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@ Lab?2
e Handed back this lecture or next.
@ Lab 3 extension
e Due nine days from now (Friday, Mar. 18) at 6pm.
@ Visit to IBM Watson Astor Place
e April 1, 11am. (About 1h?)
@ Spring recess next week; no lecture.



Feedback

@ Clear (9)

@ Pace: fast (1)

@ Muddiest: context models (3); diagonal GMM splitting (2);
arcs v. state probs (1)

@ Comments (2+ votes):

Nice song (4)

Hard to see chalk on blackboard (3)

Lab 3 better than Lab 2 (2)

Miss Michael on right (1); prefer Michael on left (1)



The Big Picture

@ Weeks 1-4: Signal Processing, Small vocabulary ASR.
@ Weeks 5-8: Large vocabulary ASR.

e Week 5: Language modeling (for large vocabularies).

e Week 6: Pronunciation modeling — acoustic modeling
for large vocabularies.

e Week 7, 8: Training, decoding for large vocabularies.

@ Weeks 9—13: Advanced topics.



@ Part I: The LVCSR acoustic model.
@ Part Il: Acoustic model training for LVCSR.
@ Part lll: Decoding for LVCSR (inefficient).
e Part IV: Introduction to finite-state transducers.
@ Part V: Search (Lecture 8).
e Making decoding for LVCSR efficient.



Part |

The LVCSR Acoustic Model



What is LVCSR?

Demo from https://speech-to-text-demo.mybluemix.net/
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What is LVCSR?

@ Large vocabulary Continuous Speech Recognition.

e Phone-based modeling vs. word-based modeling.
@ Continuous.

e No pauses between words.

8/96



How do you evaluate such an LVCSR

system?

Ground Truth  Hellohow can|  helpyou  today
ASR Hello _ can E?(E help you T(l) today

l l

Deletio | Substitutio Insertion
nError | nError Error

#Ins + #Sub + #Del
#Words

WER =



What do we have to begin training an LVCSR

system?

| Audio Recording 1 | LVCSR | Transcript 1 |

|

—
| Transcript 2 |

N/

| Parallel database of audio and |
transcript

| Audio Recording 2

100s of hours of
recordings from
many speakers

Lexicon or dictionary
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The Fundamental Equation of ASR

w* = argmax P(w|x) (1)
— argmax % (2)
= argmax P(w)P(x|w) (3)

@ w* — best sequence of words (class)
@ x — sequence of acoustic vectors

@ P(x|w) — acoustic model.

@ P(w)— language model.
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The Acoustic Model: Small Vocabulary

> Pulx, ZP P.(XIA)  (4)
A

=~ maxP,(A) x P (x|A) (5)
T T

= max H P(a) [ [ P(%la) (6)
t= t=1

logP.(x) = max Z log P(a;) + Z log P(%a)| (7)

t=1

P(Yt|at) = Z >\at,m H N(Xt,d; Ha;m,d, Ua,,m,d) (8)

m=1 dim d
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The Acoustic Model: Large Vocabulary

> Pu(x Z P.(A) x P,(x|A)  (9)
A

=~ maxP,(A) x P (x|A) (10)
T T

= maxHP(a,)HP()?zIat) (11)
t= t=1

logP.(x) = max Z log P(a;) + Zlog P(Xla)| (12)

t=1

P(Yt|at) = Z >\at,m H N(Xt,d; Ma;,m,d, Ua,,m,d) (1 3)

m=1 dim d
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What Has Changed?

@ The HMM.
e Each alignment A describes a path through an HMM.
@ Its parameterization.

e In P(X:|a;), how many GMM’s to use? (Share between
HMM’s?)
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Describing the Underlying HMM

@ Fundamental concept: how to map a word (or baseform)
sequence to its HMM.
e In training, map reference transcript to its HMM.
e In decoding, glue together HMM's for all allowable word
sequences.
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The HMM: Small Vocabulary

@ One HMM per word.
@ Glue together HMM for each word in word sequence.
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The HMM: Large Vocabulary

e 5 00000

@ One HMM per phone.

@ Glue together HMM for each phone in phone sequence.

e Map word sequence to phone sequence using
baseform dictionary.

@ The rain in Spain falls ...
@ DHAX|REYN|IXN|SPEYN|FAALZ]|...
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An Example: Word to HMM

acapulco AEKAXPAHLKOW
acapulco AAKAXPUHKOW

AE AH L
K AX =] K ow

Iy
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An Example: Words to HMMs

[ HMM phone models ] { Lexicon
0 N (\) N \( (\ h e . oz
i et || e S
A o
. g — _
[ Sentence model: 'he is new’

b e |z n j u w
N R
start end

09
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An Example: Word to HMM to GMMs

A set of arcs in a Markov model are tied to one another if they
are constrained to have identical output distributions

E phone
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Now, in this example . ..

@ The rain in Spain falls . . .

@ DHAX|REYN|IXN|SPEYN|FAALZ]...

Is phone 2 positions
to the left a voweI
yes
{P EY N}, {R, EY, N},
{IX N}

Is phone 1 position
to the left a long vowel

no yes
{I XN} {P EY N}, {R,EY, N}

Is phone 1 position Is phone 2 positions
to the left a boundary phone to the left a plosive

no yes no
{R,EY, N}

: -
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| Still Don’t See What’s Changed

@ HMM topology typically doesn’t change.
@ HMM parameterization changes.
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Parameterization

@ Small vocabulary.
e One GMM per state (three states per phone).
e No sharing between phones in different words.
@ Large vocabulary, context-independent (Cl).
e One GMM per state.
e Tying between phones in different words.
@ Large vocabulary, context-dependent (CD).

e Many GMM’s per state; GMM to use depends on
phonetic context.
e Tying between phones in different words.
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Context-Dependent Parameterization

@ Each phone HMM state has its own decision tree.
e Decision tree asks questions about phonetic context.
(Why?)
e One GMM per leaf in the tree. (Up to 200+ leaves/tree.)
@ How will tree for first state of a phone tend to differ . ..
e From tree for last state of a phone?
@ Terminology.

e triphone model — +1 phones of context.
e quinphone model — +2 phones of context.
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Example of Tying

I i 5
A
Q
=

ik X 5 00 -
z <FLIg =

ol

A%

=

smuenmgIEN
<m =

Lo~ LWN 2O

=
=

@ Examples of “0” will affect models for “3” and “4”
@ Useful in large vocabulary systems (why?)
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A Real-Life Tree

In practice:

@ These trees are built on one-third of a phone, i.e., the three
states of the HMM for a phone correspond to the beginning,
middle and end of a phone.

@ Context-independent versions
@ Context-dependent versions
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Another Sample Tree

AA-b-0

[-2=Voice]

AA-b-2 AAb1
[-1=SIL]

/ &,\5 GMMAAbO
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@ System description:
e 1000 words in lexicon; average word length = 5 phones.
e There are 50 phones; each phone HMM has three
states.
e Each decision tree contains 100 leaves on average.
@ How many GMM’s are there in:
e A small vocabulary system (word models)?
e A Cl large vocabulary system?
e A CD large vocabulary system?
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Context-Dependent Phone Models

@ Typical model sizes:

GMM’s/
type HMM state | GMM’s | Gaussians
word per word 1 10-500 | 10010k
Cl phone | per phone 1 ~150 1k—3k
CD phone || per phone | 1-200 | 1k—10k | 10k—300k

@ 39-dimensional feature vectors = ~80
parameters/Gaussian.

@ Big models can have tens of millions of parameters.
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Any Questions?

SR SR N A £ T R R R R S

OO0 O0-0O0-O0~0-0-0

@ Given a word sequence, you should understand how to ...

e Layout the corresponding HMM topology.
e Determine which GMM to use at each state, for Cl and
CD models.
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What About Transition Probabilities?

@ This slide only included for completeness.
@ Small vocabulary.

e One set of transition probabilities per state.
e No sharing between phones in different words.

@ Large vocabulary.

e One set of transition probabilities per state.
e Sharing between phones in different words.

@ What about context-dependent transition modeling?
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@ Main difference between small vocabulary and large
vocabulary:
e Allocation of GMM’s.
e Sharing GMM’s between words: needs less GMM’s.
e Modeling context-dependence: needs more GMM’s.
e Hybrid allocation is possible.

@ Training and decoding for LVCSR.

e In theory, any reason why small vocabulary techniques
won’t work?
e In practice, yikes!
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Points to Ponder

@ Why deterministic mapping?

e DID YOU = D IH D JH UW

e The area of pronunciation modeling.
@ Why decision trees?

e Unsupervised clustering.
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Part Il

Acoustic Model Training for LVCSR
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Small Vocabulary Training — Lab 2

@ Phase 1: Collect underpants.
e Initialize all Gaussian means to 0, variances to 1.
@ Phase 2: lterate over training data.

e For each word, train associated word HMM . ..
e On all samples of that word in the training data . ..
e Using the Forward-Backward algorithm.

@ Phase 3: Profit!
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Large Vocabulary Training

@ What’s changed going to LVCSR?
e Same HMM topology; just more Gaussians and GMM’s.
@ Can we just use the same training algorithm as before?
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Where Are We?

0 The Local Minima Problem
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Flat or Random Start

@ Why does this work for small models?

e We believe there’s a huge global minimum ...

e In the “middle” of the parameter search space.

e With a neutral starting point, we're apt to fall into it.
e (Who knows if this is actually true.)

@ Why doesn’t this work for large models?
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Training a Mixture of Two 2-D Gaussians

o Flat start?
o Initialize mean of each Gaussian to 0, variance to 1.
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Training a Mixture of Two 2-D Gaussians

@ Random seeding?
e Picked 8 random starting points = 3 different optima.
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Training Hidden Models

@ (MLE) training of models with hidden variables has local
minima.
@ What are the hidden variables in ASR?

e ji.e., what variables are in our model ...
e That are not observed.
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How To Spot Hidden Variables

D PL(X,A) =D aP.(A) x P,(X|A)  (14)
A

=~ maxP,(A) x P,(x|A) (15)
T T
= max H P(a) H P(X/ar) (16)
logP.(x) = max Z log P(a;) + Zlog P(Xla)| (17)
t=1
P(Yt|at) = %:1/\a,,m H N(Xt,d; Hap,m,ds Ua,,m,d) (18)

dim d
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Gradient Descent and Local Minima

@ EM training does hill-climbing/gradient descent.
e Finds “nearest” optimum to where you started.

likelihood

parameter values
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What To Do?

@ Insight: If we know the “correct” hidden values for a model:
e e.g., which arc and which Gaussian for each frame . ..
e Training is easy! (No local minima.)
e Remember Viterbi training given fixed alignment in Lab
2.
@ Is there a way to guess the correct hidden values for a large
model?
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Bootstrapping Alignments

@ Recall that all of our acoustic models, from simple to
complex:
e Generally use the same HMM topology!
o (All that differs is how we assign GMM’s to each arc.)
@ Given an alignment (from arc/phone states to frames) for
simple model ...

e ltis straightforward to compute analogous alignment for
complex model!
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Bootstrapping Big Models From Small

@ Recipe:

e Start with model simple enough that flat start works.
e lteratively build more and more complex models ...
e By using last model to seed hidden values for next.

@ Need to come up with sequence of successively more
complex models ...

o With related hidden structure.
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How To Seed Next Model From Last

@ Directly via hidden values, e.g., alignment.

e e.g., single-pass retraining.

e Can be used between very different models.
@ Via parameters.

e Seed parameters in complex model so that ...

o Initially, will yield same/similar alignment as in simple
model.

e e.g., moving from Cl to CD GMM’s.
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Bootstrapping Big Models From Small

@ Recurring motif in acoustic model training.
@ The reason why state-of-the-art systems ...

e Require many, many training passes, as you will see.
@ Recipes handed down through the generations.

e Discovered via sweat and tears.

e Art, not science.

e But no one believes these find global optima . ..
e Even for small problems.
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Overview of Training Process

@ Build Cl single Gaussian model from flat start.

@ Use ClI single Gaussian model to seed CI GMM model.

@ Build phonetic decision tree (using Cl GMM model to help).
@ Use Cl GMM model to seed CD GMM model.
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Where Are We?

@ Training GMM's
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Case Study: Training a GMM

@ Recursive mixture splitting.
e A sequence of successively more complex models.
e Perturb means in opposite directions; same variance;
Train.
o (Discard Gaussians with insufficient counts.)
@ k-means clustering.
e Seed means in one shot.
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Mixture Splitting Example

@ Split each Gaussian in two (£0.2 x ¢)
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Applying Mixture Splitting in ASR

@ Recipe:
e Start with model with 1-component GMM’s (& la Lab 2).
e Split Gaussians in each output distribution
simultaneously.
e Do many iterations of FB.
o Repeat.
@ Real-life numbers:
e Five splits spread within 30 iterations of FB.
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Another Way: Automatic Clustering

@ Use unsupervised clustering algorithm to find clusters
(k-Means Clustering)
@ Given clusters . ..

e Use cluster centers to seed Gaussian means.
e FB training.
o (Discard Gaussians with insufficient counts.)
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k-Means Clustering

@ Select desired number of clusters k.
@ Choose k data points randomly.
e Use these as initial cluster centers.
@ “Assign” each data point to nearest cluster center.
@ Recompute each cluster center as ...
e Mean of data points “assigned” to it.
@ Repeat until convergence.
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k-Means Example

@ Pick random cluster centers; assign points to nearest
center.
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k-Means Example

@ Use centers as means of Gaussians; train, yep.
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The Final Mixtures, Splitting vs. k-Means
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Technical Aside: k-Means Clustering

@ When using Euclidean distance ...
@ k-means clustering is equivalent to ...

e Seeding Gaussian means with the k initial centers.
e Doing Viterbi EM update, keeping variances constant.
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Applying k-Means Clustering in ASR

@ To train each GMM, use k-means clustering ...

e On what data? Which frames?
@ Huh?

e How to decide which frames align to each GMM?
@ This issue is evaded for mixture splitting.

e Can we avoid it here?
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Forced Alignment

@ Viterbi algorithm.
e Finds most likely alignment of HMM to data.

P1(x) P2(x) P3(x) P4(x) P5(x) P6(x)

Zs P1(x) g } P2(x) g } P3(x) g } P4(x) g } P5(x) g } P6(x) (Q)

frame || O 1 2 /3|4 5,6 |7 |8|9 /10|11 |12
arc P1 P1 P1 P2 P3 P4 P4 P5 P5 P5 P5 P6 Pe

@ Need existing model to create alignment. (Which?)
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@ You can use single Gaussian models to seed GMM models.

e Mixture splitting: use c-component GMM to seed
2c-component GMM.
e k-means: use single Gaussian model to find alignment.

@ Both of these techniques work about the same.
e Nowadays, we primarily use mixture splitting.

62/96



Where Are We?

e Building Phonetic Decision Trees

63/96



What Do We Need?

@ For each tree/phone state . ..

o List of frames/feature vectors associated with that tree.

e (This is the data we are optimizing the likelihood of.)

e For each frame, the phonetic context.

@ A list of candidate questions about the phonetic context.

e Ask about phonetic concepts; e.g., vowel or
consonant?

e Expressed as list of phones in set.

e Allow same questions to be asked about each phone
position.

e Handed down through the generations.
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Training Data for Decision Trees

@ Forced alignment/Viterbi decoding!

@ Where do we get the model to align with?
e Use Cl phone model or other pre-existing model.
SN A R S R

frame || O 1 2 3 |4 (56|78 9
arc DHy | DHo | AHy | AHo | D1 | D1 | Do | Do | Do | AOq
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Building the Tree

@ A set of events {(X;, p., pr)} (possibly subsampled).
@ Given current tree:

e Choose question of the form . ..

e “Does the phone in position j belong to the setq?” ...
e That optimizes [, P(Xi|leaf(p., pg)) ...

e Where we model each leaf using a single Gaussian.

@ Can efficiently build whole level of tree in single pass.
@ See Lecture 6 slides and readings for the gory details.
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Seeding the Context-Dependent GMM’s

@ Context-independent GMM’s: one GMM per phone state.
@ Context-dependent GMM’s: | GMM’s per phone state.
@ How to seed context-dependent GMM’s?

e e.g., so that initial alignment matches Cl alignment?
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Where Are We?

0 Details
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Where Are We?

@ Maximum Likelihood Training?
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The Original Story, Small Vocabulary

@ One HMM for each word; flat start.
@ Collect all examples of each word.

e Run FB on those examples to do maximum likelihood
training of that HMM.
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The New Story

@ One HMM for each word sequence!?
e But tie parameters across HMM’s!
@ Do complex multi-phase training.

@ Are we still doing anything resembling maximum likelihood
training?
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Maximum Likelihood Training?

@ Regular training iterations (FB, Viterbi EM).
e Increase (Viterbi) likelihood of data.

@ Seeding last model from next model.
e Mixture splitting.
e Cl = CD models.

@ (Decision-tree building.)
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Maximum Likelihood Training?

@ Just as LM’s need to be smoothed or regularized.
e So do acoustic models.
e Prevent extreme likelihood values (e.g., 0 or c0).
@ ML training maximizes training data likelihood.
e We actually want to optimize test data likelihood.
e Let’s call the difference the overfitting penalty.
@ The overfitting penalty tends to increase as ...

e The number of parameters increase and/or ...
e Parameter magnitudes increase.
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Regularization/Capacity Control

@ Limit size of model.
e Will training likelihood continue to increase as model
grows?
e Limit components per GMM.
e Limit number of leaves in decision tree, i.e., number of
GMM’s.
@ Variance flooring.
e Don't let variances go to 0 = infinite likelihood.
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Where Are We?

@ Viterbi vs. Non-Viterbi Training
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Two Types of Updates

@ “Full” EM.
e Compute true posterior of each hidden configuration.
@ Viterbi EM.

e Use Viterbi algorithm to find most likely hidden
configuration.
e Assign posterior of 1 to this configuration.

@ Both are valid updates; instances of generalized EM.
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@ Training GMM’s.

e Mixture splitting vs. k-means clustering.
@ Training HMM’s.

e Forward-backward vs. Viterbi EM (Lab 2).
@ Everywhere you do a forced alignment.

e Refining the reference transcript.
e What is non-Viterbi version of decision-tree building?
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When To Use One or the Other?

@ Which version is more expensive computationally?
e Optimization: need not realign every iteration.

@ Which version finds better minima?

@ If posteriors are very sharp, they do almost the same thing.
e Remember example posteriors in Lab 27

@ Rule of thumb:

e When you're first training a “new” model, use full EM.
e Once you're “locked in” to an optimum, Viterbi is fine.
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Where Are We?

@ Graph Building
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Building HMM'’s For Training

@ When doing Forward-Backward on an utterance ...

e We need the HMM corresponding to the reference
transcript.

@ Can we use the same techniques as for small vocabularies?
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Word Models

@ Reference transcript

O THE O DOG @

@ Replace each word with its HMM
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Context-Independent Phone Models

@ Reference transcript

Q THE O DOG @

@ Pronunciation dictionary.
e Maps each word to a sequence of phonemes.

QDHOAHODOAOOG@

@ Replace each phone with its HMM
S RS, R, R R T o D A R B S

OO OO OO ONORONe
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Context-Dependent Phone Models
O THE O DOG @
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The Pronunciation Dictionary

@ Need pronunciation of every word in training data.
e Including pronunciation variants
THE(O01) DH AH
THE(02) DH IY

e Listen to data?
e Use automatic spelling-to-sound models?

@ Why not consider multiple baseforms/word for word
models?
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But Wait, It's More Complicated Than That!

@ Reference transcripts are created by humans ...
e Who, by their nature, are human (i.e., fallible)
@ Typical transcripts don’t contain everything an ASR system
wants.

e Where silence occurred; noises like coughs, door
slams, etc.

e Pronunciation information, e.g., was THE pronounced
asDH UHOrDH IY?
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Pronunciation Variants, Silence, and Stuff

@ How can we produce a more “complete” reference
transcript?
@ Viterbi decoding!
e Build HMM accepting all word (HMM) sequences
consistent with reference transcript.
e Compute best path/word HMM sequence.

e Where does this initial acoustic model come from?

SIL(01) ~SIL(01) DOG(OL) ~SIL(01

THE(01) DOG(02) Q
THE(02) DOG(03)

Q ~SILO1) _/~ \ THEOD _/ \ DOG©02 _/ \ -~SILOD) Q
N / N
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Another Way

@ Just use the whole expanded graph during training.

SIL(01) ~SIL(01) DOG(O1) ~SIL(O1.
THE(OD) DOG(02) ;O
THE(02) DOG(03)
@ The problem: how to do context-dependent phone

expansion?
e Use same techniques as in building graphs for
decoding.
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Where Are We?

© The Final Recipe
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@ Audio data with reference transcripts.
@ What two other things?
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The Training Recipe

@ Find/make baseforms for all words in reference transcripts.
@ Train single Gaussian models (flat start; many iters of FB).
@ Do mixture splitting, say.

e Split each Gaussian in two; do many iterations of FB.
e Repeat until desired number of Gaussians per mixture.

@ (Use initial system to refine reference transcripts.)

e Select pronunciation variants, where silence occurs.
e Do more FB training given refined transcripts.

@ Build phonetic decision tree.
e Use Cl model to align training data.

@ Seed CD model from ClI; train using FB or Viterbi EM.
e Possibly doing more mixture splitting.
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How Long Does Training Take?

@ It's a secret.
@ We think in terms of real-time factor.

e How many hours does it take to process one hour of
speech?
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Whew, That Was Pretty Complicated!

@ Adaptation (VTLN, fMLLR, mMLLR)

@ Discriminative training (LDA, MMI, MPE, fMPE)
@ Model combination (cross adaptation, ROVER)
@ lteration.

o Repeat steps using better model for seeding.
e Alignment is only as good as model that created it.
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Things Can Get Pretty Hairy

X 45.9% Eval’98 WER (SWB only)
MFCC-SI 38.4% Eval’01 WER

PLP

MFCC

41.6%

42.6%

35.6% 343%
‘ MMI-SAT ‘38'5% ‘ML-SAT-L ‘ 3% ML SAT ‘ ‘ MMI-SAT ‘37'7% ‘ML»SAT-L ‘ 387% ML SAT
316% 32.19%) 30.9% 31.9%
38.1% 38.7% 36.7% 37.9%
‘MMI—AD ‘ bt ‘ML—AD—L ‘ %l ML-AD ‘ ‘MMI—AD ‘ b ‘ML—AD—L ‘ el ML-AD
T00-best )| 37.1% T00-best ) 38.1% T00-best )35.9% T00-best )| 36.9%
rescoring ) 30.1% rescoring ) 30.5%) rescoring ) 29.5%| rescoring ) 30.1%)

4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram
rescoring J | rescoring | _rescoring ] | rescoring J | rescoring rescoring J | rescoring | _rescoring ] | rescoring J | rescoring

J

I S B

onsensus ‘ } « | « } onsensus onsensus| (Consensus } k: } F- }
36.5% 38.1% 372% 35.5% 352% 37.7% 36.3%
29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%

34.0%
27.8%




Recap: Acoustic Model Training for LVCSR

@ Take-home messages.

e Hidden model training is fraught with local minima.

e Seeding more complex models with simpler models
helps avoid terrible local minima.

e People have developed many recipes/heuristics to try
to improve the minimum you end up in.

e Training is insanely complicated for state-of-the-art
research models.

@ The good news ...

e | just saved a bunch on money on my car insurance by
switching to GEICO.
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@ Part I: The LVCSR acoustic model.
@ Part Il: Acoustic model training for LVCSR.
@ Part lll: Decoding for LVCSR (inefficient).
e Part IV: Introduction to finite-state transducers.
@ Part V: Search (Lecture 8).
e Making decoding for LVCSR efficient.
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Course Feedback

@ Was this lecture mostly clear or unclear? What was the
muddiest topic?

@ Other feedback (pace, content, atmosphere)?
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