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@ Lab 1 due Friday, February 12th at 6pm.

e Should have received username and password.

e Courseworks discussion has been started.

e TA office hours: Minda, Wed 2-4pm, EE lounge, 13th
floor Mudd; Srihari, Thu 2-4pm, 122 Mudd.
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Feedback

@ Muddiest topic: MFCC(7), DTW(5), DSP (4), PLP (2)
@ Comments (2+ votes):

e More examples/spend more time on examples (8)

e Want slides before class (4)

e More explanation of equations (3)

e Engage students more; ask more questions to class (2)
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Where Are We?

@ Can extract features over time (MFCC, PLP, others) that . ..
e Characterize info in speech signal in compact form.
e Vector of 12-40 features extracted 100 times a second

Speech waveform
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DTW Recap

@ Training: record audio A, for each word w in vocab.
e Generate sequence of MFCC features = A, (femplate
for w).
@ Test time: record audio A, generate sequence of MFCC
features Al;.
e For each w, compute distance(Ai., A,,) using DTW.
e Return w with smallest distance.
@ DTW computes distance between words represented as
sequences of feature vectors ...
e While accounting for nonlinear time alignment.
@ Learned basic concepts (e.g., distances, shortest paths) ...
e That will reappear throughout course.
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What are Pros and Cons of DTW?
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Pros

@ Easy to implement.
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Cons: It's Ad Hoc

@ Distance measures completely heuristic.
e Why Euclidean?
e Weight all dimensions of feature vector equally? - ugh !!
@ Warping paths heuristic.
e Human derived constraints on warping paths like
weights, etc - ugh!!
@ Doesn’t scale well
e Run DTW for each template in training data - what if
large vocabulary? -ugh!!
@ Plenty other issues.
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Can We Do Better?

@ Key insight 1: Learn as much as possible from data.
e e.g., distance measure; warping functions?
@ Key insight 2: Use probabilistic modeling.

e Use well-described theories and models from ...

e Probability, statistics, and computer science ...

e Rather than arbitrary heuristics with ill-defined
properties.
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Next Two Main Topics

@ Gaussian Mixture models (today) — A probabilistic model
of ...
e Feature vectors associated with a speech sound.
e Principled distance between test frame ...
e And set of template frames.
@ Hidden Markov models (next week) — A probabilistic model
of ...
e Time evolution of feature vectors for a speech sound.
e Principled generalization of DTW.
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Part |

Gaussian Distributions
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Johann Carl Friedrich Gauss (1777-1855)
"Greatest Mathematician since Antiquity"”
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@ Compute distance between test frame and frame of
template
@ Imagine 2d feature vectors instead of 40d for visualization.
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Problem Formulation

@ What if instead of one training sample, have many?
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|deas

@ Average training samples; compute Euclidean distance.
@ Find best match over all training samples.
@ Make probabilistic model of training samples.

ot.&o.
.Q o..o
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Where Are We?

0 Gaussians in One Dimension
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Problem Formulation, Two Dimensions

@ Estimate P(xi, x2), the “frequency” ...
e That training sample occurs at location (x1, x2).

o‘.&o.
.~ o..o
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Let’'s Start With One Dimension

@ Estimate P(x), the “frequency” ...
e That training sample occurs at location x.
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The Gaussian or Normal Distribution

@ Parametric distribution with two parameters:

e 1 = mean (the center of the data).
e o2 = variance (how wide data is spread).
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Visualization

@ Density function:

w—40 u—20 1 iw+20 p+4o
@ Sample from distribution:
w—4oc u—20 1 w+20 p+4do
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Properties of Gaussian Distributions

@ |s valid probability distribution.

/ - 202 dX =1
27r0

@ Central Limit Theorem: Sums of large numbers of
identically distributed random variables tend to Gaussian.

e Lots of different types of data look “bell-shaped”.

@ Sums and differences of Gaussian random variables ...
e Are Gaussian.

o If X is distributed as N (u, 0?) ...
o aX + bis distributed as NV (au + b, (as)?).

@ Negative log looks like weighted Euclidean distance!

N2
Inv2ro + (x 5)
20
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Where Are We?

e Gaussians in Multiple Dimensions
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Gaussians in Two Dimensions

2 2 1 1 . ((x1_g1)272rx1x2+()(2_52)2)
N (1, po, 05,05) = 2(1-2)\ | of o100 22
(i1, 2 1, 2no109V1 — r?
@ If r = 0, simplifies to
1 7@ 1 7(X2*l;2)2 , ,
— € 209 e 205 :N(M1701)N(M2702)
\ 27"-0-1 27'('0'2

e i.e., like generating each dimension independently.
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Example: r =0, 01 = 0>

@ Xq, Xo uncorrelated.
e Knowing x; tells you nothing about x..
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Example: r =0, o1 # 0>

@ X1, X2 can be uncorrelated and have unequal variance.
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Example: r > 0, o1 # o2

@ X1, X correlated.
e Knowing x; tells you something about x..
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Generalizing to More Dimensions

@ If we write following matrix:

0’12 roqoo
roqoo 0’%

then another way to write two-dimensional Gaussian is:

1
(27T)d/2 |Z|1/2 ¢

N, Z) = —3(x—p)TE7 (x—p)
where X = (X1, X2), o = (1, p2)-

@ More generally, u and X can have arbitrary numbers of
components.

o Multivariate Gaussians.
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Diagonal and Full Covariance Gaussians

@ Let’s say have 40d feature vector.

e How many parameters in covariance matrix X?
e The more parameters, ...
e The more data you need to estimate them.

@ In ASR, usually assume X is diagonal = d params.
e This is why like having uncorrelated features!
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Computing Gaussian Log Likelihoods

@ Why log likelihoods?
@ Full covariance:

log P(x) = —g In(2r) — % In|%| — %(x —p) TN (x = p)

@ Diagonal covariance:

Q

log P(x) = ——In 2r) — Zlna, - § — w)?/c?

e Again, note similarity to weighted Euclidean distance.
e Terms on left independent of x; precompute.
o A few multiplies/adds per dimension.
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Where Are We?

e Estimating Gaussians From Data
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Estimating Gaussians

@ Give training data, how to choose parameters pu, X?
@ Find parameters so that resulting distribution . ..

e “Matches” data as well as possible.
@ Sample data: height, weight of baseball players.

300 T T T T
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Maximume-Likelihood Estimation (Univariate)

@ One criterion: data “matches” distribution well . ..
e If distribution assigns high likelihood to data.

@ Likelihood of string of observations xy, X2, ..., Xy is ...
e Product of individual Iikelihoods

|,u7 H — (X, u)

@ Maximum likelihood estimation: choose i, o
e That maximizes likelihood of training data.

(1, 0)me = argmax L(x{'|u, o)

w,o
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Why Maximum-Likelihood Estimation?

@ Assume we have “correct” model form.
@ Then, as the number of training samples increases ...

e ML estimates approach “true” parameter values
(consistent)
e ML estimators are the best! (efficient)

@ ML estimation is easy for many types of models.
e Count and normalize!
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What is ML Estimate for Gaussians?

@ Much easier to work with log likelihood L = In L:

N
L(xM|pu,0) = —= In 2ra?

@ Take partial derivatives w.r.t. i, o

LX) XN:(X:-—M)

o —~ o
L lo) N o~ (= p)
0o? T 202 + Z o4

@ Set equal to zero; solve for p, o2

;N ;N
:NZXI UzZnZ(Xi—M)Z
i=1
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What is ML Estimate for Gaussians?

@ Multivariate case.

== 0 ) (% )

@ What if diagonal covariance?
e Estimate params for each dimension independently.
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Example: ML Estimation

@ Heights (in.) and weights (Ib.) of 1033 pro baseball players.
e Noise added to hide discretization effects.
@ ~stanchen/e6870/data/mlb_data.dat

height | weight
74.34 | 181.29
73.92 | 213.79
72.01 | 209.52
72.28 | 209.02
72.98 | 188.42
69.41 | 176.02
68.78 | 210.28
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Example: ML Estimation
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Example: Diagonal Covariance

1

= @(74.34 +7392+72.01+---)=73.71

f2 = @(181 29 +213.79 +209.52 + ---) =201.69

1
2
7% = 7033
— 543

74.34 —73.71)% +(73.92 - 73.71)% + - .. )]

03 = 10133 [(181.29 — 201.69)% + (213.79 — 201.69) + - - - )]

= 440.62
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Example: Diagonal Covariance
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Example: Full Covariance

@ Mean; diagonal elements of covariance matrix the same.
2o = 2o

1
~ 1033

(73.92 — 73.71) x (213.79 — 201.69) + - - - )]

(74.34 — 73.71) x (181.29 — 201.69)+

=25.43

p=[7371 201.69 ]

543 2543

=1 0543 440.62
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Example: Full Covariance
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Recap: Gaussians

@ Lots of data “looks” Gaussian.
e Central limit theorem.
@ ML estimation of Gaussians is easy.
e Count and normalize.
@ In ASR, mostly use diagonal covariance Gaussians.
e Full covariance matrices have too many parameters.
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Part Il

Gaussian Mixture Models
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Problems with Gaussian Assumption
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Problems with Gaussian Assumption

@ Sample from MLE Gaussian trained on data on last slide.
@ Not all data is Gaussian!
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Problems with Gaussian Assumption

@ What can we do? What about two Gaussians?
P(x) = p1 x N (g1, Z1) + P2 x N(p2, X2)
where py +po = 1.
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Gaussian Mixture Models (GMM’s)

@ More generally, can use arbitrary number of Gaussians:

1 1 Ty—1
_ ) —5 (X—p) "ET (x— )
P(x) = zj:p’(Qﬁ)d/2]Z,'|1/2 e= l

where >, pj =1 and all p; > 0.
@ Also called mixture of Gaussians.
@ Can approximate any distribution of interest pretty well ...
o If just use enough component Gaussians.
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Example: Some Real Acoustic Data
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Example: 10-component GMM (Sample)
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Example: 10-component GMM (u’s, o’s)
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ML Estimation For GMM’s

@ Given training data, how to estimate parameters ...
o ie., the u;, ¥;, and mixture weights p; ...
e To maximize likelihood of data?

@ No closed-form solution.
e Can't just count and normalize.

@ Instead, must use an optimization technique ...

e To find good local optimum in likelihood.
e Gradient search
e Newton’s method

@ Tool of choice: The Expectation-Maximization Algorithm.
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Where Are We?

0 The Expectation-Maximization Algorithm
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Wake Up!

@ This is another key thing to remember from course.

@ Used to train GMM’s, HMM’s, and lots of other things.

@ Key paper in 1977 by Dempster, Laird, and Rubin [2];
43958 citations to date.

"the innovative Dempster-Laird-Rubin paper in the Journal of
the Royal Statistical Society received an enthusiastic discussion
at the Royal Statistical Society meeting.....calling the paper
"brilliant™
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What Does The EM Algorithm Do?

@ Finds ML parameter estimates for models ...
e With hidden variables.
@ lterative hill-climbing method.

e Adjusts parameter estimates in each iteration ...
e Such that likelihood of data ...
e Increases (weakly) with each iteration.

@ Actually, finds local optimum for parameters in likelihood.
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What is a Hidden Variable?

@ A random variable that isn’t observed.
@ Example: in GMMs, output prob depends on ...

e The mixture component that generated the observation
e But you can’t observe it
e Important concept. Let’s discuss!!!!
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Mixtures and Hidden Variables

@ So, to compute prob of observed x, need to sum over ...
e All possible values of hidden variable h:

=> P(h.x) = ZP P(x|h)

@ Consider probability distribution that is a mixture of
Gaussians:
X) =Y o N, Z)
j

@ Can be viewed as hidden model.
e h < Which component generated sample.

o P(h) = p;; P(x|h) = N(/”'ﬁ ).

ZP P(x|h)
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The Basic Idea

@ If nail down “hidden” value for each xi, ...

e Model is no longer hidden!
e e.g., data partitioned among GMM components.

@ So for each data point x;, assign single hidden value h;.

o Take h; = argmax, P(h)P(x;|h).

e e.g., identify GMM component generating each point.
@ Easy to train parameters in non-hidden models.

e Update parameters in P(h), P(x|h).
e e.g., count and normalize to get MLE for y;, X, p;.

@ Repeat!
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The Basic Idea

@ Hard decision:
e For each x;, assign single h; = arg max, P(h, x;) ...
e With count 1.
e Test: what is P(h, x;) for Gaussian distribution?

@ Soft decision:

e For each x;, compute for every h...

H r P h,)q
o the Posterior prob P(hlx)) = BT
e Also called the “fractional count”

e e.g., partition event across every GMM component.
@ Rest of algorithm unchanged.
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The Basic Idea, using more Formal

Terminology

@ Initialize parameter values somehow.
@ For each iteration ...
@ Expectation step: compute posterior (count) of h for each x;.

~ P(h, X,‘)
PUIX) = S Bih.x)

@ Maximization step: update parameters.

e Instead of data x; with hidden h, pretend ...
e Non-hidden data where . .. )
e (Fractional) count of each (h, x;) is P(h|x;).
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Example: Training a 2-component GMM

@ Two-component univariate GMM; 10 data points.
@ The data: X1,...,X10

8.4,76,42,26,51,4.0,7.8,3.0,4.8,5.8

@ Initial parameter values:

pr i1 05| P2 pp 0}

05 4 105 7 1

@ Training data; densities of initial Gaussians.
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The E Step

Xi | p1-Ni p2-No | P(xi) | P(11x;) P(2]x)
8.4 | 0.0000 0.0749 | 0.0749 | 0.000 1.000
7.6 | 0.0003 0.1666 | 0.1669 | 0.002 0.998
4.2 | 0.1955 0.0040 | 0.1995 | 0.980 0.020
2.6 | 0.0749 0.0000 | 0.0749 | 1.000 0.000
5.1 10.1089 0.0328 | 0.1417 | 0.769  0.231
4.0 | 0.1995 0.0022 | 0.2017 | 0.989 0.011
7.8 | 0.0001 0.1448 | 0.1450 | 0.001 0.999
3.0 0.1210 0.0001 | 0.1211 | 0.999 0.001
4.8 | 0.1448 0.0177 | 0.1626 | 0.891 0.109
5.8 10.08395 0.0971 | 0.1366 | 0.289 0.711

' o P(h,X,‘) _ph'Nh
PUX) = S Bth.x) = P(x)

he{1,2}
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The M Step

@ View: have non-hidden corpus for each component GMM.
o For hth component, have P(h|x;) counts for event x;.
@ Estimating u: fractional events.

N

1 1 .

M= == Xj = Mh = ———=—— P(h|X,’)X,’
N ,21: >_i P(hix) ,Z:

#1= 5,000 +0.002 + 0980 + -
(0.000 x 8.4 +0.002 x 7.6 +0.980 x 4.2+ ---)

=3.98

@ Similarly, can estimate o2 with fractional events.
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The M Step (cont'd)

@ What about the mixture weights p,?
e To find MLE, count and normalize!

~0.000 +0.002 +0.980 + - - -

P 10 = 0.59
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The End Result

iter | p H1 of P> 2 o5

0 |0.50 4.00 1.00|0.50 7.00 1.00
1 1059 398 092|041 729 1.29
2 1062 403 097038 741 1.12
3 /064 408 1.00|{0.36 7.54 0.88
10 | 0.70 4.22 1.13|0.30 7.93 0.12
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First Few lterations of EM

iter 0
iter 1
iter 2
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Later lterations of EM

iter 2

iter 3

iter 10
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Why the EM Algorithm Works

@ X = (Xq, X2, ...) = whole training set; h = hidden.
@ 0 = parameters of model.
@ Objective function for MLE: (log) likelihood.

L(6) = log Pe(x) = log Pe(x, h) — log Py(h|x)

@ Form expectation with respect to 8", the estimate of 6 on
the n estimation iteration:

ZPen h|x) log Pg(x ZPen h|x) log Py(x, h)

— Z Pgr(h|x) log Py(h|x)
h

rewrite as : log Pe(X) = Q(6]0") + H(8]6")
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Why the EM Algorithm Works

log Pe(Xx) = Q(6]0™) + H(6|6")
What is Q? In the Gaussian example above Q is just

> Por(hix)log pn Nx(ken, En)
h

It can be shown (using Gibb’s inequality) that
H(6|6™) > H(6"|0") for any 6 # 6,

So that means that any choice of 6 that increases Q will
increase log Py(x). Typically we just pick 6 to maximize Q
altogether, can often be done in closed form.

69/106



The E Step

Compute Q.
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The M Step

Maximize Q with respect to 6

Then repeat - E/M, E/M till likelihood stops improving
significantly.

That’s the E-M algorithm in a nutshell!
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Discussion

@ EM algorithm is elegant and general way to ...

e Train parameters in hidden models ...
e To optimize likelihood.

@ Only finds local optimum.
e Seeding is of paramount importance.
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Where Are We?

e Applying the EM Algorithm to GMM’s
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Another Example Data Set
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Question: How Many Gaussians?

@ Method 1 (most common): Guess!
@ Method 2: Bayesian Information Criterion (BIC)[1].
e Penalize likelihood by number of parameters.

BIC(Ck) = Z{— n;log |%;|} — Nk(d + d(d+ 1))
j=1
e k = Gaussian components.

e d = dimension of feature vector.
e n; = data points for Gaussian j; N = total data points.

@ Discuss!
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The Bayesian Information Criterion

@ View GMM as way of coding data for transmission.
e Cost of transmitting model < number of params.
e Cost of transmitting data < log likelihood of data.
@ Choose number of Gaussians to minimize cost.

(a) Data of ER-3 (b) Data of KD-3

10" (¢) BIC on ER-3 x10° (d) BIC on KD-3
=13

-1.31
-1.32
=133
A4 -0.15
-1.35]
-1.38

g 0 20 30 w0 s 10 20 30 %0

Figure 1. Different degrees of complexity in phone ER-3 and

KD-3
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Question: How To Initialize Parameters?

@ Set mixture weights p; to 1/k (for k Gaussians).
@ Pick N data points at random and ...
o Use them to seed initial values of 1.
@ Set all o’s to arbitrary value . ..
e Or to global variance of data.
@ Extension: generate multiple starting points.
e Pick one with highest likelihood.
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Another Way: Splitting

@ Start with single Gaussian, MLE.
@ Repeat until hit desired number of Gaussians:

e Double number of Gaussians by perturbing means ...
e Of existing Gaussians by +e.
e Run several iterations of EM.
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Question: How Long To Train?

@ i.e., how many iterations of EM?
@ Guess.
@ Look at performance on training data.

e Stop when change in log likelihood per event . ..
e Is below fixed threshold.

@ Look at performance on held-out data.
e Stop when performance no longer improves.
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The Data Set
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Sample From Best 1-Component GMM
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The Data Set, Again
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20-Component GMM Trained on Data
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20-Component GMM u’s, o’s
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Acoustic Feature Data Set
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5-Component GMM; Starting Point A
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5-Component GMM; Starting Point B
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5-Component GMM,; Starting Point C
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Solutions With Infinite Likelihood

@ Consider log likelihood; two-component 1d Gaussian.

N 1 _ (X/*M21 ) 1 _ (Xifuzz)
|n p e 2cr1 —I'_ p2 e 2(72
Z 1 V2moy V2mop

@ If 41 = xq, above reduces to

1 L=
In + e’ 2 |+ ...
2V2mo1  2V27mo» Z

i=2

which goes to co as oy — 0.
@ Only consider finite local maxima of likelihood function.

e Variance flooring.
e Throw away Gaussians with “count” below threshold.
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@ GMM’s are effective for modeling arbitrary distributions.
e State-of-the-art in ASR for decades (though may be
superseded by NNs at some point, discuss later in
course)
@ The EM algorithm is primary tool for training GMM'’s (and
lots of other things)
e Very sensitive to starting point.
e Initializing GMM’s is an art.
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What’s Next: Hidden Markov Models

@ Replace DTW with probabilistic counterpart.
@ Together, GMM’s and HMM'’s comprise ...

e Unified probabilistic framework.
@ Old paradigm:

w* = arg min distance(Alq, Ay,)

wevocab

@ New paradigm:

w* = argmax P(Als|W)
wevocab
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Part

Introduction to Hidden Markov Models
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Introduction to Hidden Markov Models

@ The issue of weights in DTW.
@ Interpretation of DTW grid as Directed Graph.

@ Adding Transition and Output Probabilities to the Graph
gives us an HMM!

@ The three main HMM operations.
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Another Issue with Dynamic Time Warping

@ Weights are completely heuristic!
@ Maybe we can learn weights from data?
@ Take many utterances ...
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Learning Weights From Data

@ For each node in DP path, count number of times move up
T right — and diagonally .

@ Normalize number of times each direction taken by total
number of times node was actually visited (= C/N)

@ Take some constant times reciprocal as weight (a«N/C)
@ Example: particular node visited 100 times.

e Move 40 times; — 20 times; 7 40 times.
e Set weightsto 2.5, 5, and 2.5, (or 1, 2, and 1).

@ Point: weight distribution should reflect . ..

e Which directions are taken more frequently at a node.
@ Weight estimation not addressed in DTW . ..

e But central part of Hidden Markov models.
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DTW and Directed Graphs

@ Take following Dynamic Time Warping setup:
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DTW and Directed Graphs

@ Another common DTW structure:

@ As adirected graph:

@ Can represent even more complex DTW structures . ..
e Resultant directed graphs can get quite bizarre.
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Path Probabilities

@ Let’s assign probabilities to transitions in directed graph:

states —

@ g; is transition probability going from state i to state j,
where } a; = 1.

@ Can compute probability P of individual path just using
transition probabilities a;.
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Path Probabilities

@ It is common to reorient typical DTW pictures:

2

Y5 5,8 5 8, % how w
TR = o R | El [ 010203040506

P=aya;;a;az;a, P=apayaza,,a,

@ Above only describes path probabilities associated with
transitions.

@ Also need to include likelihoods associated with
observations.
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Path Probabilities

@ As in GMM discussion, let us define likelihood of producing
observation x; from state j as

*1(xi7”'m)TZ7n1(xi7/“"m)
chm d/2|z e e 2 T !

where ¢;,, are mixture weights associated with state j.

@ This state likelihood is also called the output probability
associated with state.
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Path Probabilities

@ In this case, likelihood of entire path can be written as:

(%)

P =1(0y) a3, b1(O05) a1, by(O3) ay3 b3(O,) a33b3(05) a5, by(Op)
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Hidden Markov Models

@ The output and transition probabilities define a Hidden
Markov Model or HMM.
e Since probabilities of moving from state to state only
depend on current and previous state, model is Markov.
e Since only see observations and have to infer states
after the fact, model is hidden.
@ One may consider HMM to be generative model of speech.
e Starting at upper left corner of trellis, generate
observations according to permissible transitions and
output probabilities.
@ Not only can compute likelihood of single path . ..
e Can compute overall likelihood of observation string .. .
e As sum over all paths in trellis.
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HMM: The Three Main Tasks

@ Compute likelihood of generating string of observations
from HMM (Forward algorithm).

@ Compute best path from HMM ( Viterbi algorithm).

@ Learn parameters (output and transition probabilities) of
HMM from data (Baum-Welch a.k.a. Forward-Backward
algorithm).
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Part IV

Epilogue
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Course Feedback

@ Was this lecture mostly clear or unclear? What was the
muddiest topic?

@ Other feedback (pace, content, atmosphere)?
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