Review to date

- Learned about features (MFCCs, etc.)
- Learned about Gaussian Mixture Models
- Learned about HMMs and basic operations (finding best path, training models)
- Learned about basic Language modeling.
Where Are We?

1. How to Model Pronunciation Using HMM Topologies

2. Modeling Context Dependence via Decision Trees
How to Model Pronunciation Using HMM Topologies

- Whole Word Models
- Phonetic Models
- Context-Dependence
In the beginning...

- ... was the whole word model.
- For each word in the vocabulary, decide on an HMM structure.
- Often the number of states in the model is chosen to be proportional to the number of phonemes in the word.
- Train the HMM parameters for a given word using examples of that word in the training data.
- Good domain for this approach: digits.
Example topologies: Digits

- Vocabulary consists of ("zero", "oh", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine").
- Assume we assign two states per phoneme.
- Models look like:
 - "zero".
 - "oh".
How to represent any sequence of digits?
“911”
Whole-word model limitations

- The whole-word model suffers from two main problems.
 - Cannot model unseen words. In fact, we need several samples of each word to train the models properly.
 - Cannot share data among models – data sparseness problem.
 - The number of parameters in the system is proportional to the vocabulary size.
- Thus, whole-word models are best on small vocabulary tasks with lots of data per word.
 - n.b. as the amount of public speech data continues to increase this wisdom may be thrown into question.
How to Model Pronunciation Using HMM Topologies

- Whole Word Models
- Phonetic Models
- Context-Dependence
To reduce the number of parameters, we can compose word models from sub-word units.

These units can be shared among words. Examples include:

<table>
<thead>
<tr>
<th>Units</th>
<th>Approximate number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phones</td>
<td>50.</td>
</tr>
<tr>
<td>Diphones</td>
<td>2000.</td>
</tr>
<tr>
<td>Syllables</td>
<td>5,000.</td>
</tr>
</tbody>
</table>

Each unit is small in terms of amount of speech modeled.

The number of parameters is proportional to the number of units (not the number of words in the vocabulary as in whole-word models.).
Phonetic Models

- We represent each word as a sequence of phonemes. This representation is the “baseform” for the word.

 \[
 \text{BANDS} \rightarrow B \ AE \ N \ D \ Z
 \]

- Some words need more than one baseform.

 \[
 \text{THE} \rightarrow DH \ UH
 \rightarrow DH \ IY
 \]
Baseform Dictionary

- To determine the pronunciation of each word, we look it up in a dictionary.
- Each word may have several possible pronunciations.
- Every word in our training script and test vocabulary must be in the dictionary.
- The dictionary is generally written by hand.
- Prone to errors and inconsistencies.
We can allow for a wide variety of phonological variation by representing baseforms as graphs.
Now, construct a Markov model for each phone.
Examples:
Embedding

- Replace each phone by its Markov model to get a model for the entire word

acapulco AE K AX P AH L K OW
acapulco AA K AX P UH K OW
Reducing Parameters by Tying

- Consider the three-state model.

- Note that.
 - t_1 and t_2 correspond to the beginning of the phone.
 - t_3 and t_4 correspond to the middle of the phone.
 - t_5 and t_6 correspond to the end of the phone.

- If we force the output distributions for each member of those pairs to be the same, then the training data requirements are reduced.
Tying

- A set of arcs in a Markov model are tied to one another if they are constrained to have identical output distributions.
- Similarly, states are tied if they have identical transition probabilities.
- Tying can be explicit or implicit.
Implicit Tying

- Occurs when we build up models for larger units from models of smaller units.
- Example: when word models are made from phone models.
 - First, consider an example without any tying.
 - Let the vocabulary consist of digits 0, 1, 2, ..., 9.
- We can make a separate model for each word.
- To estimate parameters for each word model, we need several samples for each word.
- Samples of “0” affect only parameters for the “0” model.
Now consider phone-based models for this vocabulary.

Training samples of “0” will also affect models for “3” and “4”.

Useful in large vocabulary systems where the number of words is much greater than the number of phones.
Explicit Tying

- Example:

6 non-null arcs, but only 3 different output distributions because of tying.
- Number of model parameters is reduced.
- Tying saves storage because only one copy of each distribution is saved.
- Fewer parameters mean less training data needed.
Where Are We?

1 How to Model Pronunciation Using HMM Topologies

- Whole Word Models
- Phonetic Models
- Context-Dependence
Variations in realizations of phonemes

The broad units, phonemes, have variants known as allophones

- Example: p and p^h (un-aspirated and aspirated p).
- Exercise: Put your hand in front of your mouth and pronounce *spin* and then *pin*. Note that the p in *pin* has a puff of air, while the p in *spin* does not.
Articulators have inertia, thus the pronunciation of a phoneme is influenced by surrounding phonemes. This is known as **co-articulation**

Example: Consider k in different contexts.

- In *keep* the whole body of the tongue has to be pulled up to make the vowel.
- Closure of the k moves forward compared to *coop*
keep
Phoneme Targets

Phonemes have idealized articulator target positions that may or may not be reached in a particular utterance.

- Speaking rate
- Clarity of articulation

Inherent variability of Speech biggest challenge

How do we model all this variation?
Triphone models

- Model each phoneme in the context of its left and right neighbor.

- E.g. K/Y_P is a model for I/Y when K is its left context phoneme and P is its right context phoneme.
 - "keep" $\rightarrow K/I/Y/P \rightarrow wbK/I/YK/I/YP/I/YPwb$

- If we have 50 phonemes in a language, we could have as many as 50^3 triphones to model.

- Not all of these occur, or only occur a few times. Why is this bad?

- Suggestion: Combine similar triphones together
 - For example, map K/Y_P and $K/I/Y_F$ to common model
"Bottom-up" (Agglomerative) Clustering

- Start with each item in a cluster by itself.
- Find “closest” pair of items.
- Merge them into a single cluster.
- Iterate.
Triphone Clustering

- Helps with data sparsity issue
- BUT still have an issue with unseen data
- To model unseen events, we can “back-off” to lower order models such as bi-phones and uni-phones. But this is still sort of ugly.
- So instead, we use **Decision Trees** to deal with the sparse/unknown data problem.
Where Are We?

1. How to Model Pronunciation Using HMM Topologies

2. Modeling Context Dependence via Decision Trees
Modeling Context Dependence via Decision Trees

- Decision Tree Overview
- Letter-to-Sound Example
- Basics of Tree Construction
- Criterion Function
- Details of Context Dependent Modeling
TREES
by Joyce Kilmer

I think that I shall never see
A poem lovely as a tree.

A tree whose hungry mouth is prest
Against the earth's sweet flowing breast;

A tree that looks at God all day,
And lifts her leafy arms to pray;

A tree that may in summer wear
A nest of robins in her hair;

Upon whose bosom snow has lain;
Who intimately lives with rain.

Poems are made by fools like me,
But only God can make a tree.
OK. What’s a decision tree?
Types of Features

- **Nominal or categorical**: Finite set without any natural ordering (e.g., occupation, marital status, race).
- **Ordinal**: Ordered, but absolute differences between values is unknown (e.g., preference scale, severity of an injury).
- **Numerical**: Domain is numerically ordered (e.g., age, income).
Types of Outputs

- Categorical: Output is one of N classes
 - Diagnosis: Predict disease from symptoms
 - Language Modeling: Predict next word from previous words in the sentence
 - Spelling to sound rules: Predict phone from spelling

- Continuous: Output is a continuous vector
 - Allophonic variation: Predict spectral characteristics from phone context
Modeling Context Dependence via Decision Trees

- Decision Tree Overview
- Letter-to-Sound Example
- Basics of Tree Construction
- Criterion Function
- Details of Context Dependent Modeling
Let’s say we want to build a tree to decide how the letter “p” will sound in various words.

Training examples:

\[
\begin{align*}
\text{p} & \quad \text{loophole peanuts pay apple} \\
\text{f} & \quad \text{physics telephone graph photo} \\
\phi & \quad \text{apple psycho pterodactyl pneumonia}
\end{align*}
\]

The pronunciation of “p” depends on its letter context.

Task: Using the above training data, devise a series of questions about the letters to partition the letter contexts into equivalence classes to minimize the uncertainty of the pronunciation.
Denote the context as \(\ldots L_2 L_1 p R_1 R_2 \ldots \).

Ask potentially useful question: \(R_1 = "h" \)?

At this point we have two equivalence classes: 1. \(R_1 = "h" \) and 2. \(R_1 \neq "h" \).

The pronunciation of class 1 is either “p” or “f”, with “f” much more likely than “p”.

The pronunciation of class 2 is either “p” or "\(\phi \)".
Four equivalence classes. Uncertainty only remains in class 3.
Five equivalence classes, which is much less than enumerating each of the possibilities. No uncertainty left in the classes.

A node without children is called a **leaf**. Otherwise it is called an **internal node**
Test Case: Paris
Although effective on the training data, this tree does not generalize well. It was constructed from too little data.
Modeling Context Dependence via Decision Trees

- Decision Tree Overview
- Letter-to-Sound Example
- Basics of Tree Construction
- Criterion Function
- Details of Context Dependent Modeling
Decision Tree Construction

How to Grow a Tree

1. Find the best question for partitioning the data at a given node into 2 equivalence classes.
2. Repeat step 1 recursively on each child node.
3. Stop when there is insufficient data to continue or when the best question is not sufficiently helpful.

- Previous example - picked questions "out of the air"
- Need more principled way to choose questions
Basic Issues to Solve

- How do we determine the best question at a node?
 - Nature of questions to be asked (next 10-15 slides or so)
 - Criterion for deciding between questions (the next set of slides after that)
- When to declare a node terminal or to continue splitting (the final part of the lecture)
Decision Tree Construction – Fundamental Operation

- There is only 1 fundamental operation in tree construction:
 - Find the best question for partitioning a subset of the data into two smaller subsets.
 - i.e. Take a node of the tree and split it (and the data at the node) into 2 more-specific classes.
Tree construction proceeds from the top down – from root to leaf.

Each split is locally optimal.

Constructing a tree in this “greedy” fashion usually leads to a good tree, but probably not globally optimal.

Finding the globally optimal tree is an NP-complete problem: it is not practical.

n.b.: nor does it probably matter.....
At each internal node, ask a question.
- Goal is to split data into two "purer" pieces.

Example questions:
- Age <= 20 (numeric).
- Profession in (student, teacher) (categorical).
- $5000 \times \text{Age} + 3 \times \text{Salary} - 10000 > 0$ (function of raw features).
Dynamic Questions

- The best question to ask at a node about some discrete variable x consists of the subset of the values taken by x that best splits the data.
- Search over all subsets of values taken by x. (This means generating questions on the fly during tree construction.)

$x \in \{A, B, C\}$

Q1: $x \in \{A\}$? Q2: $x \in \{B\}$? Q3: $x \in \{C\}$?
Q4: $x \in \{A, B\}$? Q5: $x \in \{A, C\}$? Q6: $x \in \{B, C\}$?

- Use the best question found.
- Potential problems:
 - Requires a lot of CPU. For alphabet size A there are $\sum_j \binom{A}{j}$ questions.
 - Allows a lot of freedom, making it easy to overtrain.
Pre-determined Questions

- The easiest way to construct a decision tree is to create in advance a list of possible questions for each variable.
- Finding the best question at any given node consists of subjecting all relevant variables to each of the questions, and picking the best combination of variable and question.
- In acoustic modeling, we typically ask about 2-4 variables: the 1-2 phones to the left of the current phone and the 1-2 phones to the right of the current phone. Since these variables all span the same alphabet (phone alphabet) only one list of questions is needed.
 - Each question on this list consists of a subset of the phonetic phone alphabet.
Sample Questions

<table>
<thead>
<tr>
<th>Phones</th>
<th>Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>{P}</td>
<td>{A}</td>
</tr>
<tr>
<td>{T}</td>
<td>{E}</td>
</tr>
<tr>
<td>{K}</td>
<td>{I}</td>
</tr>
<tr>
<td>{B}</td>
<td>{O}</td>
</tr>
<tr>
<td>{D}</td>
<td>{U}</td>
</tr>
<tr>
<td>{G}</td>
<td>{Y}</td>
</tr>
<tr>
<td>{P,T,K}</td>
<td>{A,E,I,O,U}</td>
</tr>
<tr>
<td>{B,D,G}</td>
<td>{A,E,I,O,U,Y}</td>
</tr>
<tr>
<td>{P,T,K,B,D,G}</td>
<td>{A,E,I,O,U,Y}</td>
</tr>
</tbody>
</table>
A decision tree has a question associated with every
non-terminal node.

If x is a discrete variable which takes on values in some
finite alphabet A, then a question about x has the form:
$x \in S$? where S is a subset of A.

- Let L denote the preceding letter in building a
 spelling-to-sound tree. Let $S=\{A,E,I,O,U\}$. Then $L \in S$?
 denotes the question: Is the preceding letter a vowel?

- Let R denote the following phone in building an acoustic
 context tree. Let $S=\{P,T,K\}$. Then $R \in S$? denotes the
 question: Is the following phone an unvoiced stop?
Continuous Questions

- If x is a continuous variable which takes on real values, a question about x has the form $x < q$? where q is some real value.
- In order to find the threshold q, we must try values which separate all training samples.

We do not currently use continuous questions for speech recognition.
Types of Questions

- In principle, a question asked in a decision tree can have any number (greater than 1) of possible outcomes.

 Examples:
 - Binary: Yes No.
 - 3 Outcomes: Yes No Don’t_Know.
 - 26 Outcomes A B C ... Z

- In the case of determining speech recognition allophonic variation, only binary questions are used to build decision trees.
Simple Binary Question

- A simple binary question consists of a single Boolean condition, and no Boolean operators.
- $X_1 \in S_1$? Is a simple question.
- $((X_1 \in S_1) \&\&(X_2 \in S_2))$? is not a simple question.
- Topologically, a simple question looks like:
A complex binary question has precisely 2 outcomes (yes, no) but has more than 1 Boolean condition and at least 1 Boolean operator.

\((X_1 \in S_1) \&\& (X_2 \in S_2) \) ? Is a complex question.

Topologically this question can be shown as:

All complex binary questions can be represented as binary trees with terminal nodes tied to produce 2 outcomes.
Modeling Context Dependence via Decision Trees

- Decision Tree Overview
- Letter-to-Sound Example
- Basics of Tree Construction
- Criterion Function
- Details of Context Dependent Modeling
Configurations Currently Used

- All decision trees currently used for determining allophonic variation in speech recognition use:
 - a **pre-determined set**
 - of **simple**, **binary** questions.
 - on **discrete** variables.
Let $x_1 \ldots x_n$ denote n discrete variables whose values may be asked about. Let Q_{ij} denote the jth pre-determined question for x_i.

Starting at the root, try splitting each node into 2 sub-nodes:

1. For each x_i evaluate questions Q_{i1}, Q_{i2}, \ldots and let Q'_i denote the best.
2. Find the best pair x_i, Q'_i and denote it x', Q'.
3. If Q' is not sufficiently helpful, make the current node a leaf.
4. Otherwise, split the current node into 2 new sub-nodes according to the answer of question Q' on variable x'.

Stop when all nodes are either too small to split further or have been marked as leaves.
The best question at a node is the question which maximizes the likelihood of the training data at that node after applying the question.
For simplicity, assume the output is a single discrete variable x with M outcomes (e.g., illnesses, pronunciations, etc.)

Let x^1, x^2, \ldots, x^N be the data samples

Let each of the M outcomes occur c_j times in the overall sample, $j = 1 \ldots M$

Let Q_i be a question which partitions this sample into left and right sub-samples of sizes $N = n^l + n^r$.

Let c^l_j, c^r_j denote the frequency of the jth outcome in the left and right sub-samples, $n^l = \sum_j c^l_j, n^r = \sum_j c^r_j$

The best question Q' for is defined to be the one which maximizes the conditional (log) likelihood of the combined sub-samples.
The likelihood of the data, given that we ask question Q

\[
L(x^1, \ldots, x^N | Q) = \prod_{j=1}^{M} (p_j^l)^{c_j^l} \prod_{j=1}^{M} (p_j^r)^{c_j^r}
\]

\[
\log L(x^1, \ldots, x^N | Q) = \sum_{j=1}^{M} c_j^l \log p_j^l + \sum_{j=1}^{M} c_j^r \log p_j^r
\]

The above assumes we know the "true" probabilities \(p_j^l, p_j^r \)
Using the maximum likelihood estimates of p^l_j, p^r_j gives:

$$
\log L(x^1, \ldots, x^N|Q) = \sum_{j=1}^{M} c_j^l \log \frac{c_j^l}{n^l} + \sum_{j=1}^{M} c_j^r \log \frac{c_j^r}{n^r}
$$

$$
= \sum_{j=1}^{M} c_j^l \log c_j^l - \log n^l \sum_{j=1}^{M} c_j^l + \sum_{j=1}^{M} c_j^r \log c_j^r - \log n^r \sum_{j=1}^{M} c_j^r
$$

$$
= \sum_{j=1}^{M} \{c_j^l \log c_j^l + c_j^r \log c_j^r\} - n^l \log n^l - n^r \log n^r
$$

The best question is the one which maximizes this simple expression. c_j^l, c_j^r, n^l, n^r are all non-negative integers.

The above expression can be computed very efficiently using a precomputed table of $n \log n$ for non-negative integers n.
Free energy and entropy were swirling in his brain,
With partial differentials and Greek letters in their train,
For Delta, Sigma, Gamma, Theta, Epsilon, and Pi’s,
Were driving him distracted as they danced before his eyes.

Chorus: Glory, Glory, dear old Thermo,
Glory, Glory, dear old Thermo,
Glory, Glory, dear old Thermo,
It’ll get you by and by.
Let x be a discrete random variable taking values a_1, \ldots, a_M with probabilities p_1, \ldots, p_M respectively.

Define the entropy of the probability distribution $p = (p_1, p_2, \ldots, p_M)$

$$H = - \sum_{i=1}^{M} p_i \log_2 p_i$$

$H = 0 \iff p_j = 1$ for some j and $p_i = 0$ for $i \neq j$

$H \geq 0$

Entropy is maximized when $p_i = 1/M$ for all i. Then $H = \log_2 M$

Thus H tells us something about the sharpness of the distribution p.
What does entropy look like for a binary variable?
Entropy and Likelihood

- Let x be a discrete random variable taking values a_1, \ldots, a_M with probabilities p_1, \ldots, p_M respectively.
- Let x^1, \ldots, x^M be a sample of x in which a_i occurs c_i times.

The sample log likelihood is: \[\log L = \sum_{i=1}^{M} c_i \log p_i \]

The maximum likelihood estimate of p_i is $\hat{p}_i = c_i / N$.

Thus, an estimate of the sample log likelihood is
\[\log \hat{L} = \sum_{i=1}^{M} N\hat{p}_i \log_2 \hat{p}_i \propto -\hat{H} \]

Therefore, maximizing likelihood \iff minimizing entropy.
Log likelihood of the data at the root node is

\[
\log_2 L(x^1, \ldots, x^{12}) = \sum_{i=1}^{3} c_i \log_2 c_i - N \log_2 N
\]

\[
= 4 \log_2 4 + 4 \log_2 4 + 4 \log_2 4 - 12 \log_2 12 = -19.02
\]

Average entropy at the root node is

\[
H(x^1, \ldots, x^{12}) = -\frac{\log_2 L(x^1, \ldots, x^{12})}{N}
\]

\[
= 19.02/12 = 1.58 \text{ bits}
\]

Let’s now apply the above formula to compare three different questions.
“p” tree revisited: Question A
“p” tree revisited: Question A

Remember formulae for Log likelihood of data:

\[
\sum_{i=1}^{M} \{ c_i^l \log c_i^l + c_i^r \log c_i^r \} - n^l \log n^l - n^r \log n^r
\]

Log likelihood of data after applying question A is:

\[
\log_2 L(x^1, \ldots, x^{12}|Q_A) = \frac{c_p^l}{1} + \frac{c_f^l}{4} + \frac{c_p^r}{3} + \frac{c_f^r}{4} - \frac{n^l}{5} - \frac{n^r}{7} = -10.51
\]

Average entropy of data after applying question A is

\[
H(x^1, \ldots, x^{12}|Q_A) = -\log_2 L(x^1, \ldots, x^{12}|Q_A)/N = 10.51/12 = .87 \text{ bits}
\]

Increase in log likelihood due to question A is -10.51 - (-19.02) = 8.51
Decrease in entropy due to question A is 1.58-.87 = .71 bits

Knowing the answer to question A provides 0.71 bits of information about the pronunciation of p. A further 0.87 bits of information is still required to remove all the uncertainty about the pronunciation of p.
“p” tree revisited: Question B

L_1 = \phi?

Y

\text{peanut} \quad \text{physics} \quad \text{psycho}
\text{pay} \quad \text{photo} \quad \text{pterodactyl}
\text{pneumonia}

N

\text{loophole} \quad \text{telephone}
\text{apple}
\text{graph}

n_l = 7
\begin{align*}
&c_p = 2 \\
&c_f = 2 \\
&c_\phi = 3
\end{align*}

n_r = 5
\begin{align*}
&c_p' = 2 \\
&c_f' = 2 \\
&c_\phi' = 1
\end{align*}
“p” tree revisited: Question B

Log likelihood of data after applying question B is:

\[\log_2 L(x^1, \ldots, x^{12}|Q_B) = 2 \log_2 2 + 2 \log_2 2 + 3 \log_2 3 + 2 \log_2 2 + 2 \log_2 2 - 7 \log_2 7 - 5 \log_2 5 = -18.51 \]

Average entropy of data after applying question B is

\[H(x^1, \ldots, x^{12}|Q_B) = -\log_2 L(x^1, \ldots, x^{12}|Q_B)/N = 18.51/12 = .87 \text{ bits} \]

Increase in log likelihood due to question B is -18.51 - (-19.02) = .51
Decrease in entropy due to question B is 1.58-1.54 = .04 bits

Knowing the answer to question B provides 0.04 bits of information (very little) about the pronunciation of p.
“p” tree revisited: Question C

L₁ = vowel?

Y N

p loophole apple f telephone graph

p peanut pay f physics photo

φ apple pterodactyl pneumonia

n₁=4

₁=2

₁=2

₁=0

nᵣ=8

ᵣ=2

ᵣ=2

ᵣ=4
Log likelihood of data after applying question C is:

\[\log_2 L(x^1, \ldots, x^{12}|Q_C) = \]
\[2 \log_2 2 + 2 \log_2 2 + 2 \log_2 2 + 2 \log_2 2 + 4 \log_2 4 - 4 \log_2 4 - 8 \log_2 8 = -16.00 \]

Average entropy of data after applying question C is

\[H(x^1, \ldots, x^{12}|Q_C) = -\log_2 L(x^1, \ldots, x^{12}|Q_C)/N = 16/12 = 1.33 \text{ bits} \]

Increase in log likelihood due to question C is \(-16 + 19.02 = 3.02\)
Decrease in entropy due to question C is \(1.58 - 1.33 = .25 \text{ bits}\)

Knowing the answer to question C provides 0.25 bits of information about the pronunciation of p.
Comparison of Questions A, B, C

- Log likelihood of data given question:
 - A -10.51.
 - B -18.51.
 - C -16.00.

- Average entropy (bits) of data given question:
 - A 0.87.
 - B 1.54.
 - C 1.33.

- Gain in information (in bits) due to question:
 - A 0.71.
 - B 0.04.
 - C 0.25.

These measures all say the same thing:
- Question A is best. Question C is 2nd best. Question B is worst.
Where Are We?

2 Modeling Context Dependence via Decision Trees

- Decision Tree Overview
- Letter-to-Sound Example
- Basics of Tree Construction
- Criterion Function
- Details of Context Dependent Modeling
Using Decision Trees to Model Context Dependence in HMMs

Listen closely, this is the whole point of this lecture!

- Remember that the pronunciation of a phone depends on its context.
- Enumeration of all triphones is one option but has problems
- Idea is to use decision trees to group triphones in a top-down manner.
Align training data (feature vectors) against set of phonetic-based HMMs

For each feature vector, tag it with ID of current phone and the phones to left and right.
Using Decision Trees to Model Context Dependence in HMMs

- For each phone, create a decision tree by asking questions about the phones on left and right to maximize likelihood of data.
- Leaves of tree represent context dependent models for that phone.
- During training and recognition, you know the phone and its context (why?) so no problem in identifying the context-dependent models on the fly.
New Problem: dealing with real-valued data

- We grow the tree so as to maximize the likelihood of the training data (as always), but now the training data are real-valued vectors.
- Can’t use the discrete distribution we used for the spelling-to-sound example (why?)
- Instead, estimate the likelihood of the acoustic vectors during tree construction using a diagonal Gaussian model.
Diagonal Gaussian Likelihood

Let $Y = y_1, y_2 \ldots, y_n$ be a sample of independent p-dimensional acoustic vectors arising from a diagonal Gaussian distribution with mean $\vec{\mu}$ and variances $\vec{\sigma}^2$. Then

$$\log L(Y|DG(\vec{\mu}, \vec{\sigma}^2)) = \frac{1}{2} \sum_{i=1}^{n} \left\{ p \log 2\pi + \sum_{j=1}^{p} \log \sigma_j^2 + \sum_{j=1}^{p} \frac{(y_{ij} - \mu_j)^2}{\sigma_j^2} \right\}$$

The maximum likelihood estimates of $\vec{\mu}$ and $\vec{\sigma}^2$ are

$$\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^{n} y_{ij}, j = 1, \ldots, p$$

$$\hat{\sigma}_j^2 = \frac{1}{n} \sum_{i=1}^{n} y_{ij}^2 - \mu_j^2, j = 1, \ldots p$$

Hence, an estimate of $\log L(Y)$ is:

$$\log L(Y|DG(\vec{\mu}, \vec{\sigma}^2)) = \frac{1}{2} \sum_{i=1}^{n} \left\{ p \log 2\pi + \sum_{j=1}^{p} \log \hat{\sigma}_j^2 + \sum_{j=1}^{p} \frac{(y_{ij} - \hat{\mu}_j)^2}{\hat{\sigma}_j^2} \right\}$$
Diagonal Gaussian Likelihood

Now
\[
\sum_{i=1}^{n} \sum_{j=1}^{p} \frac{(y_{ij} - \hat{\mu}_j)^2}{\hat{\sigma}_j^2} = \sum_{j=1}^{p} \frac{1}{\hat{\sigma}_j^2} \sum_{i=1}^{n} (y_{ij}^2) - 2\hat{\mu}_j \sum_{i=1}^{n} y_{ij} + n\hat{\mu}_j^2
\]

\[
= \sum_{j=1}^{p} \frac{1}{\hat{\sigma}_j^2} \left\{ \left(\sum_{i=1}^{n} y_{ij}^2 \right) - n\hat{\mu}_j^2 \right\}
\]

\[
= \sum_{j=1}^{p} \frac{1}{\hat{\sigma}_j^2} n\hat{\sigma}_j^2 = \sum_{j=1}^{p} n
\]

Hence
\[
\log L(Y | DG(\hat{\mu}, \hat{\sigma}^2)) = -1/2 \left\{ \sum_{i=1}^{n} p \log 2\pi + \sum_{i=1}^{n} \sum_{j=1}^{p} \hat{\sigma}_j^2 + \sum_{j=1}^{p} n \right\}
\]

\[
= -1/2 \{ np \log 2\pi + n \sum_{j=1}^{p} \hat{\sigma}_j^2 + np \}
Diagonal Gaussian Splits

- Let Q be a question which partitions Y into left and right sub-samples \(Y_l \) and \(Y_r \), of size \(n_l \) and \(n_r \).
- The best question is the one which maximizes
 \[
 \log L(Y_l) + \log L(Y_r)
 \]
- Using a diagonal Gaussian model.

\[
\log L(Y_l \mid DG(\hat{\mu}_l, \hat{\sigma}_l^2)) + \log L(Y_r \mid DG(\hat{\mu}_r, \hat{\sigma}_r^2))
= -\frac{1}{2} \{ n_l p \log(2\pi) + n_l \sum_{j=1}^{p} \log \hat{\sigma}_{ij}^2 + n_l p \}
+ n_r p \log(2\pi) + n_r \sum_{j=1}^{p} \log \hat{\sigma}_{rj}^2 + n_r p \}
= -\frac{1}{2} \{ np \log(2\pi) + np \} - \frac{1}{2} \{ n_l \sum_{j=1}^{p} \log \hat{\sigma}_{ij}^2 + n_r \sum_{j=1}^{p} \log \hat{\sigma}_{rj}^2 \}
\]
Thus, the best question Q minimizes:

$$D_Q = n_l \sum_{j=1}^{p} \log \hat{\sigma}_{lj}^2 + n_r \sum_{j=1}^{p} \log \hat{\sigma}_{rj}^2$$

Where

$$\hat{\sigma}_{lj}^2 = 1/n_l \sum_{y \in Y_l} y_j^2 - 1/n_l^2 (\sum_{y \in Y_l} y_j)^2$$

$$\hat{\sigma}_{rj}^2 = 1/n_r \sum_{y \in Y_r} y_j^2 - 1/n_r^2 (\sum_{y \in Y_r} y_j)^2$$

D_Q involves little more than summing vector elements and their squares.
How Big a Tree?

- Cross-validation.
 - Measure performance on a held-out data set.
 - Choose the tree size that maximizes the likelihood of the held-out data.
- In practice, simple heuristics seem to work well.
- A decision tree is fully grown when no terminal node can be split.
- Reasons for not splitting a node include:
 - Insufficient data for accurate question evaluation.
 - Best question was not very helpful / did not improve the likelihood significantly.
 - Cannot cope with any more nodes due to CPU/memory limitations.
Recap

- Given a word sequence, we can construct the corresponding Markov model by:
 - Re-writing word string as a sequence of phonemes.
 - Concatenating phonetic models.
 - Using the appropriate tree for each phone to determine which allophone (leaf) is to be used in that context.

- In actuality, we make models for the HMM arcs themselves
 - Follow same process as with phones - align data against the arcs
 - Tag each feature vector with its arc id and phonetic context
 - Create decision tree for each arc.
The rain in Spain falls

Look these words up in the dictionary to get:

DH AX | R EY N | IX N | S P EY N | F AA L Z | ...

Rewrite phones as states according to phonetic model

DH₁ DH₂ DH₃ AX₁ AX₂ AX₃ R₁ R₂ R₃ EY₁ EY₂ EY₃ ...

Using phonetic context, descend decision tree to find leaf sequences

DH₁₋₅ DH₂₋₂₇ DH₃₋₁₄ AX₁₋₅₃ AX₂₋₃₇ AX₃₋₁₁ R₁₋₄₂ R₂₋₄₆

Use the Gaussian mixture model for the appropriate leaf as the observation probabilities for each state in the Hidden Markov Model.
Some Results

<table>
<thead>
<tr>
<th>System</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monophone</td>
<td>5.7</td>
<td>7.3</td>
<td>6.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Triphone</td>
<td>3.7</td>
<td>4.6</td>
<td>4.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Arc-Based DT</td>
<td>3.1</td>
<td>3.8</td>
<td>3.4</td>
<td>6.3</td>
</tr>
</tbody>
</table>

- Word error rates on 4 test sets associated with 1000 word vocabulary (Resource Management) task
Strengths & Weaknesses of Decision Trees

Strengths.
- Easy to generate; simple algorithm.
- Relatively fast to construct.
- Classification is very fast.
- Can achieve good performance on many tasks.

Weaknesses.
- Not always sufficient to learn complex concepts.
- Can be hard to interpret. Real problems can produce large trees...
- Some problems with continuously valued attributes may not be easily discretized.
- Data fragmentation.
Course Feedback

- Was this lecture mostly clear or unclear?
- What was the muddiest topic?
- Other feedback (pace, content, atmosphere, etc.).