#### Lecture 14

Advanced Neural Networks

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen, Markus Nussbaum-Thom

> Watson Group IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen, nussbaum}@us.ibm.com

> > 27 th April 2016

#### Variants of Neural Network Architectures

- Deep Neural Network (DNN),
- Convolutional Neural Network (CNN),
- Recurrent Neural Network (RNN),
  - unidirectional, bidirectional, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
- Constraints and Regularization,
- Attention model,

# Training

Observations and labels (*x<sub>n</sub>*, *a<sub>n</sub>*) ∈ ℝ<sup>D</sup> × A for *n* = 1,..., N.
Training criterion:

$$\mathcal{F}_{CE}(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \log P(a_n | x_n, \theta)$$
$$\mathcal{F}_{\mathcal{L}}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{\overline{\omega}} \sum_{a_1^{T_n} \in \overline{\omega}} P(a_1^{T_n} | x_1^{T_n}, \theta) \cdot \mathcal{L}(\overline{\omega}, \omega_n) \quad \text{loss } \mathcal{L}$$

• Optimization:

$$\overline{ heta} = rg\min_{ heta} \left\{ \mathcal{F}( heta) 
ight\}$$

- $\theta, \overline{\theta}$ : Free parameters of the model (NN, GMM).
- $\omega, \overline{\omega}$ : Word sequences.

#### Recap: Gaussian Mixture Model

• Recap Gaussian Mixture Model:

$$P(\omega|x_1^T) = \sum_{a_1^T \in \omega} \prod_{t=1}^T P(x_t|a_t) P(a_t|a_{t-1})$$

•  $\omega$ : word sequence

• 
$$x_1^T := x_1, \ldots, x_T$$
: feature sequence

- $a_1^T := a_1, \ldots, a_T$ : HMM state sequence
- Emission probability  $P(x|a) \sim \mathcal{N}(\mu_a, \Sigma_a)$  Gaussian.
- Replace with a neural network  $\Rightarrow$  hybrid model.
- Use neural network for feature extraction ⇒ bottleneck features.

• Gaussian Mixture Model:

$$P(\omega|x_1^T) = \sum_{a_1^T \in \omega} \prod_{t=1}^T \underbrace{P(x_t|a_t) P(a_t|a_{t-1})}_{\text{emission}}$$

- Training: A neural network usually models P(x|a).
- Recognition: Use as a hybrid model for speech recognition:

$$\frac{P(a|x)}{P(a)} = \frac{P(x,a)}{P(x)P(a)} = \frac{P(x|a)}{P(x)} \approx P(x|a)$$

P(x|a)/P(x) and P(x|a) are proportional.

# Hybrid Model and Bayes Decision Rule

$$\hat{\omega} = \arg \max_{\omega} \left\{ P(\omega) P(x_1^T | \omega) \right\}$$

$$= \arg \max_{\omega} \left\{ P(\omega) \sum_{a_1^T \in \omega} \prod_{t=1}^T \frac{P(x_t | a_t)}{P(x_t)} P(a_t | a_{t-1}) \right\}$$

$$= \arg \max_{\omega} \left\{ P(\omega) \sum_{a_1^T \in \omega} \frac{\prod_{t=1}^T P(x_t | a_t) P(a_t | a_{t-1})}{\prod_{t=1}^T P(x_t)} \right\}$$

$$= \arg \max_{\omega} \left\{ P(\omega) \sum_{a_1^T \in \omega} \prod_{t=1}^T P(x_t | a_t) P(a_t | a_{t-1}) \right\}$$

# Where Are We?



- 2 Multilingual Bottleneck Features
- 3 Convolutional Neural Networks
- 4 Recurrent Neural Networks
- 5 Unstable Gradient Problem
- 6 Attention-based End-to-End ASR

# Recap: Deep Neural Network (DNN)

- First feed forward networks.
- Consists of input, multiple hidden and output layer.
- Each hidden and output layer consists of nodes.



# Recap: Deep Neural Network (DNN)

- Free parameters: weights *W* and bias *b*.
- Output of a layer is input to the next layer.
- Each node performs a linear followed by a non-linear activiation on the input.
- The output layer relates the output of the last hidden layer with the target states.



# Neural Network Layer



# Deep Neural Network (DNN)



#### Activation Function Zoo

• Sigmoid:

$$\sigma_{\text{sigmoid}}(y) = \frac{1}{1 + exp(-y)}$$

• Hyperbolic tangent:

$$\sigma_{tanh}(\mathbf{y}) = tanh(\mathbf{y}) = 2\sigma_{sigmoid}(2\mathbf{y})$$

• REctified Linear Unit (RELU):

$$\sigma_{
m relu}(\mathbf{y}) = egin{cases} \mathbf{y}, & \mathbf{y} > \mathbf{0} \ \mathbf{0}, & \mathbf{y} \leq \mathbf{0} \end{cases}$$

#### Activation Function Zoo

• Parametric RELU (PRELU):

$$\sigma_{\mathrm{prelu}}(\mathbf{y}) = \begin{cases} \mathbf{y}, & \mathbf{y} > \mathbf{0} \\ \mathbf{a} \cdot \mathbf{y}, & \mathbf{y} \leq \mathbf{0} \end{cases}$$

• Exponential Linear Unit (ELU):

$$\sigma_{\mathrm{elu}}(\mathbf{y}) = egin{cases} \mathbf{y}, & \mathbf{y} > \mathbf{0} \ \mathbf{a} \cdot (\exp(\mathbf{y}) - \mathbf{1}), & \mathbf{y} \leq \mathbf{0} \end{cases}$$

Maxout:

$$\sigma_{\max out}(y_1,\ldots,y_l) = \max_i \left\{ W_1 \cdot y^{(l-1)} + b_1,\ldots,W_l \cdot y^{(l-1)} + b_l \right\}$$

Softmax:

$$\sigma_{\text{softmax}}(y) = \left(\frac{\exp(y_1)}{Z(y)}, \dots, \frac{\exp(y_l)}{Z(y)}\right)^T \text{ with } Z(y) = \sum_j \exp(y_j)$$

# Where Are We?

1) Recap: Deep Neural Network

#### 2 Multilingual Bottleneck Features

3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR

# Multilingual Bottleneck



- Encoder-Decoder architecture: DNN with a bottleneck.
- Forces low-dimensional representation of speech across multiple languages.
- Several languages are presented to the network randomly.
- Training: Labels from different languages.
- Recognition: Network is cut off after bottleneck.

• Train Multilingual Bottleneck features with lots of data.

• Future use: Bottleneck features on different tasks to train GMM system.

• No expensive DNN training, but WER gains similar to DNN.

# Multilingual Bottleneck: Performance

|                         | WER [%] |      |      |      |
|-------------------------|---------|------|------|------|
| Model                   | FR      | EN   | DE   | PL   |
| MFCC                    | 23.6    | 28.6 | 23.3 | 18.1 |
| MLP BN targets          | 19.3    | 23.1 | 19.0 | 14.5 |
| MLP BN multi            | 18.7    | 21.3 | 17.9 | 14.0 |
| deep BN targets         | 17.4    | 20.3 | 17.3 | 13.0 |
| deep BN multi           | 17.1    | 19.7 | 16.4 | 12.6 |
| +lang.dep. hidden layer | 16.8    | 19.7 | 16.2 | 12.4 |

# More Fancy Models

- Convolutional Neural Networks.
- Recurrent Neural Networks:
  - Long Short-Term Memory (LSTM) RNNs,
  - Gated Recurrent Unit (GRU) RNNs.
- Unstable Gradient Problem.

# Where Are We?

Recap: Deep Neural Network

#### 2 Multilingual Bottleneck Features

#### 3 Convolutional Neural Networks

4 Recurrent Neural Networks

5 Unstable Gradient Problem

6 Attention-based End-to-End ASR

#### Convolutional Neural Networks (CNNs)

• Convolution (remember signal analysis ?):

$$(x_1 * x_2)[k] = \sum_i x_1[k-i] \cdot x_2[i]$$

DNN

CNN



fully connected



locally connected

#### Convolutional Neural Networks (CNNs)

• Convolution (remember signal analysis ?):

$$(x_1 * x_2)[k] = \sum_i x_1[k-i] \cdot x_2[i]$$

DNN

CNN



fully connected



locally connected

# Convolutional Neural Networks (CNNs)



#### **CNNs**

- Consists of multiple local maps with channels and kernels.
- Kernels are convolved across the input.
- Multidimensional input:
  - 1D (frequency),
  - 2D (time-frequency),
  - 3D (time-frequency-?).
- Neurons are connected to a local receptive fields of input.
- Weights are shared across multiple receptive fields.

# Formal Definition: Convolutional Neural Networks

- Free parameters: Feature maps  $W_n \in \mathbb{R}^{C \times k}$  bias  $b_n \in \mathbb{R}^k$  for n = 1, ..., N
  - $c = 1, \ldots, C$  channels,
  - $k \in \mathbb{N}$  kernel size
- Activation function:

$$egin{aligned} \mathcal{W}_{n,i} &= \sigma(\mathcal{W}_{n,i} * x_i + b) \ &= \sigma\left(\sum_{c=1}^{C}\sum_{j=i-k}^{i+k}\mathcal{W}_{n,c,i-j}x_{c,j} + b_f
ight) \end{aligned}$$

# Pooling

#### • Max-Pooling:

$$\operatorname{pool}(y_{n,c,i}) = \max_{j=i-k,\ldots,i+k} \{y_{n,c,j}\}$$

• Average-Pooling:

average
$$(y_{n,c,i}) = \frac{1}{2 \cdot k + 1} \sum_{j=i-k}^{i+k} y_{n,c,j}$$

#### CNN vs. DNN: Performance

- GMM, DNN use fMLLR features.
- CNN use log-Mel features which have local structure,
- opposed to speaker normalized features.

Table: Broadcast News 50 h.

| Table: | Broadcast conversation |
|--------|------------------------|
| 2k h   |                        |

|         | WER [%] |      |  |
|---------|---------|------|--|
| Model   | CE      | ST   |  |
| GMM     | 18.8    | n/a  |  |
| DNN     | 16.2    | 14.9 |  |
| CNN     | 15.8    | 13.9 |  |
| CNN+DNN | 15.1    | 13.2 |  |

|         | WER [%] |      |  |
|---------|---------|------|--|
| Model   | CE      | ST   |  |
| DNN     | 11.7    | 10.3 |  |
| CNN     | 12.6    | 10.4 |  |
| DNN+CNN | 11.3    | 9.6  |  |

| # Fmaps | Classic [16, 17, 18] | VB(X)          | VC(X)          | VD(X)          | WD(X)          |
|---------|----------------------|----------------|----------------|----------------|----------------|
| 64      |                      | conv(3,64)     | conv(3,64)     | conv(3,64)     | conv(3,64)     |
|         |                      | conv(64,64)    | conv(64,64)    | conv(64,64)    | conv(64,64)    |
|         |                      | pool 1x3       | pool 1x2       | pool 1x2       | pool 1x2       |
| 128     |                      | conv(64, 128)  | conv(64, 128)  | conv(64, 128)  | conv(64, 128)  |
|         |                      | conv(128, 128) | conv(128, 128) | conv(128, 128) | conv(128, 128) |
|         |                      | pool 2x2       | pool 2x2       | pool 1x2       | pool 1x2       |
| 256     |                      |                | conv(128, 256) | conv(128, 256) | conv(128, 256) |
|         |                      |                | conv(256, 256) | conv(256, 256) | conv(256, 256) |
|         |                      |                |                |                | conv(256, 256) |
|         |                      |                | pool 1x2       | pool 2x2       | pool 2x2       |
| 512     | conv9x9(3,512)       |                |                | conv(256, 512) | conv(256, 512) |
|         | pool 1x3             |                |                | conv(512, 512) | conv(512, 512) |
|         | conv3x4(512,512)     |                |                |                | conv(512, 512) |
|         |                      |                |                | pool 2x2       | pool 2x2       |
|         | FC 2048              |                |                |                |                |
|         | FC 2048              |                |                |                |                |
|         | (FC 2048)            |                |                |                |                |
|         | FC output size       |                |                |                |                |
|         | Softmax              |                |                |                |                |



|                        | WER  | # params (M) | #M frames |
|------------------------|------|--------------|-----------|
| Classic 512 [17]       | 13.2 | 41.2         | 1200      |
| Classic 256 ReLU (A+S) | 13.8 | 58.7         | 290       |
| VCX (6 conv) (A+S)     | 13.1 | 36.9         | 290       |
| VDX (8 conv) (A+S)     | 12.3 | 38.4         | 170       |
| WDX (10 conv) (A+S)    | 12.2 | 41.3         | 140       |
| VDX (8 conv) (S)       | 11.9 | 38.4         | 340       |
| WDX (10 conv) (S)      | 11.8 | 41.3         | 320       |

# Where Are We?



- 2 Multilingual Bottleneck Features
- 3 Convolutional Neural Networks
- 4 Recurrent Neural Networks
- 5 Unstable Gradient Problem
- 6 Attention-based End-to-End ASR

#### Recurrent Neural Networks (RNNs)

- DNNs are deep in layers.
- RNNs are deep in time (in addition).
- Shared weights and biases across time steps.







# Formal Definition: RNN

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, \dots, T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Free parameters:
  - Input to hidden weight:  $W \in \mathbb{R}^{n_{l-1} \times n_l}$
  - Hidden to hidden weight:  $\boldsymbol{R} \in \mathbb{R}^{n_l \times n_l}$
  - Bias:  $b \in \mathbb{R}^{n_l}$
- Output: Iterate the equation for t = 1, ..., T

$$h_t = \sigma(W \cdot x_t + R \cdot h_{t-1} + b)$$

• Compare with DNN:

$$h_t = \sigma(W \cdot x_t + b)$$

## BackPropagation Through Time (BPTT)

• Chain rule through time:

$$\frac{d \mathcal{F}(\theta)}{d h_t} = \sum_{\tau=1}^{t-1} \frac{d \mathcal{F}(\theta)}{d h_\tau} \frac{d h_\tau}{d h_t}$$


# BackPropagation Through Time (BPTT)

- Implementation:
  - Unfold RNN over time through t = 1, ..., T.
  - Forward propagate RNN.
  - Backpropagate error through unfolded network.
- Faster than other optimization methods (e.g. evolutionary search).
- Difficulty with local optima.

# Bidirectional RNN (BRNN)

- Forward RNN processes data forward left to right.
- Backward RNN processes data backward right to left.
- Output joins the output of forward and backward RNN.



Fig.2. Bidirectional RNN

# Formal Definition: BRNN

• Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, ..., T$ 

- Forward and backward hidden outputs:  $h_t, h_t, t = 1, ..., T$
- Forward and backward free parameters:
  - Input to hidden weight:  $W, W \in \mathbb{R}^{n_{l-1} \times n_l}$
  - Hidden to hidden weight:  $\overrightarrow{R}, \overleftarrow{R} \in \mathbb{R}^{n_l \times n_l}$
  - Bias:  $b, b \in \mathbb{R}^{n_l}$

• Output: Iterate the equation for t = 1, ..., T

$$\vec{h}_t = \sigma(\vec{W} \cdot x_t + \vec{R} \cdot \vec{h}_{t-1} + \vec{b})$$

• Output: Iterate the equation for t = T, ..., 1 $\overleftarrow{h}_t = \sigma(\overleftarrow{W} \cdot x_t + \overleftarrow{R} \cdot \overleftarrow{h}_{t+1} + \overleftarrow{b})$ 

# **RNN using Memory Cells**

- Equip an RNN with a memory cell.
- Can store information for a long time.
- Introduce gating units to:
  - activations going in,
  - activations going out,
  - saving activations,
  - forgetting activations.

# Long Short-Term Memory RNN



# Formal Definition: LSTM

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, \dots, T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Iterate the equation for t = 1, ..., T:

$$\begin{aligned} z_t &= \sigma(W_z \cdot x_t + R_z \cdot h_{t-1} + b_z) & \text{(block input)} \\ i_t &= \sigma(W_i \cdot x_t + R_i \cdot h_{t-1} + P_i \odot c_{t-1} + b_i) & \text{(input gate)} \\ f_t &= \sigma(W_f \cdot x_t + R_f \cdot h_{t-1} + P_f \odot c_{t-1} + b_f) & \text{(forget gate)} \\ c_t &= i_t \odot z_t + f_t \odot c_{t-1} & \text{(cell state)} \\ o_t &= \sigma(W_o \cdot x_t + R_o \cdot h_{t-1} + P_o \odot c_t + b_i) & \text{(output gate)} \\ h_t &= o_t \odot \tanh(c_t) & \text{(block output)} \end{aligned}$$

# LSTM: Too many connections ?

• Some of the connections in the LSTM are not necessary [1].

• Peepholes do not seem to be necessary.

• Coupled input and forget gates.

• Simplified LSTM  $\Rightarrow$  Gated Recurrent Unit (GRU).

# Gated Recurrent Unit (GRU)



- Element wise addition
- Element wise multiplication
  - Routes information can propagate along
  - Involved in modifying information flow and

### References: [2, 3, 4]

## Formal Definition: GRU

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, ..., T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Iterate the equation for t = 1, ..., T:

$$\begin{aligned} r_t &= \sigma(W_r \cdot x_t + R_r \cdot h_{t-1} + b_r) & (\text{reset gate}) \\ z_t &= \sigma(W_z \cdot x_t + R_z \cdot h_{t-1} + b_z) & (\text{update gate}) \\ \overline{h}_t &= \sigma(W_h \cdot x_t + R_h \cdot (r_t \odot h_{t-1}) + b_h) & (\text{candidate gate}) \\ h_t &= z_t \odot h_{t-1} + (1 - z_t) \odot \overline{h}_t & (\text{output gate}) \end{aligned}$$

## CNN vs. DNN vs. RNN: Performance

- GMM, DNN use fMLLR features.
- CNN use log-Mel features which have local structure,
- opposed to speaker normalized features.

Table: Broadcast News 50 h.

|                | WER [%] |      |
|----------------|---------|------|
| Model          | CE      | ST   |
| GMM            | 18.8    | n/a  |
| DNN            | 16.2    | 14.9 |
| CNN            | 15.8    | 13.9 |
| BGRU (fMLLR)   | 14.9    | n/a  |
| BLSTM (fMLLR)  | 14.8    | n/a  |
| BGRU (Log-Mel) | 14.1    | n/a  |

## DNN vs. CNN vs. RNN: Performance

- GMM, DNN use fMLLR features.
- CNN use log-Mel features which have local structure,
- opposed to speaker normalized features.

Table: Broadcast Conversation 2000 h.

|             | WER [%] |      |
|-------------|---------|------|
| Model       | CE      | ST   |
| DNN         | 11.7    | 10.3 |
| CNN         | 12.6    | 10.4 |
| RNN         | 11.5    | 9.9  |
| DNN+CNN     | 11.3    | 9.6  |
| RNN+CNN     | 11.2    | 9.4  |
| DNN+RNN+CNN | 11.1    | 9.4  |

- Unrolling the RNN in training:
  - whole utterance [5],
  - vs. truncated BPTT with carryover [6]:
    - Split utterance into subsequences of e.g. 21 frames.
    - Carry over last cell from previous subsequence to new subsequence.
    - Compose minibatch from subsequences.
  - vs. truncated BPTT with overlap:
    - Split utterance in subsequences of e.g. 21 frames.
    - Overlap subsequences by 10.
    - Compose minibatch of subsequences from different utterances.
- Gradient clipping of the LSTM cell.

# **RNN Black Magic**

- Recognition: Unrolling RNN
  - whole utterance,
  - vs. unrolling subsequences
    - Split utterance in subsequences of e.g. 21 frames.
    - Carry over last cell from previous subsequence to new subsequence.
  - vs. unrolling on spectral window [7]
    - For each frame unroll on the spectral window
    - Last RNN layer only returns center/last frame.

# Highway Network



- Element wise addition
- Element wise multiplication
  - Routes information can propagate along
  - Involved in modifying information flow and

### References: [2, 3, 4]

## Formal Definition: Highway Network

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, \dots, T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Iterate the equation for t = 1, ..., T:

 $\begin{aligned} z_t &= \sigma(W_z \cdot x_t + b_z) & (\text{highway gate}) \\ \overline{h}_t &= \sigma(W_h \cdot x_t + b_h) & (\text{candidate gate}) \\ h_t &= z_t \odot x_t + (1 - z_t) \odot \overline{h}_t & (\text{output gate}) \end{aligned}$ 

## Formal Definition: Highway GRU

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, \dots, T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Iterate the equation for t = 1, ..., T:

$$\begin{aligned} r_t &= \sigma(W_r \cdot x_t + R_r \cdot h_{t-1} + b_r) & (\text{reset gate}) \\ z_t &= \sigma(W_z \cdot x_t + R_z \cdot h_{t-1} + b_z) & (\text{update gate}) \\ d_t &= \sigma(W_d \cdot x_t + R_d \cdot h_{t-1} + b_d) & (\text{highway gate}) \\ \overline{h}_t &= \sigma(W_h \cdot x_t + R_h \cdot (r_t \odot h_{t-1}) + b_h) & (\text{candidate gate}) \\ h_t &= d_t \odot x_t + (1 - d_t) \odot (z_t \odot h_{t-1} + (1 - z_t) \odot \overline{h}_t) \\ & (\text{output gate}) \end{aligned}$$

# Where Are We?

- Recap: Deep Neural Network
- 2 Multilingual Bottleneck Features
- 3 Convolutional Neural Networks
- 4 Recurrent Neural Networks
- 5 Unstable Gradient Problem
- 6 Attention-based End-to-End ASR

### Unstable Gradient Problem

- Happens in deep as well in recurrent neural networks.
- If gradient becomes very small  $\Rightarrow$  vanishing gradient.
- If gradient becomes very large  $\Rightarrow$  exploding gradient.
- Simplified Neural Network (*w<sub>i</sub>* are just scalars):

$$\begin{aligned} \mathcal{F}(\mathbf{w}_1,\ldots,\mathbf{w}_N) &= \mathcal{L}(\sigma(\mathbf{y}_N) \\ &= \mathcal{L}(\sigma(\mathbf{w}_N \cdot \sigma(\mathbf{y}_{N-1}) \\ &= \mathcal{L}(\sigma(\mathbf{w}_N \cdot \sigma(\mathbf{w}_{N-1} \cdot \ldots \sigma(\mathbf{w}_1 \cdot \mathbf{x}_t) \ldots))) \end{aligned}$$

# Unstable Gradient Problem, Constraints and Regularization

• Gradient:

$$\frac{\mathrm{d}\,\mathcal{F}(w_1,\ldots,w_N)}{\mathrm{d}\,w_1} = \frac{\mathrm{d}\,\mathcal{L}}{\mathrm{d}\,\theta} \cdot \frac{\mathrm{d}\,\sigma(w_N \cdot \sigma(w_{N-1} \cdot \ldots \sigma(w_1 \cdot x_t) \ldots))}{\mathrm{d}\,w_1} = \frac{\mathrm{d}\,\mathcal{L}}{\mathrm{d}\,w_1} \cdot \sigma'(y_N) \cdot w_N \cdot \sigma'(y_{N-1}) \cdot w_{N-1} \cdot \ldots \sigma'(w_1) \cdot x_t$$

• If  $|w_i \sigma'(y_i)| < 1, i = 2, ..., N \Rightarrow$  gradient vanishes.

• If  $|w_i \sigma'(y_i)| >> 1, i = 2, ..., N \Rightarrow$  gradient explodes.

## Solution: Unstable Gradient Problem

- Gradient Clipping.
- Weight constraints.
- Let the network save activations over layers/time steps:

$$y_{\text{new}} = \alpha y_{\text{previous}} + (1 - \alpha) y_{\text{common}}$$

- Long Short-Term Memory RNN
- Highway Neural Network (>100 layers)

- Keeps gradient weights in range.
- One approach to deal with the exploding gradient problem.
- Ensure gradient is in the range [-c, c] for a constant c:

$$\operatorname{clip}\left(\frac{\mathrm{d}\,\mathcal{F}}{\mathrm{d}\,\theta},\boldsymbol{c}\right) = \min\left(\boldsymbol{c},\max\left(-\boldsymbol{c},\frac{\mathrm{d}\,\mathcal{F}}{\mathrm{d}\,\theta}\right)\right)$$

• Keeps weights in range (for e.g. Relu, Maxout).

• Ignored for gradient backpropagation.

• Constraints are forced after gradient update.

# Constraints (II)

• Max-Norm: force  $||W||_2 \le c$  for constant c

$$\|\boldsymbol{W}\|_{\max} = \boldsymbol{W} \cdot \frac{\max(\min(\|\boldsymbol{W}\|_2, 0), \boldsymbol{c})}{\|\boldsymbol{W}\|_2}$$

• Unity-Norm: force  $||W||_2 \le 1$ 

$$\|\boldsymbol{W}\|_{ ext{unity}} = rac{\boldsymbol{W}}{\|\boldsymbol{W}\|_2}$$

• Positivity-Norm: force W > 0

$$\|W\|_{+} = W \cdot \max(0, W)$$

# **Regularization: Dropout**

### • Dropout:



• Prevents getting stuck in local optimum  $\Rightarrow$  avoids overfitting.

# **Regularization: Dropout**

• Dropout:





(b) After applying dropout.

• Prevents getting stuck in local optimum  $\Rightarrow$  avoids overfitting.

## **Regularization: Dropout**

- Input vector sequence:  $x_t \in \mathbb{R}^D$
- Choose  $z_t \in \{0, 1\}^D$  for t = 1, ..., T
- According to Bernoulli distribution P(z<sub>t,d</sub> = i) = p<sup>1-i</sup>(1 − p)<sup>i</sup> with dropout probability with p ∈ [0, 1]:
- Training:  $x_t := x_t \odot \frac{z_t}{1-p}$  for  $t = 1, \ldots, T$ .
- Recognition:  $x_t := x_t$  for  $t = 1, \ldots, T$ .

# Regularization (II)

•  $L_p$  Norm:

$$\|\theta\|_{p} = \left(\sum_{j=0}^{|\theta|} |\theta|^{p}\right)^{\frac{1}{p}}$$

• Training criterion regularization:

 $\mathcal{F}_{\rho}(\theta) = \mathcal{F}(\theta) + \lambda \|\theta\|_{\rho}$  with scalar  $\lambda$ 

### • Smoothes the training criterion.

• Pushes the free parameter weights closer to zero.

# Where Are We?

- Recap: Deep Neural Network
- 2 Multilingual Bottleneck Features
- 3 Convolutional Neural Networks
- 4 Recurrent Neural Networks
- 5 Unstable Gradient Problem



### Attention-based End-to-End Architecture



### Attention model



## Formal Definition: Content Focus

- Input vector sequence:  $x_t \in \mathbb{R}^D, t = 1, ..., T$
- Hidden outputs:  $h_t, t = 1, \ldots, T$
- Scorer:

 $\epsilon_{m,t} = \tanh(V_{m,\epsilon} \cdot x_t + b_{\epsilon}) \text{ for } t = 1, \dots, T, m = 1, \dots, M$ 

• Generator:

$$\alpha_{m,t} = \frac{\sigma(W_{\alpha} \cdot \epsilon_{m,t})}{\sum_{\tau=1}^{T} \sigma(W_{\alpha} \cdot \epsilon_{m,\tau})} \text{ for } t = 1, \dots, T, m = 1, \dots, M$$

• Glimpse:

$$g_m = \sum_{t=1}^T \alpha_{m,t} x_t$$
 for  $m = 1, \dots, M$ 

• Output:

$$h_m = \sigma(W_h \cdot g_m + b_h)$$
 for  $m = 1, \dots, M$ 

## Formal Definition: Recurrent Attention

Scorer:

$$\epsilon_{m,t} = \tanh(W_{\epsilon} \cdot x_t + R_{\epsilon} \cdot s_{m-1} + U_{\epsilon} \cdot (F_{\epsilon} * \alpha_{m-1}) + b_{\epsilon})$$

• Generator:

$$\alpha_{m,t} = \frac{\sigma(W_{\alpha} \cdot \epsilon_{m,t})}{\sum_{\tau=1}^{T} \sigma(W_{\epsilon} \cdot \epsilon_{m,\tau})} \text{ for } t = 1, \dots, T, m = 1, \dots, M$$

• Glimpse:

$$g_m = \sum_{t=1}^T \alpha_{m,t} x_t$$
 for  $m = 1, \dots, M$ 

• GRU state:

$$s_m = GRU(g_m,h_m,s_{m-1})$$
 for  $m=1,\ldots,M$ 

• Output:

$$h_m = \sigma(W_h \cdot g_m + R_h \cdot s_{m-1} + b_h)$$
 for  $m = 1, \ldots, M$ 

#### Table: TIMIT

|                | WER [%] |      |
|----------------|---------|------|
| Model          | dev     | eval |
| HMM            | 13.9    | 16.7 |
| End-to-end     | 15.8    | 17.6 |
| RNN Transducer | n/a     | 17.7 |

- K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, "LSTM: A search space odyssey," *CoRR*, vol. abs/1503.04069, 2015. [Online]. Available: http://arxiv.org/abs/1503.04069
- K. Cho, B. Van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using rnn encoder–decoder for statistical machine translation," in *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available: http://www.aclweb.org/anthology/D14-1179
- J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," *CoRR*, vol. abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

- R. Józefowicz, W. Zaremba, and I. Sutskever, "An empirical exploration of recurrent network architectures," in *ICML*, ser. JMLR Proceedings, vol. 37. JMLR.org, 2015, pp. 2342–2350.
- A. Graves, N. Jaitly, and A. Mohamed, "Hybrid speech recognition with deep bidirectional LSTM," in *ASRU*. IEEE, 2013, pp. 273–278.
- H. Sak, A. W. Senior, and F. Beaufays, "Long short-term memory recurrent neural network architectures for large scale acoustic modeling," in *INTERSPEECH*. ISCA, 2014, pp. 338–342.
- A.-R. Mohamed, F. Seide, D. Yu, J. Droppo, A. Stolcke, G. Zweig, and G. Penn, "Deep bi-directional recurrent networks over spectral windows," in *Proc. IEEE Automatic Speech Recognition and Understanding Workshop*. IEEE Institute of Electrical and Electronics Engineers, December

### 2015, pp. 78–83. [Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?id=259236