Lecture 3

Gaussian Mixture Models and Introduction to HMM's

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

Watson Group IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen, nussbaum}@us.ibm.com

3 February 2016

Administrivia

- Lab 1 due Friday, February 12th at 6pm.
 - Should have received username and password.
 - Courseworks discussion has been started.
 - TA office hours: Minda, Wed 2-4pm, EE lounge, 13th floor Mudd; Srihari, Thu 2-4pm, 122 Mudd.

Feedback

- Muddiest topic: MFCC(7), DTW(5), DSP (4), PLP (2)
- Comments (2+ votes):
 - More examples/spend more time on examples (8)
 - Want slides before class (4)
 - More explanation of equations (3)
 - Engage students more; ask more questions to class (2)

Where Are We?

- Can extract features over time (MFCC, PLP, others) that ...
 - Characterize info in speech signal in compact form.
 - Vector of 12-40 features extracted 100 times a second

DTW Recap

- Training: record audio A_w for each word w in vocab.
 - Generate sequence of MFCC features ⇒ A'_w (template for w).
- Test time: record audio A_{test}, generate sequence of MFCC features A'_{test}.
 - For each w, compute distance(A'_{test}, A'_w) using DTW.
 - Return w with smallest distance.
- DTW computes distance between words represented as sequences of feature vectors ...
 - While accounting for nonlinear time alignment.
- Learned basic concepts (e.g., distances, shortest paths) ...
 - That will reappear throughout course.

What are Pros and Cons of DTW?

• Easy to implement.

Cons: It's Ad Hoc

- Distance measures completely heuristic.
 - Why Euclidean?
 - Weight all dimensions of feature vector equally? ugh !!
- Warping paths heuristic.
 - Human derived constraints on warping paths like weights, etc - ugh!!
- Doesn't scale well
 - Run DTW for each template in training data what if large vocabulary? -ugh!!
- Plenty other issues.

Can We Do Better?

- Key insight 1: Learn as much as possible from data.
 - e.g., distance measure; warping functions?
- Key insight 2: Use probabilistic modeling.
 - Use well-described theories and models from
 - Probability, statistics, and computer science ...
 - Rather than arbitrary heuristics with ill-defined properties.

Next Two Main Topics

- Gaussian Mixture models (today) A probabilistic model of ...
 - Feature vectors associated with a speech sound.
 - Principled distance between test frame
 - And set of template frames.
- Hidden Markov models (next week) A probabilistic model of ...
 - Time evolution of feature vectors for a speech sound.
 - Principled generalization of DTW.

Part I

Gaussian Distributions

Johann Carl Friedrich Gauss (1777-1855) "Greatest Mathematician since Antiquity"

Gauss's Dog

The Scenario

- Compute distance between test frame and frame of template
- Imagine 2d feature vectors instead of 40d for visualization.

Problem Formulation

• What if instead of one training sample, have many?

Ideas

- Average training samples; compute Euclidean distance.
- Find best match over all training samples.
- Make probabilistic model of training samples.

Where Are We?

- 2 Gaussians in Multiple Dimensions
- 3 Estimating Gaussians From Data

Problem Formulation, Two Dimensions

• Estimate $P(x_1, x_2)$, the "frequency" ...

• That training sample occurs at location (x_1, x_2) .

Let's Start With One Dimension

• Estimate P(x), the "frequency" . . .

• That training sample occurs at location *x*.

The Gaussian or Normal Distribution

$$P_{\mu,\sigma^2}(x) = \mathcal{N}(\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma}} e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- Parametric distribution with two parameters:
 - μ = mean (the center of the data).
 - σ^2 = variance (how wide data is spread).

Visualization

• Density function:

• Sample from distribution:

Properties of Gaussian Distributions

• Is valid probability distribution.

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \ e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

- Central Limit Theorem: Sums of large numbers of identically distributed random variables tend to Gaussian.
 - Lots of different types of data look "bell-shaped".
- Sums and differences of Gaussian random variables ...
 - Are Gaussian.
- If X is distributed as $\mathcal{N}(\mu, \sigma^2) \dots$
 - aX + b is distributed as $\mathcal{N}(a\mu + b, (a\sigma)^2)$.
- Negative log looks like weighted Euclidean distance!

$$\ln\sqrt{2\pi}\sigma + \frac{(x-\mu)^2}{2\sigma^2}$$

Where Are We?

Gaussians in One Dimension

2 Gaussians in Multiple Dimensions

3 Estimating Gaussians From Data

Gaussians in Two Dimensions

$$\mathcal{N}(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} e^{-\frac{1}{2(1-r^2)}\left(\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2rx_1x_2}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right)}$$

• If r = 0, simplifies to

$$\frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_1-\mu_1)^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_2-\mu_2)^2}{2\sigma_2^2}} = \mathcal{N}(\mu_1,\sigma_1^2)\mathcal{N}(\mu_2,\sigma_2^2)$$

• *i.e.*, like generating each dimension independently.

Example: $r = 0, \sigma_1 = \sigma_2$

- *x*₁, *x*₂ uncorrelated.
 - Knowing x_1 tells you nothing about x_2 .

Example: $r = 0, \sigma_1 \neq \sigma_2$

• x_1 , x_2 can be uncorrelated and have unequal variance.

Example: r > 0, $\sigma_1 \neq \sigma_2$

- x_1 , x_2 correlated.
 - Knowing x_1 tells you something about x_2 .

Generalizing to More Dimensions

• If we write following matrix:

$$\Sigma = \begin{vmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{vmatrix}$$

then another way to write two-dimensional Gaussian is:

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = rac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \ \boldsymbol{e}^{-rac{1}{2} (\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu})}$$

where $\mathbf{x} = (x_1, x_2), \, \boldsymbol{\mu} = (\mu_1, \mu_2).$

- More generally, μ and Σ can have arbitrary numbers of components.
 - Multivariate Gaussians.

Diagonal and Full Covariance Gaussians

- Let's say have 40d feature vector.
 - How many parameters in covariance matrix **Σ**?
 - The more parameters, ...
 - The more data you need to estimate them.
- In ASR, usually assume Σ is diagonal \Rightarrow *d* params.
 - This is why like having uncorrelated features!

Computing Gaussian Log Likelihoods

- Why log likelihoods?
- Full covariance:

$$\log P(\mathbf{x}) = -\frac{d}{2}\ln(2\pi) - \frac{1}{2}\ln|\boldsymbol{\Sigma}| - \frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$$

• Diagonal covariance:

$$\log P(\mathbf{x}) = -\frac{d}{2} \ln(2\pi) - \sum_{i=1}^{d} \ln \sigma_i - \frac{1}{2} \sum_{i=1}^{d} (x_i - \mu_i)^2 / \sigma_i^2$$

- Again, note similarity to weighted Euclidean distance.
- Terms on left independent of **x**; precompute.
- A few multiplies/adds per dimension.

Where Are We?

2 Gaussians in Multiple Dimensions

Estimating Gaussians From Data

Estimating Gaussians

- Give training data, how to choose parameters μ, Σ?
- Find parameters so that resulting distribution
 - "Matches" data as well as possible.
- Sample data: height, weight of baseball players.

Maximum-Likelihood Estimation (Univariate)

- One criterion: data "matches" distribution well ...
 - If distribution assigns high likelihood to data.
- Likelihood of string of observations x_1, x_2, \ldots, x_N is ...
 - Product of individual likelihoods.

$$\mathcal{L}(\boldsymbol{x}_1^N|\boldsymbol{\mu},\sigma) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma} \ \boldsymbol{e}^{-\frac{(\boldsymbol{x}_i-\boldsymbol{\mu})^2}{2\sigma^2}}$$

- Maximum likelihood estimation: choose μ , σ ...
 - That maximizes likelihood of training data.

$$(\mu, \sigma)_{\mathsf{MLE}} = rgmax_{\mu, \sigma} \mathcal{L}(x_1^N | \mu, \sigma)$$

Why Maximum-Likelihood Estimation?

- Assume we have "correct" model form.
- Then, as the number of training samples increases ...
 - ML estimates approach "true" parameter values (consistent)
 - ML estimators are the best! (efficient)
- ML estimation is easy for many types of models.
 - Count and normalize!

What is ML Estimate for Gaussians?

• Much easier to work with log likelihood $L = \ln \mathcal{L}$:

$$L(x_1^N|\mu,\sigma) = -\frac{N}{2}\ln 2\pi\sigma^2 - \frac{1}{2}\sum_{i=1}^N \frac{(x_i - \mu)^2}{\sigma^2}$$

• Take partial derivatives w.r.t. μ , σ :

$$\frac{\partial L(\mathbf{x}_1^N | \boldsymbol{\mu}, \sigma)}{\partial \boldsymbol{\mu}} = \sum_{i=1}^N \frac{(\mathbf{x}_i - \boldsymbol{\mu})}{\sigma^2}$$
$$\frac{\partial L(\mathbf{x}_1^N | \boldsymbol{\mu}, \sigma)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \sum_{i=1}^N \frac{(\mathbf{x}_i - \boldsymbol{\mu})^2}{\sigma^4}$$

• Set equal to zero; solve for μ , σ^2 .

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

What is ML Estimate for Gaussians?

Multivariate case.

$$egin{aligned} \mu &= rac{1}{N}\sum_{i=1}^N \mathbf{x}_i \ \mathbf{\Sigma} &= rac{1}{N}\sum_{i=1}^N (\mathbf{x}_i - \mu)^T (\mathbf{x}_i - \mu) \end{aligned}$$

- What if diagonal covariance?
 - Estimate params for each dimension independently.
Example: ML Estimation

- Heights (in.) and weights (lb.) of 1033 pro baseball players.
 Noise added to hide discretization effects.
- ~stanchen/e6870/data/mlb_data.dat

height	weight		
74.34	181.29		
73.92	213.79		
72.01	209.52		
72.28	209.02		
72.98	188.42		
69.41	176.02		
68.78	210.28		

Example: ML Estimation

Example: Diagonal Covariance

$$\mu_{1} = \frac{1}{1033} (74.34 + 73.92 + 72.01 + \cdots) = 73.71$$

$$\mu_{2} = \frac{1}{1033} (181.29 + 213.79 + 209.52 + \cdots) = 201.69$$

$$\sigma_{1}^{2} = \frac{1}{1033} [(74.34 - 73.71)^{2} + (73.92 - 73.71)^{2} + \cdots)]$$

$$= 5.43$$

$$\sigma_{2}^{2} = \frac{1}{1033} [(181.29 - 201.69)^{2} + (213.79 - 201.69)^{2} + \cdots)]$$

= 440.62

Example: Diagonal Covariance

Example: Full Covariance

• Mean; diagonal elements of covariance matrix the same.

$$\begin{split} \boldsymbol{\Sigma}_{12} &= \boldsymbol{\Sigma}_{21} \\ &= \frac{1}{1033} [(74.34 - 73.71) \times (181.29 - 201.69) + \\ &\quad (73.92 - 73.71) \times (213.79 - 201.69) + \cdots)] \\ &= 25.43 \end{split}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 73.71 & 201.69 \end{bmatrix}$$
$$\boldsymbol{\Sigma} = \begin{vmatrix} 5.43 & 25.43 \\ 25.43 & 440.62 \end{vmatrix}$$

Example: Full Covariance

Recap: Gaussians

- Lots of data "looks" Gaussian.
 - Central limit theorem.
- ML estimation of Gaussians is easy.
 - Count and normalize.
- In ASR, mostly use diagonal covariance Gaussians.
 - Full covariance matrices have too many parameters.

Part II

Gaussian Mixture Models

Problems with Gaussian Assumption

Problems with Gaussian Assumption

- Sample from MLE Gaussian trained on data on last slide.
- Not all data is Gaussian!

Problems with Gaussian Assumption

• What can we do? What about two Gaussians?

$$m{P}(m{x}) = m{
ho}_1 imes \mathcal{N}(m{\mu}_1,m{\Sigma}_1) + m{
ho}_2 imes \mathcal{N}(m{\mu}_2,m{\Sigma}_2)$$
 where $m{
ho}_1 + m{
ho}_2 = 1.$

Gaussian Mixture Models (GMM's)

• More generally, can use arbitrary number of Gaussians:

$$P(\mathbf{x}) = \sum_{j} \rho_{j} \frac{1}{(2\pi)^{d/2} |\Sigma_{j}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mu_{j})^{T} \mathbf{\Sigma}_{j}^{-1} (\mathbf{x} - \mu_{j})}$$

where $\sum_{j} p_{j} = 1$ and all $p_{j} \ge 0$.

- Also called *mixture* of Gaussians.
- Can approximate any distribution of interest pretty well ...
 - If just use enough component Gaussians.

Example: Some Real Acoustic Data

Example: 10-component GMM (Sample)

Example: 10-component GMM (μ 's, σ 's)

ML Estimation For GMM's

- Given training data, how to estimate parameters ...
 - *i.e.*, the μ_i , Σ_j , and mixture weights p_j ...
 - To maximize likelihood of data?
- No closed-form solution.
 - Can't just count and normalize.
- Instead, must use an optimization technique ...
 - To find good local optimum in likelihood.
 - Gradient search
 - Newton's method
- Tool of choice: The Expectation-Maximization Algorithm.

Where Are We?

The Expectation-Maximization Algorithm

2 Applying the EM Algorithm to GMM's

Wake Up!

- This is another key thing to remember from course.
- Used to train GMM's, HMM's, and lots of other things.
- Key paper in 1977 by Dempster, Laird, and Rubin [2];
 43958 citations to date.

"the innovative Dempster-Laird-Rubin paper in the Journal of the Royal Statistical Society received an enthusiastic discussion at the Royal Statistical Society meeting.....calling the paper "brilliant""

What Does The EM Algorithm Do?

- Finds ML parameter estimates for models ...
 - With *hidden* variables.
- Iterative hill-climbing method.
 - Adjusts parameter estimates in each iteration
 - Such that likelihood of data ...
 - Increases (weakly) with each iteration.
- Actually, finds local optimum for parameters in likelihood.

What is a Hidden Variable?

- A random variable that isn't observed.
- Example: in GMMs, output prob depends on ...
 - The mixture component that generated the observation
 - But you can't observe it
 - Important concept. Let's discuss!!!!

Mixtures and Hidden Variables

- So, to compute prob of observed *x*, need to sum over ...
 - All possible values of hidden variable h:

$$P(x) = \sum_{h} P(h, x) = \sum_{h} P(h)P(x|h)$$

 Consider probability distribution that is a mixture of Gaussians:

$$\mathcal{P}(x) = \sum_{j} \mathcal{P}_{j} \mathcal{N}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})$$

- Can be viewed as hidden model.
 - $h \Leftrightarrow$ Which component generated sample.
 - $P(h) = p_j; P(x|h) = \mathcal{N}(\mu_j, \Sigma_j).$

$$P(x) = \sum_{h} P(h) P(x|h)$$

The Basic Idea

- If nail down "hidden" value for each x_i, ...
 - Model is no longer hidden!
 - *e.g.*, data partitioned among GMM components.
- So for each data point x_i, assign single hidden value h_i.
 - Take $h_i = \operatorname{arg max}_h P(h)P(x_i|h)$.
 - *e.g.*, identify GMM component generating each point.
- Easy to train parameters in non-hidden models.
 - Update parameters in P(h), P(x|h).
 - e.g., count and normalize to get MLE for μ_j, Σ_j, p_j.
- Repeat!

The Basic Idea

- Hard decision:
 - For each x_i , assign single $h_i = \arg \max_h P(h, x_i) \dots$
 - With count 1.
 - Test: what is $P(h, x_i)$ for Gaussian distribution?
- Soft decision:
 - For each x_i , compute for every $h \dots$
 - the Posterior prob $\tilde{P}(h|x_i) = \frac{P(h,x_i)}{\sum_h P(h,x_i)}$.
 - Also called the "fractional count"
 - e.g., partition event across every GMM component.
- Rest of algorithm unchanged.

The Basic Idea, using more Formal Terminology

- Initialize parameter values somehow.
- For each iteration ...
- Expectation step: compute posterior (count) of *h* for each *x_i*.

$$ilde{P}(h|x_i) = rac{P(h,x_i)}{\sum_h P(h,x_i)}$$

- Maximization step: update parameters.
 - Instead of data x_i with hidden h, pretend ...
 - Non-hidden data where ...
 - (Fractional) count of each (h, x_i) is $\tilde{P}(h|x_i)$.

Example: Training a 2-component GMM

- Two-component univariate GMM; 10 data points.
- The data: $x_1, ..., x_{10}$

8.4, 7.6, 4.2, 2.6, 5.1, 4.0, 7.8, 3.0, 4.8, 5.8

Initial parameter values:

p_1	μ_1	σ_1^2	<i>p</i> ₂	μ_2	σ_2^2
0.5	4	1	0.5	7	1

• Training data; densities of initial Gaussians.

The E Step

Xi	$p_1 \cdot \mathcal{N}_1$	$p_2 \cdot \mathcal{N}_2$	$P(x_i)$	$\tilde{P}(1 x_i)$	$\tilde{P}(2 x_i)$
8.4	0.0000	0.0749	0.0749	0.000	1.000
7.6	0.0003	0.1666	0.1669	0.002	0.998
4.2	0.1955	0.0040	0.1995	0.980	0.020
2.6	0.0749	0.0000	0.0749	1.000	0.000
5.1	0.1089	0.0328	0.1417	0.769	0.231
4.0	0.1995	0.0022	0.2017	0.989	0.011
7.8	0.0001	0.1448	0.1450	0.001	0.999
3.0	0.1210	0.0001	0.1211	0.999	0.001
4.8	0.1448	0.0177	0.1626	0.891	0.109
5.8	0.0395	0.0971	0.1366	0.289	0.711

$$\tilde{P}(h|x_i) = \frac{P(h, x_i)}{\sum_h P(h, x_i)} = \frac{p_h \cdot \mathcal{N}_h}{P(x_i)} \qquad h \in \{1, 2\}$$

The M Step

View: have *non-hidden* corpus for each component GMM.
For *h*th component, have *P*(*h*|*x_i*) counts for event *x_i*.

• Estimating μ : fractional events.

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \quad \Rightarrow \quad \mu_h = \frac{1}{\sum_i \tilde{P}(h|x_i)} \sum_{i=1}^{N} \tilde{P}(h|x_i) x_i$$
$$\mu_1 = \frac{1}{0.000 + 0.002 + 0.980 + \dots} \times (0.000 \times 8.4 + 0.002 \times 7.6 + 0.980 \times 4.2 + \dots)$$
$$= 3.98$$

• Similarly, can estimate σ_h^2 with fractional events.

The M Step (cont'd)

• What about the mixture weights *p_h*?

• To find MLE, count and normalize!

$$p_1 = \frac{0.000 + 0.002 + 0.980 + \cdots}{10} = 0.59$$

The End Result

iter	<i>p</i> ₁	μ_1	σ_1^2	<i>p</i> ₂	μ_{2}	σ_2^2
0	0.50	4.00	1.00	0.50	7.00	1.00
1	0.59	3.98	0.92	0.41	7.29	1.29
2	0.62	4.03	0.97	0.38	7.41	1.12
3	0.64	4.08	1.00	0.36	7.54	0.88
10	0.70	4.22	1.13	0.30	7.93	0.12

First Few Iterations of EM

Later Iterations of EM

Why the EM Algorithm Works

- $\mathbf{x} = (x_1, x_2, ...)$ = whole training set; \mathbf{h} = hidden.
- θ = parameters of model.
- Objective function for MLE: (log) likelihood.

$$L(\theta) = \log P_{\theta}(\mathbf{x}) = \log P_{\theta}(\mathbf{x}, \mathbf{h}) - \log P_{\theta}(\mathbf{h}|\mathbf{x})$$

• Form expectation with respect to θ^n , the estimate of θ on the n^{th} estimation iteration:

$$\sum_{h} P_{\theta^{n}}(\mathbf{h}|\mathbf{x}) \log P_{\theta}(\mathbf{x}) = \sum_{h} P_{\theta^{n}}(\mathbf{h}|\mathbf{x}) \log P_{\theta}(\mathbf{x},\mathbf{h})$$
$$- \sum_{h} P_{\theta^{n}}(\mathbf{h}|\mathbf{x}) \log P_{\theta}(\mathbf{h}|\mathbf{x})$$
rewrite as : log $P_{\theta}(\mathbf{x}) = Q(\theta|\theta^{n}) + H(\theta|\theta^{n})$

Why the EM Algorithm Works

$$\log P_{\theta}(\mathbf{x}) = Q(\theta|\theta^n) + H(\theta|\theta^n)$$

What is Q? In the Gaussian example above Q is just

$$\sum_{h} P_{\theta^{n}}(\mathbf{h}|\mathbf{x}) \log p_{h} \mathcal{N}_{\mathbf{x}}(\boldsymbol{\mu}_{h}, \boldsymbol{\Sigma}_{h})$$

It can be shown (using Gibb's inequality) that $H(\theta|\theta^n) \ge H(\theta^n|\theta^n)$ for any $\theta \ne \theta_n$

So that means that any choice of θ that increases Q will increase log $P_{\theta}(\mathbf{x})$. Typically we just pick θ to maximize Q altogether, can often be done in closed form.

The E Step

Compute Q.

The M Step

Maximize Q with respect to θ

Then repeat - E/M, E/M till likelihood stops improving significantly.

That's the E-M algorithm in a nutshell!

Discussion

- EM algorithm is elegant and general way to ...
 - Train parameters in hidden models
 - To optimize likelihood.
- Only finds local optimum.
 - Seeding is of paramount importance.
Where Are We?

The Expectation-Maximization Algorithm

2 Applying the EM Algorithm to GMM's

Another Example Data Set

Question: How Many Gaussians?

- Method 1 (most common): Guess!
- Method 2: Bayesian Information Criterion (BIC)[1].
 - Penalize likelihood by number of parameters.

$$\mathsf{BIC}(C_k) = \sum_{j=1}^k \{-\frac{1}{2}n_j \log |\Sigma_j|\} - Nk(d + \frac{1}{2}d(d + 1))$$

- *k* = Gaussian components.
- *d* = dimension of feature vector.
- n_j = data points for Gaussian *j*; *N* = total data points.
- Discuss!

The Bayesian Information Criterion

• View GMM as way of coding data for transmission.

- Cost of transmitting model \Leftrightarrow number of params.
- Cost of transmitting data ⇔ log likelihood of data.
- Choose number of Gaussians to minimize cost.

Figure 1. Different degrees of complexity in phone ER-3 and KD-3

Question: How To Initialize Parameters?

- Set mixture weights p_j to 1/k (for k Gaussians).
- Pick N data points at random and ...
 - Use them to seed initial values of μ_j .
- Set all σ 's to arbitrary value . . .
 - Or to global variance of data.
- Extension: generate multiple starting points.
 - Pick one with highest likelihood.

Another Way: Splitting

- Start with single Gaussian, MLE.
- Repeat until hit desired number of Gaussians:
 - Double number of Gaussians by perturbing means ...
 - Of existing Gaussians by $\pm \epsilon$.
 - Run several iterations of EM.

Question: How Long To Train?

- *i.e.*, how many iterations of EM?
- Guess.
- Look at performance on training data.
 - Stop when change in log likelihood per event ...
 - Is below fixed threshold.
- Look at performance on held-out data.
 - Stop when performance no longer improves.

The Data Set

Sample From Best 1-Component GMM

The Data Set, Again

20-Component GMM Trained on Data

20-Component GMM μ 's, σ 's

Acoustic Feature Data Set

5-Component GMM; Starting Point A

5-Component GMM; Starting Point B

5-Component GMM; Starting Point C

Solutions With Infinite Likelihood

• Consider log likelihood; two-component 1d Gaussian.

$$\sum_{i=1}^{N} \ln \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} \ e^{-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}} + p_2 \frac{1}{\sqrt{2\pi}\sigma_2} \ e^{-\frac{(x_i - \mu_2)^2}{2\sigma_2^2}} \right)$$

• If $\mu_1 = x_1$, above reduces to

$$\ln\left(\frac{1}{2\sqrt{2\pi}\sigma_{1}}+\frac{1}{2\sqrt{2\pi}\sigma_{2}}e^{\frac{1}{2}\frac{(x_{1}-\mu_{2})^{2}}{\sigma_{2}^{2}}}\right)+\sum_{i=2}^{N}\dots$$

which goes to ∞ as $\sigma_1 \rightarrow 0$.

- Only consider finite local maxima of likelihood function.
 - Variance flooring.
 - Throw away Gaussians with "count" below threshold.

Recap

- GMM's are effective for modeling arbitrary distributions.
 - State-of-the-art in ASR for decades (though may be superseded by NNs at some point, discuss later in course)
- The EM algorithm is primary tool for training GMM's (and lots of other things)
 - Very sensitive to starting point.
 - Initializing GMM's is an art.

References

- S. Chen and P.S. Gopalakrishnan, "Clustering via the Bayesian Information Criterion with Applications in Speech Recognition", ICASSP, vol. 2, pp. 645–648, 1998.
- A.P. Dempster, N.M. Laird, D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm", Journal of the Royal Stat. Society. Series B, vol. 39, no. 1, 1977.

What's Next: Hidden Markov Models

- Replace DTW with probabilistic counterpart.
- Together, GMM's and HMM's comprise ...
 - Unified probabilistic framework.
- Old paradigm:

$$w^* = \operatorname*{arg\,min}_{w \in \mathrm{vocab}} \mathrm{distance}(A'_{\mathrm{test}}, A'_w)$$

• New paradigm:

$$w^* = rgmax_{w \in ext{vocab}} P(A'_{ ext{test}} | w)$$

Part III

Introduction to Hidden Markov Models

Introduction to Hidden Markov Models

- The issue of weights in DTW.
- Interpretation of DTW grid as Directed Graph.
- Adding Transition and Output Probabilities to the Graph gives us an HMM!
- The three main HMM operations.

Another Issue with Dynamic Time Warping

- Weights are completely heuristic!
- Maybe we can learn weights from data?
- Take many utterances ...

Learning Weights From Data

- For each node in DP path, count number of times move up ↑ right → and diagonally ↗.
- Normalize number of times each direction taken by total number of times node was actually visited (= C/N)
- Take some constant times reciprocal as weight ($\alpha N/C$)
- Example: particular node visited 100 times.
 - Move \nearrow 40 times; \rightarrow 20 times; \uparrow 40 times.
 - Set weights to 2.5, 5, and 2.5, (or 1, 2, and 1).
- Point: weight distribution should reflect ...
 - Which directions are taken more frequently at a node.
- Weight estimation not addressed in DTW
 - But central part of *Hidden Markov models*.

DTW and Directed Graphs

• Take following Dynamic Time Warping setup:

• Let's look at representation of this as directed graph:

DTW and Directed Graphs

• Another common DTW structure:

• As a directed graph:

• Can represent even more complex DTW structures

• Resultant directed graphs can get quite bizarre.

• Let's assign probabilities to transitions in directed graph:

- a_{ij} is transition probability going from state *i* to state *j*, where $\sum_{i} a_{ij} = 1$.
- Can compute probability *P* of individual path just using transition probabilities *a*_{ij}.

• It is common to reorient typical DTW pictures:

- Above only describes path probabilities associated with transitions.
- Also need to include likelihoods associated with *observations*.

 As in GMM discussion, let us define likelihood of producing observation x_i from state j as

$$b_j(x_i) = \sum_m c_{jm} \frac{1}{(2\pi)^{d/2} |\Sigma_{jm}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x}_i - \mu_{jm})^T \boldsymbol{\Sigma}_{jm}^{-1} (\mathbf{x}_i - \mu_{jm})}$$

where c_{jm} are mixture weights associated with state *j*.

• This state likelihood is also called the *output probability* associated with state.

• In this case, likelihood of entire path can be written as:

 $P = b_1(O_1) a_{11} b_1(O_2) a_{12} b_2(O_3) a_{23} b_3(O_4) a_{33} b_3(O_5) a_{34} b_4(O_6)$

Hidden Markov Models

- The output and transition probabilities define a *Hidden Markov Model* or *HMM*.
 - Since probabilities of moving from state to state only depend on current and previous state, model is Markov.
 - Since only see observations and have to infer states after the fact, model is *hidden*.

• One may consider HMM to be *generative* model of speech.

- Starting at upper left corner of trellis, generate observations according to permissible transitions and output probabilities.
- Not only can compute likelihood of single path ...
 - Can compute overall likelihood of observation string ...
 - As sum over *all* paths in trellis.

HMM: The Three Main Tasks

- Compute likelihood of generating string of observations from HMM (*Forward* algorithm).
- Compute best path from HMM (*Viterbi* algorithm).
- Learn parameters (output and transition probabilities) of HMM from data (*Baum-Welch* a.k.a. *Forward-Backward* algorithm).

Part IV

Epilogue

Course Feedback

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?