4 Other Viterbi Optimizations

5 Other Decoding Paradigms

112 / 139

Real-Time Decoding

Why is this desirable?
Decoding time for Viterbi algorithm; 10M states in graph.

100 frames/sec × 10M states × . . .
100 cycles/state⇒ 1011 cycles/sec.
PC’s do ∼ 109 cycles/second (e.g., 3GHz Xeon).

Cannot afford to evaluate each state at each frame.
Need to optimize Viterbi algorithm!

113 / 139

Pruning

At each frame, only evaluate cells with highest scores.
Given active states/cells from last frame . . .

Only examine states/cells in current frame . . .
Reachable from active states in last frame.
Keep best to get active states in current frame.

114 / 139

Don’t Throw Out the Baby

When not considering every state at each frame . . .
Can make search errors.

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

The goal of search:
Minimize computation and search errors.

115 / 139

How Many Active States To Keep?

Goal: Prune paths with no chance of becoming best path.
Beam pruning.

Keep only states with log probs within fixed distance . . .
Of best log prob at that frame.

Rank or histogram pruning.
Keep only k highest scoring states.

When are these good? Bad? Can get best of both?

116 / 139

Pruning Visualized

Active states are small fraction of total states (<1%)
Tend to be localized in small regions in graph.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

117 / 139

Pruning and Determinization

Most uncertainty occurs at word starts.
Determinization drastically reduces branching here.

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE

118 / 139

Language Model Lookahead

In practice, put word labels at word ends. (Why?)
What’s wrong with this picture? (Hint: think beam pruning.)

AX/0

AE/0

AA/0

B/0

B/0

B/0

R/0

Y/0

S/0

Z/0

UW/0

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/7

ABU/7

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/4.3

ABUSE/3.5

ABUSE/3.5

ABSURD/4.7

ABSURD/4.7

119 / 139

Language Model Lookahead

Move LM scores as far ahead as possible.
At each point, total cost⇔ min LM cost of following words.
push operation does this.

AX/3.5

AE/4.7

AA/7.0

B/0

B/0

B/0

R/0.8

Y/0

S/0

Z/0

UW/2.3

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/0

ABU/0

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/0

ABUSE/0

ABUSE/0

ABSURD/0

ABSURD/0

120 / 139

Where Are We?

1 Shrinking the Language Model

2 Graph Optimization

3 Pruning

4 Other Viterbi Optimizations

5 Other Decoding Paradigms

121 / 139

Saving Memory

Naive Viterbi implementation: store whole DP chart.
If 10M-state decoding graph:

10 second utterance⇒ 1000 frames.
1000 frames × 10M states = 10 billion cells.

Each cell holds:
Viterbi log prob; backtrace pointer.

122 / 139

Forgetting the Past

To compute cells at frame t . . .
Only need cells at frame t − 1!

Only reason need to keep cells from past . . .
Is for backtracing, to recover word sequence.

Can we store backtracing information another way?

123 / 139

Compressing Backtraces

Only need to remember graph! (Can forget gray stuff.)
How to make this graph smaller?

124 / 139

Determinization!

1

2
six

3
five

4

oh
5two

6

four

In each cell, just remember node in FSA!
125 / 139

Token Passing

1

2
six

3
five

4

oh
5two

6

four

126 / 139

Token Passing

Maintain “word tree”:
Node represents word sequence from start state.

Backtrace pointer points to node in tree . . .
Holding word sequence labeling best path to cell.

Set backtrace to same node as at best last state . . .
Unless cross word boundary.

1

2THE

9THIS

11

THUD

3DIG

4DOG

10DOG

5ATE

6
EIGHT

7MAY

8
MY

127 / 139

Recap: Efficient Viterbi Decoding

The essence: one big HMM and Viterbi.
Graph optimization crucial, but not enough by itself.
Pruning is key for speed.

Determinization and LM lookahead help pruning a ton.
Can process ∼10000 states/frame in <1× RT on PC.

Can process ∼1% of cells for 10M-state graph . . .
And make very few search errors.

Depending on application and resources . . .
May run faster or slower than 1× RT (desktop).

Memory usage.
The biggie: decoding graph (shared memory).

128 / 139

Where Are We?

1 Shrinking the Language Model

2 Graph Optimization

3 Pruning

4 Other Viterbi Optimizations

5 Other Decoding Paradigms

129 / 139

My Language Model Is Too Small

What we’ve described: static graph expansion.
To make decoding graph tractable . . .
Use heavily-pruned language model.

Another approach: dynamic graph expansion.
Don’t store whole graph in memory.
Build parts of graph with active states on the fly.

one

two

three

four

�ve

six

seven
eight

nine

zero

one

two

three

.

�

�:AH

�:IY

THE:DH

DOG:D

�:G

�:AO

130 / 139

Dynamic Graph Expansion: The Basic Idea

Express graph as composition of two smaller graphs.
Composition is associative.

Gdecode = L ◦ TLM→CI ◦ TCI→CD ◦ TCD→GMM

= L ◦ (TLM→CI ◦ TCI→CD ◦ TCD→GMM)

Can do on-the-fly composition.
States in result correspond to state pairs (s1, s2).

131 / 139

Two-Pass Decoding

What about my fuzzy logic 15-phone acoustic model . . .
And 7-gram neural net LM with SVM boosting?

Some of the models developed in research are . . .
Too expensive to implement in one-pass decoding.

First-pass decoding: use simpler model . . .
To find “likeliest” word sequences . . .
As lattice (WFSA) or flat list of hypotheses (N-best list).

Rescoring: use complex model . . .
To find best word sequence . . .
Among first-pass hypotheses.

132 / 139

Lattice Generation and Rescoring

THE

THIS

THUD

DIG

DOG

DOG

DOGGY

ATE

EIGHT

MAY

MY

MAY

In Viterbi, store k -best tracebacks at each word-end cell.
To add in new LM scores to lattice . . .

What operation can we use?
Lattices have other uses.

e.g., confidence estimation; consensus decoding;
discriminative training, etc.

133 / 139

N-Best List Rescoring

For exotic models, even lattice rescoring may be too slow.
Easy to generate N-best lists from lattices.

A∗ algorithm.

THE DOG ATE MY
THE DIG ATE MY
THE DOG EIGHT MAY
THE DOGGY MAY

N-best lists have other uses.
e.g., confidence estimation; displaying alternatives; etc.

134 / 139

Discussion: A Tale of Two Decoding Styles

Approach 1: Dynamic graph expansion (since late 1980’s).
Can handle more complex language models.
Decoders are incredibly complex beasts.
e.g., cross-word CD expansion without FST’s.
Graph optimization difficult.

Approach 2: Static graph expansion (AT&T, late 1990’s).
Enabled by optimization algorithms for WFSM’s.
Much cleaner way of looking at everything!
FSM toolkits/libraries can do a lot of work for you.
Static graph expansion is complex and can be slow.
Decoding is relatively simple.

135 / 139

Static or Dynamic? Two-Pass?

If speed is priority?
If flexibility is priority?

e.g., update LM vocabulary every night.
If need gigantic language model?
If latency is priority?

What can’t we use?
If accuracy is priority (all the time in the world)?
If doing cutting-edge research?

136 / 139

References

F. Pereira and M. Riley, “Speech Recognition by
Composition of Weighted Finite Automata”, Finite-State
Language Processing, MIT Press, pp. 431–453, 1997.

M. Mohri, F. Pereira, M. Riley, “Weighted finite-state
transducers in speech recognition”, Computer Speech and
Language, vol. 16, pp. 69–88, 2002.

A. Stolcke, “Entropy-based pruning of Backoff Language
Models”, Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, pp. 270–274,
1998.

137 / 139

Road Map

138 / 139

Course Feedback

Was this lecture mostly clear or unclear?
What was the muddiest topic?
Other feedback (pace, content, atmosphere, etc.).

139 / 139

	Making the Decoding Graph
	Introduction to FSA's, FST's, and Composition
	What Can Composition Do?
	How To Compute Composition
	Composition and Graph Expansion
	Weighted FSM's

	Making Decoding Fast
	Shrinking the Language Model
	Graph Optimization
	Pruning
	Other Viterbi Optimizations
	Other Decoding Paradigms

