#### Lecture 7

LVCSR Training and Decoding (Part A)

#### Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

Watson Group IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen, nussbaum}@us.ibm.com

#### Mar 9, 2016

# Administrivia

- Lab 2
  - Handed back this lecture or next.
- Lab 3 extension
  - Due nine days from now (Friday, Mar. 18) at 6pm.
- Visit to IBM Watson Astor Place
  - April 1, 11am. (About 1h?)
- Spring recess next week; no lecture.

## Feedback

- Clear (9)
- Pace: fast (1)
- Muddiest: context models (3); diagonal GMM splitting (2); arcs v. state probs (1)
- Comments (2+ votes):
  - Nice song (4)
  - Hard to see chalk on blackboard (3)
  - Lab 3 better than Lab 2 (2)
  - Miss Michael on right (1); prefer Michael on left (1)

# The Big Picture

- Weeks 1–4: Signal Processing, Small vocabulary ASR.
- Weeks 5–8: Large vocabulary ASR.
  - Week 5: Language modeling (for large vocabularies).
  - Week 6: Pronunciation modeling acoustic modeling for large vocabularies.
  - Week 7, 8: Training, decoding for large vocabularies.
- Weeks 9–13: Advanced topics.

## Outline

- Part I: The LVCSR acoustic model.
- Part II: Acoustic model training for LVCSR.
- Part III: Decoding for LVCSR (inefficient).
  - Part IV: Introduction to finite-state transducers.
- Part V: Search (Lecture 8).
  - Making decoding for LVCSR efficient.

# Part I

#### The LVCSR Acoustic Model

# What is LVCSR?

Demo from https://speech-to-text-demo.mybluemix.net/

# What is LVCSR?

- Large vocabulary Continuous Speech Recognition.
  - Phone-based modeling vs. word-based modeling.
- Continuous.
  - No pauses between words.

# How do you evaluate such an LVCSR system?



# What do we have to begin training an LVCSR system?



Lexicon or dictionary

# The Fundamental Equation of ASR

$$w^{*} = \arg \max_{\omega} P(\omega | \mathbf{x})$$
(1)  
= 
$$\arg \max_{\omega} \frac{P(\omega) P(\mathbf{x} | \omega)}{P(\mathbf{x})}$$
(2)  
= 
$$\arg \max_{\omega} P(\omega) P(\mathbf{x} | \omega)$$
(3)

- *w*<sup>\*</sup> best sequence of words (class)
- x sequence of acoustic vectors
- $P(\mathbf{x}|\omega)$  acoustic model.
- $P(\omega)$  language model.

# The Acoustic Model: Small Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (4)$$

$$= \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (5)$$

$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t}) \quad (6)$$

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right] \quad (7)$$

$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d}) \quad (8)$$

# The Acoustic Model: Large Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (9)$$
  
$$= \approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (10)$$
  
$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t}) \quad (11)$$
  
$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right] \quad (12)$$
  
$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d}) \quad (13)$$

# What Has Changed?

- The HMM.
  - Each alignment A describes a path through an HMM.
- Its parameterization.
  - In P(x<sub>t</sub>|a<sub>t</sub>), how many GMM's to use? (Share between HMM's?)

# Describing the Underlying HMM

- Fundamental concept: how to map a word (or baseform) sequence to its HMM.
  - In training, map reference transcript to its HMM.
  - In decoding, glue together HMM's for all allowable word sequences.

# The HMM: Small Vocabulary



- One HMM per word.
- Glue together HMM for each word in word sequence.

# The HMM: Large Vocabulary



- One HMM per phone.
- Glue together HMM for each phone in phone sequence.
  - Map word sequence to phone sequence using baseform dictionary.
    - The rain in Spain falls ...
    - DH AX | R EY N | IX N | S P EY N | F AA L Z | ...

#### An Example: Word to HMM





8.9 8 8 8 8 8 8 8 2.0

#### An Example: Words to HMMs



# An Example: Word to HMM to GMMs

A set of arcs in a Markov model are tied to one another if they are constrained to have identical output distributions

E phone



Now, in this example ...

- The rain in Spain falls ...
- DH AX | R EY N | IX N | S P EY N | F AA L Z | ...



# I Still Don't See What's Changed

- HMM topology typically doesn't change.
- HMM parameterization changes.

#### Parameterization

- Small vocabulary.
  - One GMM per state (three states per phone).
  - No sharing between phones in different words.
- Large vocabulary, context-independent (CI).
  - One GMM per state.
  - Tying between phones in different words.
- Large vocabulary, context-dependent (CD).
  - Many GMM's per state; GMM to use depends on phonetic context.
  - Tying between phones in different words.

## **Context-Dependent Parameterization**

- Each phone HMM state has its own decision tree.
  - Decision tree asks questions about phonetic context. (Why?)
  - One GMM per leaf in the tree. (Up to 200+ leaves/tree.)
- How will tree for first state of a phone tend to differ ...
  - From tree for last state of a phone?
- Terminology.
  - *triphone* model  $\pm 1$  phones of context.
  - quinphone model  $\pm 2$  phones of context.

# Example of Tying



- Examples of "0" will affect models for "3" and "4"
- Useful in large vocabulary systems (why?)

# A Real-Life Tree

In practice:

- These trees are built on one-third of a phone, i.e., the three states of the HMM for a phone correspond to the beginning, middle and end of a phone.
- Context-independent versions
- Context-dependent versions

#### Another Sample Tree



# Pop Quiz

- System description:
  - 1000 words in lexicon; average word length = 5 phones.
  - There are 50 phones; each phone HMM has three states.
  - Each decision tree contains 100 leaves on average.
- How many GMM's are there in:
  - A small vocabulary system (word models)?
  - A CI large vocabulary system?
  - A CD large vocabulary system?

# **Context-Dependent Phone Models**

#### • Typical model sizes:

|          |           | GMM's/ |               |           |
|----------|-----------|--------|---------------|-----------|
| type     | HMM       | state  | GMM's         | Gaussians |
| word     | per word  | 1      | 10–500        | 100–10k   |
| CI phone | per phone | 1      | $\sim \! 150$ | 1k–3k     |
| CD phone | per phone | 1–200  | 1k–10k        | 10k–300k  |

- 39-dimensional feature vectors ⇒ ~80 parameters/Gaussian.
- Big models can have tens of millions of parameters.

# Any Questions?



• Given a word sequence, you should understand how to ....

- Layout the corresponding HMM topology.
- Determine which GMM to use at each state, for CI and CD models.

# What About Transition Probabilities?

- This slide only included for completeness.
- Small vocabulary.
  - One set of transition probabilities per state.
  - No sharing between phones in different words.
- Large vocabulary.
  - One set of transition probabilities per state.
  - Sharing between phones in different words.
- What about context-dependent transition modeling?

# Recap

- Main difference between small vocabulary and large vocabulary:
  - Allocation of GMM's.
  - Sharing GMM's between words: needs less GMM's.
  - Modeling context-dependence: needs more GMM's.
  - Hybrid allocation is possible.
- Training and decoding for LVCSR.
  - In theory, any reason why small vocabulary techniques won't work?
  - In practice, yikes!

# Points to Ponder

- Why deterministic mapping?
  - DID YOU  $\Rightarrow$  D IH D JH UW
  - The area of pronunciation modeling.
- Why decision trees?
  - Unsupervised clustering.

# Part II

# Acoustic Model Training for LVCSR

### Small Vocabulary Training — Lab 2

- Phase 1: Collect underpants.
  - Initialize all Gaussian means to 0, variances to 1.
- Phase 2: Iterate over training data.
  - For each word, train associated word HMM ...
  - On all samples of that word in the training data ...
  - Using the Forward-Backward algorithm.
- Phase 3: Profit!

# Large Vocabulary Training

- What's changed going to LVCSR?
  - Same HMM topology; just more Gaussians and GMM's.
- Can we just use the same training algorithm as before?
## Where Are We?



#### 2 Training GMM's

#### 3 Building Phonetic Decision Trees





## Flat or Random Start

- Why does this work for small models?
  - We believe there's a huge global minimum ...
  - In the "middle" of the parameter search space.
  - With a neutral starting point, we're apt to fall into it.
  - (Who knows if this is actually true.)
- Why doesn't this work for large models?

## Training a Mixture of Two 2-D Gaussians

- Flat start?
  - Initialize mean of each Gaussian to 0, variance to 1.



### Training a Mixture of Two 2-D Gaussians

#### • Random seeding?

• Picked 8 random starting points  $\Rightarrow$  3 different optima.



# Training Hidden Models

- (MLE) training of models with hidden variables has local minima.
- What are the hidden variables in ASR?
  - *i.e.*, what variables are in our model ...
  - That are not observed.

## How To Spot Hidden Variables

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (14)$$

$$= \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (15)$$

$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t}) \quad (16)$$

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right] \quad (17)$$

$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{d \in M}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d}) \quad (18)$$

## Gradient Descent and Local Minima

- EM training does hill-climbing/gradient descent.
  - Finds "nearest" optimum to where you started.



parameter values

# What To Do?

- Insight: If we know the "correct" hidden values for a model:
  - e.g., which arc and which Gaussian for each frame ...
  - Training is easy! (No local minima.)
  - Remember Viterbi training given fixed alignment in Lab 2.
- Is there a way to guess the correct hidden values for a large model?

## **Bootstrapping Alignments**

- Recall that all of our acoustic models, from simple to complex:
  - Generally use the same HMM topology!
  - (All that differs is how we assign GMM's to each arc.)
- Given an alignment (from arc/phone states to frames) for simple model . . .
  - It is straightforward to compute analogous alignment for complex model!

## Bootstrapping Big Models From Small

- Recipe:
  - Start with model simple enough that flat start works.
  - Iteratively build more and more complex models ...
  - By using last model to seed hidden values for next.
- Need to come up with sequence of successively more complex models ...
  - With related hidden structure.

## How To Seed Next Model From Last

- Directly via hidden values, *e.g.*, alignment.
  - e.g., single-pass retraining.
  - Can be used between very different models.
- Via parameters.
  - Seed parameters in complex model so that ...
  - Initially, will yield same/similar alignment as in simple model.
  - e.g., moving from CI to CD GMM's.

## Bootstrapping Big Models From Small

- Recurring motif in acoustic model training.
- The reason why state-of-the-art systems ....
  - Require many, many training passes, as you will see.
- Recipes handed down through the generations.
  - Discovered via sweat and tears.
  - Art, not science.
  - But no one believes these find global optima ...
  - Even for small problems.

## **Overview of Training Process**

- Build CI single Gaussian model from flat start.
- Use CI single Gaussian model to seed CI GMM model.
- Build phonetic decision tree (using CI GMM model to help).
- Use CI GMM model to seed CD GMM model.

## Where Are We?



#### 2 Training GMM's

#### 3 Building Phonetic Decision Trees





# Case Study: Training a GMM

- Recursive mixture splitting.
  - A sequence of successively more complex models.
  - Perturb means in opposite directions; same variance; Train.
  - (Discard Gaussians with insufficient counts.)
- *k*-means clustering.
  - Seed means in one shot.

## Mixture Splitting Example

#### • Split each Gaussian in two ( $\pm 0.2 \times \vec{\sigma}$ )



# Applying Mixture Splitting in ASR

- Recipe:
  - Start with model with 1-component GMM's (à la Lab 2).
  - Split Gaussians in each output distribution simultaneously.
  - Do many iterations of FB.
  - Repeat.
- Real-life numbers:
  - Five splits spread within 30 iterations of FB.

## Another Way: Automatic Clustering

- Use unsupervised clustering algorithm to find clusters (*k*-Means Clustering)
- Given clusters ...
  - Use cluster centers to seed Gaussian means.
  - FB training.
  - (Discard Gaussians with insufficient counts.)

## k-Means Clustering

- Select desired number of clusters k.
- Choose *k* data points randomly.
  - Use these as initial cluster centers.
- "Assign" each data point to nearest cluster center.
- Recompute each cluster center as ...
  - Mean of data points "assigned" to it.
- Repeat until convergence.

### k-Means Example

Pick random cluster centers; assign points to nearest center.



### *k*-Means Example

• Use centers as means of Gaussians; train, yep.



## The Final Mixtures, Splitting vs. k-Means



## Technical Aside: *k*-Means Clustering

- When using Euclidean distance ...
- *k*-means clustering is equivalent to ...
  - Seeding Gaussian means with the k initial centers.
  - Doing Viterbi EM update, keeping variances constant.

## Applying *k*-Means Clustering in ASR

- To train each GMM, use k-means clustering ...
  - On what data? Which frames?
- Huh?
  - How to decide which frames align to each GMM?
- This issue is evaded for mixture splitting.
  - Can we avoid it here?

## **Forced Alignment**

- Viterbi algorithm.
  - Finds most likely alignment of HMM to data.



• Need existing model to create alignment. (Which?)

## Recap

- You can use single Gaussian models to seed GMM models.
  - Mixture splitting: use *c*-component GMM to seed 2*c*-component GMM.
  - k-means: use single Gaussian model to find alignment.
- Both of these techniques work about the same.
  - Nowadays, we primarily use mixture splitting.

## Where Are We?



#### 2 Training GMM's

#### 3 Building Phonetic Decision Trees





## What Do We Need?

- For each tree/phone state ...
  - List of frames/feature vectors associated with that tree.
  - (This is the data we are optimizing the likelihood of.)
  - For each frame, the phonetic context.
- A list of candidate questions about the phonetic context.
  - Ask about phonetic concepts; *e.g.*, vowel or consonant?
  - Expressed as list of phones in set.
  - Allow same questions to be asked about each phone position.
  - Handed down through the generations.

## Training Data for Decision Trees

- Forced alignment/Viterbi decoding!
- Where do we get the model to align with?
  - Use CI phone model or other pre-existing model.

| frame | 0   | 1               | 2               | 3               | 4  | 5          | 6  | 7  | 8     | 9               |  |
|-------|-----|-----------------|-----------------|-----------------|----|------------|----|----|-------|-----------------|--|
| arc   | DH1 | DH <sub>2</sub> | AH <sub>1</sub> | AH <sub>2</sub> | D1 | D <b>1</b> | D2 | D2 | $D_2$ | AO <sub>1</sub> |  |

# **Building the Tree**

- A set of events  $\{(\vec{x}_i, p_L, p_R)\}$  (possibly subsampled).
- Given current tree:
  - Choose question of the form ...
  - "Does the phone in position j belong to the set q?" ...
  - That optimizes  $\prod_i P(\vec{x}_i | \text{leaf}(p_L, p_R)) \dots$
  - Where we model each leaf using a single Gaussian.
- Can efficiently build whole level of tree in single pass.
- See Lecture 6 slides and readings for the gory details.

## Seeding the Context-Dependent GMM's

- Context-independent GMM's: one GMM per phone state.
- Context-dependent GMM's: / GMM's per phone state.
- How to seed context-dependent GMM's?
  - e.g., so that initial alignment matches CI alignment?

## Where Are We?

- 1 The Local Minima Problem
- 2 Training GMM's
- 3 Building Phonetic Decision Trees





## Where Are We?

#### Details

#### • Maximum Likelihood Training?

- Viterbi vs. Non-Viterbi Training
- Graph Building

# The Original Story, Small Vocabulary

- One HMM for each word; flat start.
- Collect all examples of each word.
  - Run FB on those examples to do maximum likelihood training of that HMM.

## The New Story

- One HMM for each word sequence!?
  - But tie parameters across HMM's!
- Do complex multi-phase training.
- Are we still doing anything resembling maximum likelihood training?

## Maximum Likelihood Training?

- Regular training iterations (FB, Viterbi EM).
  - Increase (Viterbi) likelihood of data.
- Seeding last model from next model.
  - Mixture splitting.
  - $CI \Rightarrow CD$  models.
- (Decision-tree building.)
## Maximum Likelihood Training?

- Just as LM's need to be smoothed or *regularized*.
  - So do acoustic models.
  - Prevent extreme likelihood values (*e.g.*, 0 or  $\infty$ ).
- ML training maximizes training data likelihood.
  - We actually want to optimize test data likelihood.
  - Let's call the difference the *overfitting penalty*.
- The overfitting penalty tends to increase as ...
  - The number of parameters increase and/or ...
  - Parameter magnitudes increase.

# Regularization/Capacity Control

- Limit size of model.
  - Will training likelihood continue to increase as model grows?
  - Limit components per GMM.
  - Limit number of leaves in decision tree, *i.e.*, number of GMM's.
- Variance flooring.
  - Don't let variances go to  $0 \Rightarrow$  infinite likelihood.

#### Where Are We?

#### 4 Details

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training
- Graph Building

# Two Types of Updates

- "Full" EM.
  - Compute true posterior of each hidden configuration.
- Viterbi EM.
  - Use Viterbi algorithm to find most likely hidden configuration.
  - Assign posterior of 1 to this configuration.
- Both are valid updates; instances of generalized EM.

#### Examples

- Training GMM's.
  - Mixture splitting vs. k-means clustering.
- Training HMM's.
  - Forward-backward vs. Viterbi EM (Lab 2).
- Everywhere you do a forced alignment.
  - Refining the reference transcript.
  - What is non-Viterbi version of decision-tree building?

## When To Use One or the Other?

- Which version is more expensive computationally?
  - Optimization: need not realign every iteration.
- Which version finds better minima?
- If posteriors are very sharp, they do almost the same thing.
  - Remember example posteriors in Lab 2?
- Rule of thumb:
  - When you're first training a "new" model, use full EM.
  - Once you're "locked in" to an optimum, Viterbi is fine.

#### Where Are We?

#### 4 Details

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training
- Graph Building

# Building HMM's For Training

- When doing Forward-Backward on an utterance ...
  - We need the HMM corresponding to the reference transcript.
- Can we use the same techniques as for small vocabularies?

#### Word Models

Reference transcript



Replace each word with its HMM



#### **Context-Independent Phone Models**

Reference transcript



- Pronunciation dictionary.
  - Maps each word to a sequence of phonemes.



Replace each phone with its HMM



#### **Context-Dependent Phone Models**



# The Pronunciation Dictionary

- Need pronunciation of *every* word in training data.
  - Including pronunciation variants

| тне(01) | DH | AH |
|---------|----|----|
| тне(02) | DH | ΙY |

- Listen to data?
- Use automatic spelling-to-sound models?
- Why not consider multiple baseforms/word for word models?

## But Wait, It's More Complicated Than That!

- Reference transcripts are created by humans ...
  - Who, by their nature, are *human* (*i.e.*, fallible)
- Typical transcripts don't contain everything an ASR system wants.
  - Where silence occurred; noises like coughs, door slams, etc.
  - Pronunciation information, *e.g.*, was THE pronounced as DH UH or DH IY?

#### Pronunciation Variants, Silence, and Stuff

- How can we produce a more "complete" reference transcript?
- Viterbi decoding!
  - Build HMM accepting all word (HMM) sequences consistent with reference transcript.
  - Compute best path/word HMM sequence.
  - Where does this initial acoustic model come from?



## Another Way

• Just use the whole expanded graph during training.



- The problem: how to do context-dependent phone expansion?
  - Use same techniques as in building graphs for decoding.

## Where Are We?

- The Local Minima Problem
- 2 Training GMM's
- 3 Building Phonetic Decision Trees





#### Prerequisites

- Audio data with reference transcripts.
- What two other things?

# The Training Recipe

- Find/make baseforms for all words in reference transcripts.
- Train single Gaussian models (flat start; many iters of FB).
- Do mixture splitting, say.
  - Split each Gaussian in two; do many iterations of FB.
  - Repeat until desired number of Gaussians per mixture.
- (Use initial system to refine reference transcripts.)
  - Select pronunciation variants, where silence occurs.
  - Do more FB training given refined transcripts.
- Build phonetic decision tree.
  - Use CI model to align training data.
- Seed CD model from CI; train using FB or Viterbi EM.
  - Possibly doing more mixture splitting.

## How Long Does Training Take?

- It's a secret.
- We think in terms of *real-time factor*.
  - How many hours does it take to process one hour of speech?

#### Whew, That Was Pretty Complicated!

- Adaptation (VTLN, fMLLR, mMLLR)
- Discriminative training (LDA, MMI, MPE, fMPE)
- Model combination (cross adaptation, ROVER)
- Iteration.
  - Repeat steps using better model for seeding.
  - Alignment is only as good as model that created it.

#### Things Can Get Pretty Hairy



## Recap: Acoustic Model Training for LVCSR

- Take-home messages.
  - Hidden model training is fraught with local minima.
  - Seeding more complex models with simpler models helps avoid terrible local minima.
  - People have developed many recipes/heuristics to try to improve the minimum you end up in.
  - Training is insanely complicated for state-of-the-art research models.
- The good news ...
  - I just saved a bunch on money on my car insurance by switching to GEICO.

#### Outline

- Part I: The LVCSR acoustic model.
- Part II: Acoustic model training for LVCSR.
- Part III: Decoding for LVCSR (inefficient).
  - Part IV: Introduction to finite-state transducers.
- Part V: Search (Lecture 8).
  - Making decoding for LVCSR efficient.

#### **Course Feedback**

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?