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Administrivia

Lab 2
Handed back this lecture or next.

Lab 3 extension
Due nine days from now (Friday, Mar. 18) at 6pm.

Visit to IBM Watson Astor Place
April 1, 11am. (About 1h?)

Spring recess next week; no lecture.
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Feedback

Clear (9)
Pace: fast (1)
Muddiest: context models (3); diagonal GMM splitting (2);
arcs v. state probs (1)
Comments (2+ votes):

Nice song (4)
Hard to see chalk on blackboard (3)
Lab 3 better than Lab 2 (2)
Miss Michael on right (1); prefer Michael on left (1)
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The Big Picture

Weeks 1–4: Signal Processing, Small vocabulary ASR.
Weeks 5–8: Large vocabulary ASR.

Week 5: Language modeling (for large vocabularies).
Week 6: Pronunciation modeling — acoustic modeling
for large vocabularies.
Week 7, 8: Training, decoding for large vocabularies.

Weeks 9–13: Advanced topics.
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Outline

Part I: The LVCSR acoustic model.
Part II: Acoustic model training for LVCSR.
Part III: Decoding for LVCSR (inefficient).

Part IV: Introduction to finite-state transducers.
Part V: Search (Lecture 8).

Making decoding for LVCSR efficient.
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Part I

The LVCSR Acoustic Model
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What is LVCSR?

Demo from https://speech-to-text-demo.mybluemix.net/
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What is LVCSR?

Large vocabulary Continuous Speech Recognition.
Phone-based modeling vs. word-based modeling.

Continuous.
No pauses between words.

8 / 96



How do you evaluate such an LVCSR
system?

Hello how can I       help you       today 

Hello  ___ can EYE help you TO today 
Ground Truth 

ASR 

Insertion 
Error 

Substitutio
n Error 

Deletio
n Error 
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What do we have to begin training an LVCSR
system?

100s of hours of 
recordings from 
many speakers 

Audio Recording 1 

Audio Recording 2 

Transcript 1 

Transcript 2 

Parallel database of audio and 
transcript 

LVCSR 

Lexicon or dictionary
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The Fundamental Equation of ASR

w∗ = arg max
ω

P(ω|x) (1)

= arg max
ω

P(ω)P(x|ω)

P(x)
(2)

= arg max
ω

P(ω)P(x|ω) (3)

w∗ — best sequence of words (class)
x — sequence of acoustic vectors
P(x|ω) — acoustic model.
P(ω) — language model.
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The Acoustic Model: Small Vocabulary

Pω(x) =
∑

A

Pω(x,A) =
∑

A

Pω(A)× Pω(x|A) (4)

=≈ max
A

Pω(A)× Pω(x|A) (5)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at) (6)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]
(7)

P(~xt |at) =
M∑

m=1

λat ,m

D∏
dim d

N (xt ,d ;µat ,m,d , σat ,m,d) (8)
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The Acoustic Model: Large Vocabulary

Pω(x) =
∑

A

Pω(x,A) =
∑

A

Pω(A)× Pω(x|A) (9)

=≈ max
A

Pω(A)× Pω(x|A) (10)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at) (11)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]
(12)

P(~xt |at) =
M∑

m=1

λat ,m

D∏
dim d

N (xt ,d ;µat ,m,d , σat ,m,d) (13)
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What Has Changed?

The HMM.
Each alignment A describes a path through an HMM.

Its parameterization.
In P(~xt |at), how many GMM’s to use? (Share between
HMM’s?)
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Describing the Underlying HMM

Fundamental concept: how to map a word (or baseform)
sequence to its HMM.

In training, map reference transcript to its HMM.
In decoding, glue together HMM’s for all allowable word
sequences.
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The HMM: Small Vocabulary

TEN FOUR

. . .

. . .
TEN FOUR

One HMM per word.
Glue together HMM for each word in word sequence.
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The HMM: Large Vocabulary

T EH N F AO R

. . .

. . .
T EH N F AO R

One HMM per phone.
Glue together HMM for each phone in phone sequence.

Map word sequence to phone sequence using
baseform dictionary.

The rain in Spain falls . . .
DH AX | R EY N | IX N | S P EY N | F AA L Z | . . .
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An Example: Word to HMM
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An Example: Words to HMMs
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An Example: Word to HMM to GMMs

A set of arcs in a Markov model are tied to one another if they
are constrained to have identical output distributions

E_b 

E_b 

E_m 

E_m 

E_e 

E_e 

E phone 
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Now, in this example . . .

The rain in Spain falls . . .
DH AX | R EY N | IX N | S P EY N | F AA L Z | . . .

38 

N Is phone 2 positions  
to the left a vowel 

no yes 

Is phone 1 position  
to the left a long vowel 

{P  EY  N}, {R, EY, N}, 
{ | IX N} 

{P  EY  N}, {R, EY, N} 

…. 

yes 

no 
{| IX N} 

Is phone 1 position  
to the left a boundary phone 

yes 

{| IX N} 

no 

Is phone 2 positions  
to the left a plosive 

yes 

{P  EY  N} 
{R, EY, N} 

no 
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I Still Don’t See What’s Changed

HMM topology typically doesn’t change.
HMM parameterization changes.
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Parameterization

Small vocabulary.
One GMM per state (three states per phone).
No sharing between phones in different words.

Large vocabulary, context-independent (CI).
One GMM per state.
Tying between phones in different words.

Large vocabulary, context-dependent (CD).
Many GMM’s per state; GMM to use depends on
phonetic context.
Tying between phones in different words.

23 / 96



Context-Dependent Parameterization

Each phone HMM state has its own decision tree.
Decision tree asks questions about phonetic context.
(Why?)
One GMM per leaf in the tree. (Up to 200+ leaves/tree.)

How will tree for first state of a phone tend to differ . . .
From tree for last state of a phone?

Terminology.
triphone model — ±1 phones of context.
quinphone model — ±2 phones of context.
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Example of Tying

Examples of “0” will affect models for “3” and “4”
Useful in large vocabulary systems (why?)
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A Real-Life Tree

In practice:

These trees are built on one-third of a phone, i.e., the three
states of the HMM for a phone correspond to the beginning,
middle and end of a phone.
Context-independent versions
Context-dependent versions
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Another Sample Tree
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Pop Quiz

System description:
1000 words in lexicon; average word length = 5 phones.
There are 50 phones; each phone HMM has three
states.
Each decision tree contains 100 leaves on average.

How many GMM’s are there in:
A small vocabulary system (word models)?
A CI large vocabulary system?
A CD large vocabulary system?
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Context-Dependent Phone Models

Typical model sizes:
GMM’s/

type HMM state GMM’s Gaussians
word per word 1 10–500 100–10k
CI phone per phone 1 ∼150 1k–3k
CD phone per phone 1–200 1k–10k 10k–300k

39-dimensional feature vectors⇒ ∼80
parameters/Gaussian.
Big models can have tens of millions of parameters.
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Any Questions?

T EH N F AO R

. . .

. . .
T EH N F AO R

Given a word sequence, you should understand how to . . .
Layout the corresponding HMM topology.
Determine which GMM to use at each state, for CI and
CD models.
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What About Transition Probabilities?

This slide only included for completeness.
Small vocabulary.

One set of transition probabilities per state.
No sharing between phones in different words.

Large vocabulary.
One set of transition probabilities per state.
Sharing between phones in different words.

What about context-dependent transition modeling?
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Recap

Main difference between small vocabulary and large
vocabulary:

Allocation of GMM’s.
Sharing GMM’s between words: needs less GMM’s.
Modeling context-dependence: needs more GMM’s.
Hybrid allocation is possible.

Training and decoding for LVCSR.
In theory, any reason why small vocabulary techniques
won’t work?
In practice, yikes!
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Points to Ponder

Why deterministic mapping?
DID YOU ⇒ D IH D JH UW
The area of pronunciation modeling.

Why decision trees?
Unsupervised clustering.
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Part II

Acoustic Model Training for LVCSR
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Small Vocabulary Training — Lab 2

Phase 1: Collect underpants.
Initialize all Gaussian means to 0, variances to 1.

Phase 2: Iterate over training data.
For each word, train associated word HMM . . .
On all samples of that word in the training data . . .
Using the Forward-Backward algorithm.

Phase 3: Profit!
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Large Vocabulary Training

What’s changed going to LVCSR?
Same HMM topology; just more Gaussians and GMM’s.

Can we just use the same training algorithm as before?
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Flat or Random Start

Why does this work for small models?
We believe there’s a huge global minimum . . .
In the “middle” of the parameter search space.
With a neutral starting point, we’re apt to fall into it.
(Who knows if this is actually true.)

Why doesn’t this work for large models?
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Training a Mixture of Two 2-D Gaussians

Flat start?
Initialize mean of each Gaussian to 0, variance to 1.

-4

-2

 0

 2

 4

-10 -5  0  5  10
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Training a Mixture of Two 2-D Gaussians

Random seeding?
Picked 8 random starting points⇒ 3 different optima.

-4

-2

 0

 2

 4

-10 -5  0  5  10
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Training Hidden Models

(MLE) training of models with hidden variables has local
minima.
What are the hidden variables in ASR?

i.e., what variables are in our model . . .
That are not observed.
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How To Spot Hidden Variables

Pω(x) =
∑

A

Pω(x,A) =
∑

APω(A)× Pω(x|A) (14)

=≈ max
A

Pω(A)× Pω(x|A) (15)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at) (16)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]
(17)

P(~xt |at) =
∑

M
m=1λat ,m

D∏
dim d

N (xt ,d ;µat ,m,d , σat ,m,d) (18)
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Gradient Descent and Local Minima

EM training does hill-climbing/gradient descent.
Finds “nearest” optimum to where you started.

lik
el

ih
oo

d

parameter values
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What To Do?

Insight: If we know the “correct” hidden values for a model:
e.g., which arc and which Gaussian for each frame . . .
Training is easy! (No local minima.)
Remember Viterbi training given fixed alignment in Lab
2.

Is there a way to guess the correct hidden values for a large
model?
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Bootstrapping Alignments

Recall that all of our acoustic models, from simple to
complex:

Generally use the same HMM topology!
(All that differs is how we assign GMM’s to each arc.)

Given an alignment (from arc/phone states to frames) for
simple model . . .

It is straightforward to compute analogous alignment for
complex model!
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Bootstrapping Big Models From Small

Recipe:
Start with model simple enough that flat start works.
Iteratively build more and more complex models . . .
By using last model to seed hidden values for next.

Need to come up with sequence of successively more
complex models . . .

With related hidden structure.
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How To Seed Next Model From Last

Directly via hidden values, e.g., alignment.
e.g., single-pass retraining.
Can be used between very different models.

Via parameters.
Seed parameters in complex model so that . . .
Initially, will yield same/similar alignment as in simple
model.
e.g., moving from CI to CD GMM’s.
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Bootstrapping Big Models From Small

Recurring motif in acoustic model training.
The reason why state-of-the-art systems . . .

Require many, many training passes, as you will see.
Recipes handed down through the generations.

Discovered via sweat and tears.
Art, not science.
But no one believes these find global optima . . .
Even for small problems.
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Overview of Training Process

Build CI single Gaussian model from flat start.
Use CI single Gaussian model to seed CI GMM model.
Build phonetic decision tree (using CI GMM model to help).
Use CI GMM model to seed CD GMM model.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Case Study: Training a GMM

Recursive mixture splitting.
A sequence of successively more complex models.
Perturb means in opposite directions; same variance;
Train.
(Discard Gaussians with insufficient counts.)

k -means clustering.
Seed means in one shot.
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Mixture Splitting Example

Split each Gaussian in two (±0.2× ~σ)

-4

-2

 0

 2

 4

-10 -5  0  5  10
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Applying Mixture Splitting in ASR

Recipe:
Start with model with 1-component GMM’s (à la Lab 2).
Split Gaussians in each output distribution
simultaneously.
Do many iterations of FB.
Repeat.

Real-life numbers:
Five splits spread within 30 iterations of FB.
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Another Way: Automatic Clustering

Use unsupervised clustering algorithm to find clusters
(k -Means Clustering)
Given clusters . . .

Use cluster centers to seed Gaussian means.
FB training.
(Discard Gaussians with insufficient counts.)
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k -Means Clustering

Select desired number of clusters k .
Choose k data points randomly.

Use these as initial cluster centers.
“Assign” each data point to nearest cluster center.
Recompute each cluster center as . . .

Mean of data points “assigned” to it.
Repeat until convergence.
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k -Means Example

Pick random cluster centers; assign points to nearest
center.

-4
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-10 -5  0  5  10
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k -Means Example

Use centers as means of Gaussians; train, yep.
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-10 -5  0  5  10
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The Final Mixtures, Splitting vs. k -Means

-4-2 0 2 4

-1
0

-5
 0

 5
 1

0

-4-2 0 2 4

-1
0

-5
 0

 5
 1

0
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Technical Aside: k -Means Clustering

When using Euclidean distance . . .
k -means clustering is equivalent to . . .

Seeding Gaussian means with the k initial centers.
Doing Viterbi EM update, keeping variances constant.
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Applying k -Means Clustering in ASR

To train each GMM, use k -means clustering . . .
On what data? Which frames?

Huh?
How to decide which frames align to each GMM?

This issue is evaded for mixture splitting.
Can we avoid it here?
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Forced Alignment

Viterbi algorithm.
Finds most likely alignment of HMM to data.

P1(x)

P1(x)

P2(x)

P2(x)

P3(x)

P3(x)

P4(x)

P4(x)

P5(x)

P5(x)

P6(x)

P6(x)

frame 0 1 2 3 4 5 6 7 8 9 10 11 12
arc P1 P1 P1 P2 P3 P4 P4 P5 P5 P5 P5 P6 P6

Need existing model to create alignment. (Which?)
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Recap

You can use single Gaussian models to seed GMM models.

Mixture splitting: use c-component GMM to seed
2c-component GMM.
k -means: use single Gaussian model to find alignment.

Both of these techniques work about the same.
Nowadays, we primarily use mixture splitting.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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What Do We Need?

For each tree/phone state . . .
List of frames/feature vectors associated with that tree.
(This is the data we are optimizing the likelihood of.)
For each frame, the phonetic context.

A list of candidate questions about the phonetic context.
Ask about phonetic concepts; e.g., vowel or
consonant?
Expressed as list of phones in set.
Allow same questions to be asked about each phone
position.
Handed down through the generations.
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Training Data for Decision Trees

Forced alignment/Viterbi decoding!
Where do we get the model to align with?

Use CI phone model or other pre-existing model.

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2

frame 0 1 2 3 4 5 6 7 8 9 · · ·
arc DH1 DH2 AH1 AH2 D1 D1 D2 D2 D2 AO1 · · ·
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Building the Tree

A set of events {(~xi ,pL,pR)} (possibly subsampled).
Given current tree:

Choose question of the form . . .
“Does the phone in position j belong to the set q?” . . .
That optimizes

∏
i P(~xi |leaf(pL,pR)) . . .

Where we model each leaf using a single Gaussian.
Can efficiently build whole level of tree in single pass.
See Lecture 6 slides and readings for the gory details.
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Seeding the Context-Dependent GMM’s

Context-independent GMM’s: one GMM per phone state.
Context-dependent GMM’s: l GMM’s per phone state.
How to seed context-dependent GMM’s?

e.g., so that initial alignment matches CI alignment?
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Where Are We?

4 Details

Maximum Likelihood Training?

Viterbi vs. Non-Viterbi Training

Graph Building
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The Original Story, Small Vocabulary

One HMM for each word; flat start.
Collect all examples of each word.

Run FB on those examples to do maximum likelihood
training of that HMM.
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The New Story

One HMM for each word sequence!?
But tie parameters across HMM’s!

Do complex multi-phase training.
Are we still doing anything resembling maximum likelihood
training?
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Maximum Likelihood Training?

Regular training iterations (FB, Viterbi EM).
Increase (Viterbi) likelihood of data.

Seeding last model from next model.
Mixture splitting.
CI⇒ CD models.

(Decision-tree building.)
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Maximum Likelihood Training?

Just as LM’s need to be smoothed or regularized.
So do acoustic models.
Prevent extreme likelihood values (e.g., 0 or∞).

ML training maximizes training data likelihood.
We actually want to optimize test data likelihood.
Let’s call the difference the overfitting penalty.

The overfitting penalty tends to increase as . . .
The number of parameters increase and/or . . .
Parameter magnitudes increase.
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Regularization/Capacity Control

Limit size of model.
Will training likelihood continue to increase as model
grows?
Limit components per GMM.
Limit number of leaves in decision tree, i.e., number of
GMM’s.

Variance flooring.
Don’t let variances go to 0⇒ infinite likelihood.
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Where Are We?

4 Details

Maximum Likelihood Training?

Viterbi vs. Non-Viterbi Training

Graph Building

75 / 96



Two Types of Updates

“Full” EM.
Compute true posterior of each hidden configuration.

Viterbi EM.
Use Viterbi algorithm to find most likely hidden
configuration.
Assign posterior of 1 to this configuration.

Both are valid updates; instances of generalized EM.
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Examples

Training GMM’s.
Mixture splitting vs. k -means clustering.

Training HMM’s.
Forward-backward vs. Viterbi EM (Lab 2).

Everywhere you do a forced alignment.
Refining the reference transcript.
What is non-Viterbi version of decision-tree building?
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When To Use One or the Other?

Which version is more expensive computationally?
Optimization: need not realign every iteration.

Which version finds better minima?
If posteriors are very sharp, they do almost the same thing.

Remember example posteriors in Lab 2?
Rule of thumb:

When you’re first training a “new” model, use full EM.
Once you’re “locked in” to an optimum, Viterbi is fine.
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Where Are We?

4 Details

Maximum Likelihood Training?

Viterbi vs. Non-Viterbi Training

Graph Building
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Building HMM’s For Training

When doing Forward-Backward on an utterance . . .
We need the HMM corresponding to the reference
transcript.

Can we use the same techniques as for small vocabularies?
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Word Models

Reference transcript
THE DOG

Replace each word with its HMM

THE1 THE2 THE3 THE4 DOG1 DOG2 DOG3 DOG4 DOG5 DOG6
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Context-Independent Phone Models

Reference transcript
THE DOG

Pronunciation dictionary.
Maps each word to a sequence of phonemes.

DH AH D AO G

Replace each phone with its HMM

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2
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Context-Dependent Phone Models

THE DOG

DH AH D AO G

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2

DH1,3 DH2,7 AH1,2 AH2,4 D1,3 D2,9 AO1,1 AO2,1 G1,2 G2,7
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The Pronunciation Dictionary

Need pronunciation of every word in training data.
Including pronunciation variants

THE(01) DH AH
THE(02) DH IY

Listen to data?
Use automatic spelling-to-sound models?

Why not consider multiple baseforms/word for word
models?
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But Wait, It’s More Complicated Than That!

Reference transcripts are created by humans . . .
Who, by their nature, are human (i.e., fallible)

Typical transcripts don’t contain everything an ASR system
wants.

Where silence occurred; noises like coughs, door
slams, etc.
Pronunciation information, e.g., was THE pronounced
as DH UH or DH IY?
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Pronunciation Variants, Silence, and Stuff

How can we produce a more “complete” reference
transcript?
Viterbi decoding!

Build HMM accepting all word (HMM) sequences
consistent with reference transcript.
Compute best path/word HMM sequence.
Where does this initial acoustic model come from?

~SIL(01)

THE(01)

THE(02)

~SIL(01)
DOG(01)

DOG(02)

DOG(03)

~SIL(01)

~SIL(01) THE(01) DOG(02) ~SIL(01)
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Another Way

Just use the whole expanded graph during training.
~SIL(01)

THE(01)

THE(02)

~SIL(01)
DOG(01)

DOG(02)

DOG(03)

~SIL(01)

The problem: how to do context-dependent phone
expansion?

Use same techniques as in building graphs for
decoding.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Prerequisites

Audio data with reference transcripts.
What two other things?
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The Training Recipe

Find/make baseforms for all words in reference transcripts.
Train single Gaussian models (flat start; many iters of FB).
Do mixture splitting, say.

Split each Gaussian in two; do many iterations of FB.
Repeat until desired number of Gaussians per mixture.

(Use initial system to refine reference transcripts.)
Select pronunciation variants, where silence occurs.
Do more FB training given refined transcripts.

Build phonetic decision tree.
Use CI model to align training data.

Seed CD model from CI; train using FB or Viterbi EM.
Possibly doing more mixture splitting.
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How Long Does Training Take?

It’s a secret.
We think in terms of real-time factor.

How many hours does it take to process one hour of
speech?
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Whew, That Was Pretty Complicated!

Adaptation (VTLN, fMLLR, mMLLR)
Discriminative training (LDA, MMI, MPE, fMPE)
Model combination (cross adaptation, ROVER)
Iteration.

Repeat steps using better model for seeding.
Alignment is only as good as model that created it.
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Things Can Get Pretty Hairy

ML-SAT-L

ML-AD-L

ROVER

Consensus

rescoring
100-best

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus Consensus Consensus

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus

36.3%

MFCC

ML-SAT-L

VTLN

ML-AD-L

ML-SAT

ML-AD

MMI-SAT

MMI-AD

ML-SAT

ML-AD

MFCC-SI

PLP

VTLN

MMI-SAT

MMI-AD

Consensus

4-gram

100-best
rescoring

rescoring

38.4%                          Eval’01 WER

35.6%

31.6%

30.3%

30.1% 30.5%

31.0%

32.1%

29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%

27.8%

29.2%

29.5% 30.1%

29.8%

30.9% 31.9%

34.3%
42.6%

45.9%                          Eval’98 WER (SWB only)

34.0%

41.6%

39.3%38.5% 37.7% 38.7%

38.1% 36.7%38.7%
30.8%
37.9%

38.1%37.1% 36.9%35.9%

35.2%

35.7%

36.5% 38.1% 37.2% 35.5% 37.7%
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Recap: Acoustic Model Training for LVCSR

Take-home messages.
Hidden model training is fraught with local minima.
Seeding more complex models with simpler models
helps avoid terrible local minima.
People have developed many recipes/heuristics to try
to improve the minimum you end up in.
Training is insanely complicated for state-of-the-art
research models.

The good news . . .
I just saved a bunch on money on my car insurance by
switching to GEICO.
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Outline

Part I: The LVCSR acoustic model.
Part II: Acoustic model training for LVCSR.
Part III: Decoding for LVCSR (inefficient).

Part IV: Introduction to finite-state transducers.
Part V: Search (Lecture 8).

Making decoding for LVCSR efficient.
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Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?
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