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Part I

Introduction
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Three Questions

Why are you taking this course?
What do you think you might learn?
How do you think this may help you in the future?
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What Is Speech Recognition?

Converting speech to text (STT).
a.k.a. automatic speech recognition (ASR).

What it’s not.
Natural language understanding — e.g., Siri.
Speech synthesis — converting text to speech (TTS),
e.g., Watson.
Speaker recognition — identifying who is speaking.
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Why Is Speech Recognition Important?
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Because It’s Fast

modality method rate (words/min)
sound speech 150–200
sight sign language; gestures 100–150
touch typing; mousing 60
taste dipping self in different flavorings <1
smell spraying self with perfumes <1
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Because it’s easier to process text than audio

vs
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Because It’s Hands Free
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Because It’s a Natural Form of
Communication
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Key Applications

Transcription: archiving/indexing audio.
Legal; medical; television and movies.
Call centers.

Whenever you interact with a computer . . .
Without sitting in front of one.
e.g., smart or dumb phone; car; home entertainment.

Accessibility.
People who can’t type, or type slowly.
The hard of hearing.
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Why Study Speech Recognition?

Learn a lot about many popular machine learning
techniques.

They all originated in speech.
Be exposed to a real problem with real data — no artificial
ingredients.
Learn how to build a complex end-to-end system.

Toto, we aren’t in Kansas anymore!
Not solved yet, so maybe you will be inspired to make it
your life’s work — like we have!
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Where Are We?

1 Course Overview

2 Speech Recognition from 10,000 Feet Up

3 A Brief History of Speech Recognition

4 Speech Production and Perception
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Who Are We?

Stanley F. Chen: Productive Researcher
Markus Nussbaum-Thom: Productive Researcher
Bhuvana Ramabhadran: Useless Manager
Michael Picheny: Even More Useless Senior Manager

We are all from the Watson Multimodal Group located at the
IBM T.J. Watson Research Center in Yorktown Heights, NY.
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What is the Watson Group?
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Why Four Professors?

Too much knowledge to fit in one brain.
Signal processing.
Probability and statistics.
Phonetics; linguistics.
Natural language processing.
Machine learning; artificial intelligence.
Automata theory.
Optimization.
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How To Contact Us

In E-mail, prefix subject line with “EECS E6870:”!!!.
Michael Picheny — picheny@us.ibm.com.
Bhuvana Ramabhadran — bhuvana@us.ibm.com.
Stanley F. Chen — stanchen@us.ibm.com.
Markus Nussbaum-Thom — nussbaum@us.ibm.com.

Office hours: right after class.
Before class by appointment.

TA: TBD
Courseworks.

For posting questions about labs.
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Course Outline

week lecture topic assigned due

1 1 Introduction
2 2 Signal processing; DTW lab 1
3 3 Gaussian mixture models
4 4 Hidden Markov models lab 2 lab 1
5 5 Language modeling 101
6 6 Pronunciation modeling lab 3 lab 2
7 7 Training Speech Recognition Systems
8 8 The Search Problem lab 4 lab 3
9 recess

10 9 The Search Problem, continued
11 10 Language Modeling 201 lab 5 lab 4
12 11 Robustness and Adaptation
13 12 Discriminative Training, ROVER and Consensus lab 5
14 13 Neural Networks 101
15 14 Neural Networks 201
16 study
17 Project Presentations project
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Programming Assignments

80% of grade (
√
−,
√

,
√

+ grading).
Some short written questions.
Write key parts of basic large vocabulary continuous
speech recognition system.

Only the “fun” parts.
C++ code infrastructure provided by us.

Get account on ILAB computer cluster (x86 Linux PC’s).
Login to cluster using ssh.
Can’t run labs on PC’s/Mac’s.

If not yet signed up for course, but going to add:
Fill out index card with name, UNI, and E-mail address.
Or E-mail this info to stanchen@us.ibm.com.
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Final Project

20% of grade.
Option 1: Reading project (individual).

Pick paper(s) from provided list, or propose your own.
Write 1500–2500 word paper reviewing + analyzing
paper(s).

Option 2: Programming/experimental project (group).
Pick project from provided list, or propose your own.
Group gives 10–15m presentation summarizing project
and writes paper.
40% of grade (if helps).
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Readings

PDF versions of readings will be available on the web site.
Recommended text:

Speech Synthesis and Recognition, Holmes, 2nd
edition (paperback, 256 pp., 2001) [Holmes].

Reference texts:
Theory and Applications of Digital Signal Processing,
Rabiner, Schafer (hardcover, 1056 pp., 2010) [R+S].
Speech and Language Processing, Jurafsky, Martin
(2nd edition, hardcover, 1024 pp., 2000) [J+M].
Statistical Methods for Speech Recognition, Jelinek
(hardcover, 305 pp., 1998) [Jelinek].
Spoken Language Processing, Huang, Acero, Hon
(paperback, 1008 pp., 2001) [HAH].
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Web Site

tinyurl.com/e6870s16⇒
www.ee.columbia.edu/~stanchen/spring16/e6870/

Syllabus.
Slides from lectures (PDF).

Online after each lecture.
Save trees — no hardcopies!

Lab assignments (PDF).
Reading assignments (PDF).

Online by lecture they are assigned.
Username: speech, password: pythonrules.
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Prerequisites

Basic knowledge of probability and statistics.
Willingness to implement algorithms in C++.

Only basic features of C++ used; ∼100 lines/lab.
Basic knowledge of Unix or Linux.
Knowledge of digital signal processing optional.

Helpful for understanding signal processing lectures;
i.e., CS majors may find signal processing material
baffling!
Not needed for labs!
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Help Us Help You

Feedback questionnaire after each lecture (2 questions).
Feedback welcome any time.

You, the student, are partially responsible . . .
For the quality of the course.

Please ask questions anytime!
EE’s may find CS parts challenging, and vice versa.
Together, we can get through this.
Let’s go!
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Where Are We?

1 Course Overview

2 Speech Recognition from 10,000 Feet Up

3 A Brief History of Speech Recognition

4 Speech Production and Perception
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What is the basic goal?

Recognize as many words correctly as possible.

Use those algorithms that lower the Word Error Rate
Imperfect but very useful simple to measure objective
criterion
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Why is this difficult? (Part I)
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A Thousand Times No!
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Why is this difficult? (Part II)
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Basic Concepts
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Historical Developments
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Where Are We?

1 Course Overview

2 Speech Recognition from 10,000 Feet Up

3 A Brief History of Speech Recognition

4 Speech Production and Perception
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The Early Years: 1950–1960’s

Ad hoc methods.
Many key ideas introduced; not used all together.
e.g., spectral analysis; statistical training; language
modeling.

Small vocabulary.
Digits; yes/no; vowels.

Not tested with many speakers (usually <10).
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The Birth of Modern ASR: 1970–1980’s

Every time I fire a linguist, the performance of the
speech recognizer goes up.

—Fred Jelinek, IBM

Ignore (almost) everything we know about phonetics,
linguistics.
View speech recognition as . . . .

Finding most probable word sequence given audio.
Train probabilities automatically w/ transcribed speech.
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The Birth of Modern ASR: 1970–1980’s

Many key algorithms developed/refined.
Expectation-maximization algorithm; n-gram models;
Gaussian mixtures; Hidden Markov models; Viterbi
decoding; etc.

Computing power still catching up to algorithms.
First real-time dictation system built in 1984 (IBM).
Specialized hardware required — had the computation
power of a 60 MHz Pentium.
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The Golden Years: 1990’s–now

1994 now
CPU speed 60 MHz 3 GHz
training data <10h 10000h+

output distributions GMM NN /GMM hybrids
sequence modeling HMM HMM and/or NN
language models n-gram n-gram and NN

Basic algorithms have remained similar but now seeing
huge penetration of NN technologies.
Significant performance gains can also be attributed to
presence of more data, faster CPU’s, and more run-time
memory.
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Person vs. Machine (Lippmann, 1997)

task machine human ratio
Connected Digits1 0.72% 0.009% 80×
Letters2 5.0% 1.6% 3×
Resource Management 3.6% 0.1% 36×
WSJ 7.2% 0.9% 8×
Switchboard 43% 4.0% 11×

For humans, one system fits all; for machine, not.
Today: Switchboard WER < 8%.

But that is with 2000 hours of SWB training data; can’t
assume this is always available.

1String error rates.
2Isolated letters presented to humans; continuous for machine.
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Commercial Speech Recognition

1995 – 1998 — first large vocabulary speaker dependent
dictation systems.
1996 – 2005 — first telephony- based customer assistance
systems.
2003 – 2007 — first automotive interactive systems.
2008 – 2010 — first voice search systems.
2011 – today — growth of cloud-based speech services.
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What’s left?

Accents
Noise
Far field microphones
Informal speech
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Are We Awake?

Of the time you spend interacting with devices . . .
What fraction do you use ASR?
What fraction would it be if ASR were perfect?
What are the biggest problems with current ASR
performance?
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The First Two Lectures

A little background on speech production and perception.
signal processing — Extract features from audio A⇒ A′ . . .

That discriminate between different words.
Normalize for volume, pitch, voice quality, noise, . . . .

dynamic time warping —Handling time/rate variation.

40 / 94



Where Are We?

1 Course Overview

2 Speech Recognition from 10,000 Feet Up

3 A Brief History of Speech Recognition

4 Speech Production and Perception
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Data-Driven vs. Knowledge-Driven

Don’t ignore everything we know about speech, language.

?

dumb smart

Knowledge/concepts that have proved useful.
Words; phonemes.
A little bit of human production/perception.

Knowledge/concepts that haven’t proved useful (yet).
Nouns; vowels; syllables; voice onset time; . . .
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Finding Good Features

Extract features from audio . . .
That help determine word identity.

What are good types of features?
Instantaneous air pressure at time t?
Loudness at time t?
Energy or phase for frequency ω at time t?
Estimated position of speaker’s lips at time t?

Look at human production and perception for insight.
Also, introduce some basic speech terminology.
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Speech Production

Air comes out of lungs.
Vocal cords tensed (vibrate⇒ voicing) or relaxed
(unvoiced).
Modulated by vocal tract (glottis→ lips); resonates.

Articulators: jaw, tongue, velum, lips, mouth.
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Speech Consists Of a Few Primitive Sounds?

Phonemes.
40 to 50 for English.
Speaker/dialect differences.
e.g., do MARY, MARRY, and MERRY rhyme?
Phone: acoustic realization of a phoneme.

May be realized differently based on context.
allophones: different ways a phoneme can be realized.
e.g., P in SPIN, PIN are two different allophones of P.

spelling phonemes
SPIN S P IH N
PIN P IH N

e.g., T in BAT, BATTER; A in BAT, BAD.
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Classes of Speech Sounds

Can categorize phonemes by how they are produced.
Voicing.

e.g., F (unvoiced), V (voiced).
All vowels are voiced.

Stops/plosives.
Oral cavity blocked (e.g., lips, velum); then opened.
e.g., P, B (lips).
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Classes of Speech Sounds

Spectogram shows energy at each frequency over time.
Voiced sounds have pitch (F0); formants (F1, F2, F3).
Very highly trained humans can do recognition on
spectrograms with high accuracy so this is a valid
representation.
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Classes of Speech Sounds

What can the machine do? Here is a sample on TIMIT:
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Classes of Speech Sounds

Vowels — EE, AH, etc.
Differ in locations of formants.
Dipthongs — transition between two vowels (e.g., COY,
COW).

Consonants.
Fricatives — F, V, S, Z, SH, J.
Stops/plosives — P, T, B, D, G, K.
Nasals — N, M, NG.
Semivowels (liquids, glides) — W, L, R, Y.
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Coarticulation

Realization of a phoneme can differ very much depending
on context (allophones).
Where articulators were for last phone affect how they
transition to next.
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Speech Production and ASR

Directly use features from acoustic phonetics?
e.g., (inferred) location of articulators; voicing; formant
frequencies.
In practice, has not been made to work

Still, influences how signal processing is done.
Source-filter model.
Separate excitation from modulation from vocal tract.
e.g., frequency of excitation can be ignored (English).
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Speech Perception and ASR

As it turns out, the features that work well . . . .
Motivated more by speech perception than production.

e.g., Mel Frequency Cepstral Coefficients (MFCC).
Motivated by human perception of pitch.
Similarly for perceptual linear prediction (PLP).

52 / 94



Speech Perception — Physiology

Sound enters ear; converted to vibrations in cochlear fluid.
In fluid is basilar membrane, with ∼30,000 little hairs.

Sensitive to different frequencies (band-pass filters).
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Speech Perception — Physiology

Human physiology used as justification for frequency
analysis ubiquitous in speech processing.
Limited knowledge of higher-level processing.

Can glean insight from psychophysical experiments
(relationship between physical stimuli and human
responses)
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Speech Perception — Psychophysics

Sound Pressure Level (SPL) in dB = 20 log10 P/P0

P0 ⇔ threshold of hearing at 1 KHz (it varies!)
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Speech Perception — Psychophysics

Different sensitivity of humans to different frequencies.
Equal loudness contours.

Subjects adjust volume of tone to match volume of
another tone at different pitch.

Tells us what range of frequencies may be good to focus on.
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Speech Perception — Psychophysics

Human perception of distance between frequencies.
Adjust pitch of one tone until twice/half pitch of other tone.
Mel scale — frequencies equally spaced in Mel scale are
equally spaced according to human perception.

Mel freq = 2595 log10(1 + freq/700)

57 / 94



Speech Perception — Machine

Just as human physiology has its quirks . . .
So does machine “physiology”.

Sources of distortion.
Microphone — different response based on direction
and frequency of sound.
Sampling frequency — e.g., 8 kHz sampling for
landlines throws away all frequencies above 4 kHz.
Analog/digital conversion — need to convert to digital
with sufficient precision (8–16 bits).
Lossy compression — e.g., cellular telephones, VOIP.
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Speech Perception — Machine

Input distortion can still be a significant problem.
Mismatched conditions between train/test.
Low bandwidth — telephone, cellular.
Cheap equipment — e.g., mikes in handheld devices.

Enough said.
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Are We Awake?

Sometimes it helps to mimic nature; sometimes not (e.g.,
airplanes and flying).

Which way should be best for ASR in the long run?
Does it make more sense to mimic human speech
production or perception?
Why do humans have two ears, and what does this mean
for ASR?
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Segue

Now that we see what humans do.
Let’s discuss what signal processing has been found to
work well empirically.

Has been tuned over decades.
Start with some mathematical background.
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Part II

Signal Processing Basics
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Overview

Background material: how to mathematically model/analyze
human speech production and perception.

Introduction to signals and systems.
Basic properties of linear systems.
Introduction to Fourier analysis.

Next week: discussion of actual features used in ASR.
Recommended readings: [HAH] pg. 201-223, 242-245.
[R+J] pg. 69-91. All figures taken from these texts.
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Speech Production

The sound pressure modulations can be captured by a
microphone, converted to an electrical signal, and then digitized
creating a sequence of numbers we call a "signal".
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Signals and Systems

Signal: a function x [n] over time .
e.g., output of microphone attached to an A/D
converter.

0 0.5 1 1.5 2 2.5

x 104

−1

−0.5

0

0.5

A digital system (or filter ) H takes an input signal x [n] and
produces a signal y [n]:

y [n] = H(x [n])
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What do we need to do to this signal to be
useful for speech recognition?

Model signal as being generated from a set of time-varying
physiological variables (vocal tract geometry, glottal
vibration, lip radiation, etc.) and extract these variables from
the signal.
Operate on the signal to mimic some of the processing
done in the auditory system, for example — frequency
analysis.

Either way we want to make things simple, so we will focus on
linear processing.
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Linear Time-Invariant Systems

Calculating output of H for input signal x becomes very
simple if digital system H satisfies two basic properties.
H is linear if

H(a1x1[n] + a2x2[n]) = a1H(x1[n]) + a2H(x2[n])

H is time-invariant if

y [n − n0] = H(x [n − n0])

i.e., a shift in the time axis of x produces the same output,
except for a time shift.

67 / 94



Linear Time-Invariant (LTI) Systems

Let H be a linear system. Define

h(n) = H(x(n) = δ[n]), δ(n = 0) = 1, δ(n 6= 0) = 0

h(n) is called the impulse response of the system.
Then, by the LTI properties H(x [n]) can be written as

y [n] =
∞∑

k=−∞

x [k ]h[n − k ] =
∞∑

k=−∞

x [n − k ]h[k ]

The above is also known as convolution and is written as

y [n] = x [n] ∗ h[n]

So if you know the impulse response of an LTI system it is
easy to calculate the output for any input.
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Fourier Analysis

Moving towards more meaningful features.
Time domain: x [n] ∼ air pressure at time n.
Frequency domain: X (ω) ∼ energy at frequency ω.
As we discussed earlier, energy as a function of
frequency is what seems to be useful for speech
recognition
This is very easy to compute when dealing with LTI
systems

Can express (almost) any signal x [n] as sum of sinusoids.
Let X (ω) be the coefficient for sinusoid w/ frequency ω.

Given x [n], can compute X (ω) efficiently, and vice versa.
Time and frequency domain representations are
equivalent.

Fourier transform converts between representations.
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Fourier Series Illustration
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Review: Complex Exponentials

Math is simpler using complex exponentials.
Euler’s formula.

ejω = cosω + j sinω

Sinusoid with frequency ω, phase φ.

cos(ωn + φ) = Re(ej(ωn+φ))

71 / 94



The Fourier Transform

The discrete-time Fourier transform (DTFT) is defined as

X (ω) =
∞∑

n=−∞

x [n]e−jωn

Note: this is a complex quantity.
The inverse Fourier transform is defined as

x [n] =
1

2π

∫ π

−π
X (ω)ejωndω

Exists and is invertible as long as
∑∞
−∞ |x [n]| <∞.

Can apply DTFT to impulse response as well: h[n]⇒ H(ω).
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The Z-Transform

One can generalize the discrete-time Fourier Transform to

X (z) =
∞∑

n=−∞

x(n)z−n

where z is any complex variable. The Fourier Transform is
just the z-transform evaluated at z = e−jω.
The z-transform concept allows us to analyze a large range
of signals, even those whose integrals are unbounded. We
will primarily just use it as a notational convenience, though.
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The Convolution Theorem

Apply system H to signal x to get signal y : y [n] = x [n]∗h[n].

Y (z) =
∞∑

n=−∞

y [n]z−n =
∞∑

n=−∞

(
∞∑

k=−∞

x [k ]h[n − k ]

)
z−n

=
∞∑

k=−∞

x [k ]

(
∞∑

n=−∞

h[n − k ]z−n

)

=
∞∑

k=−∞

x [k ]

(
∞∑

n=−∞

h[n]z−(n+k)

)

=
∞∑

k=−∞

x [k ]z−kH(z) = X (z) · H(z)
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The Convolution Theorem (cont’d)

Duality between time and frequency domains.

DTFT(x [n] ∗ y [n]) = DTFT(x) · DTFT(y)

DTFT(x [n] · y [n]) = DTFT(x) ∗ DTFT(y)

i.e., convolution in time domain is same as multiplication in
frequency domain, and vice versa.
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The Discrete Fourier Transform (DFT)

Preceding analysis assumes infinite signals:
n = −∞, . . . ,+∞.
In reality, can assume signals x [n] are finite and of length N
(n = 0, . . . ,N − 1). Then, we can define the DFT as

X [k ] =
N−1∑
n=0

x [n]e−j 2πkn
N

where we have replaced ω in the DTFT with 2πk
N .

The DFT is just a discrete-frequency version of the DTFT
and is needed for any sort of digital processing.
The DFT is equivalent to a Fourier series expansion of a
periodic version of x [n].
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The Discrete Fourier Transform (cont’d)

The inverse of the DFT is

1
N

N−1∑
k=0

X [k ]ej 2πkn
N =

1
N

N−1∑
k=0

[
N−1∑
m=0

x [m]e−j 2πkm
N

]
ej 2πkn

N

=
1
N

N−1∑
m=0

x [m]
N−1∑
n=0

ej 2πk(n−m)
N

The last sum on the right is N for m = n and 0 otherwise, so
the entire right side is just x [n].
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The Fast Fourier Transform
Note that the computation of

X [k ] =
N−1∑
n=0

x [n]e−j 2πkn
N ≡

N−1∑
n=0

x [n]W nk
N

for k = 0, . . . ,N − 1 requires O(N2) operations.
Let f [n] = x [2n] and g[n] = x [2n + 1]. Then, we have

X [k ] =

N/2−1∑
n=0

f [n]W nk
N/2 + W k

N

N/2−1∑
n=0

g[n]W nk
N/2

= F [k ] + W k
NG[k ]

when F [k ] and G[k ] are the N/2 point DFT’s of f [n] and
g[n]. To produce values for X [k ] for N > k ≥ N/2, note that
F [k + N/2] = F [k ] and G[k + N/2] = G[k ].
The above process can be iterated to compute the DFT
using only O(N log N) operations.
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The Discrete Cosine Transform

Instead of decomposing a signal into a sum of complex
sinusoids, it is useful to decompose a signal into a sum of
real sinusoids.
The Discrete Cosine Transform (DCT) (a.k.a. DCT-II) is
defined as

C[k ] =
N−1∑
n=0

x [n] cos(
π

N
(n +

1
2

)k) k = 0, . . . ,N − 1
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The Discrete Cosine Transform (cont’d)

We can relate the DCT and DFT as follows. If we create a signal

y [n] = x [n] n = 0, . . . ,N − 1
y [n] = x [2N − 1− n] n = N, . . . ,2N − 1

then we can compute C(k) in terms of Y [k ], the DFT of y [n], as

C(k) = Y (k)2e−j πk
2N k = 0, . . . ,N − 1

80 / 94



Long-Term vs. Short-Term Information

Have infinite (or long) signal x [n], n = −∞, . . . ,+∞.
Take DTFT or DFT of whole damn thing.
Is this interesting?

Point: we want short-term information!
e.g., how much energy at frequency ω over span
n = n0, . . . ,n0 + k?

Going from long-term to short-term analysis.
Windowing.
Filter banks.
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Windowing: The Basic Idea

Excise N points from signal x [n], n = n0, . . . ,n0 + (N − 1)
(e.g., 0.02s or so).
Perform DFT on truncated signal; extract some features.
Shift n0 (e.g., by 0.01s or so) and repeat.
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What’s the Problem?

Excising N points from signal x ⇔ multiplying by
rectangular window h.
Convolution theorem: multiplication in time domain is same
as convolution in frequency domain.

Fourier transform of result is X (ω) ∗ H(ω).
Imagine original signal is periodic.

Ideal: after windowing, X (ω) remains unchanged⇔
H(ω) is delta function.
Reality: short-term window cannot be perfect.
How close can we get to ideal?
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Rectangular Window

h[n] =

{
1 n = 0, . . . ,N − 1
0 otherwise

The FFT can be written in closed form as

H(ω) =
sinωN/2
sinω/2

e−jω(N−1)/2

Note the high sidelobes of the window. These tend to
distort low energy components in the spectrum when there
are significant high-energy components also present.
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Hanning and Hamming Windows

Hanning: h[n] = .5− .5 cos 2πn/N
Hamming: h[n] = .54− .46 cos 2πn/N

Hanning and Hamming have slightly wider main lobes,
much lower sidelobes than rectangular window.
Hamming window has lower first sidelobe than Hanning;
sidelobes at higher frequencies do not roll off as much.
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Windowing Comparison
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Using Signal Processing to do Frequency
Analysis like the Auditory System

Each cochlear hair does a frequency analysis at a different
frequency.

Input signal: air pressure; output: hair displacement.
Each hair responds to different frequency.
Cochlea is a filter bank.

87 / 94



Bandpass Filters

A filter H acts on each input frequency ω independently.
Scales component with frequency ω by H(ω).

Low-pass filter.
“Lets through” all frequencies below cutoff frequency.
Suppresses all frequencies above.

High-pass filter; band-pass filter.
A Filter Bank is a collection of band-pass filters spanning a
frequency range.
Can implement filter bank via convolution.

For each output point n, computation for i th filter is on
order of Li (length of impulse response).

xi [n] = x [n] ∗ hi [n] =

Li−1∑
m=0

hi [m]x [n −m]
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Implementation of Filter Banks

Given low-pass filter h[n], can create band-pass filter
hi [n] = h[n]ejωi n via heterodyning.

Multiplication in time domain⇒ convolution in
frequency domain⇒ shift H(ω) by ωi .

xi [n] =
∑

h[m]ejωi mx [n −m]

= ejωi n
∑

x [m]h[n −m]e−jωi m

The last term on the right is just Xn(ω), the Fourier
transform of a windowed signal, where now the window is
the same as the filter. So, we can interpret the FFT as just
the instantaneous filter outputs of a uniform filter bank
whose bandwidths corresponding to each filter are the
same as the main lobe width of the window.
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Implementation of Filter Banks (cont’d)
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Implementation of Filter Banks (cont’d)

Notice that by combining various filter bank channels we
can create non-uniform filterbanks in frequency.
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Are We Awake?

Why is the current energy at a frequency a more robust
feature than instantaneous air pressure?
Why does everyone in ASR use Fourier analysis?
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Recap

Overview of Course
Overview of Speech Recognition
Speech Production and Perception
Enough Signal Processing so you know how to make a
Filter Bank.
Next week: Signal Processing in Speech Recognition
Systems and the Beginnings of how we model the time
varying nature of speech.
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Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?
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