
Lecture 9

Robustness

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen}@us.ibm.com

3 December 2012

Where Are We?

1 Robustness through Training

2 Explicit Handling of Noise and Channel Variations

3 Robustness via Adaptation

2 / 87

Where Are We?

1 Robustness through Training

Introduction to Robustness Issues

Training-Based Robustness

3 / 87

Robustness - Things Change

Background noise can increase or decrease.
Channel can change.

Different microphone.
Microphone placement.

Speaker characteristics vary.
Different glottal waveforms.
Different vocal tract lengths.
Different speaking rates.

Heaven knows what else can happen.

4 / 87



Effects on a Typical Spectrum

5 / 87

What happens when things change?

Recognition performance falls apart!

Why?

Because the features on which the system was trained have
changed.

How do we mitigate the effects of such changes? What
components of the system should we look at?

The Acoustic Model: P(O|W , θ) and the features O seem to be
the most logical choices. So what can we do?

6 / 87

Robustness Strategies

Re-training: Retrain system using the changed features.
Robust features: Features O that are independent of
noise, channel, speaker, etc. so θ does not have to be
modified.

More an art than a science but requires little/no data.
Modeling: Explicit models for the effect the distortion
(Noise, channel,speaker) has on speech recognition
parameters θ′ = f (θ, D).

Works well when model fits, requires less data.
Adaptation: Update estimate of θ from new observations.

Very powerful but often requires the most data
θ′ = f (D, p(O|W , θ)).

7 / 87

Where Are We?

1 Robustness through Training

Introduction to Robustness Issues

Training-Based Robustness

8 / 87



General Training Requirements

Most systems today require > 200 hours of speech from > 200
speakers to train robustly for a new domain.

9 / 87

General Retraining

If the environment changes, retrain system from scratch in
new environment.

Very expensive - cannot collect hundreds of hours of
data for each new environment.

Two strategies.
Environment simulation.
Multistyle Training.

10 / 87

Environment Simulation

Take training data.
Measure parameters of new environment.
Transform training data to match new environment.
Retrain system, hope for the best.

11 / 87

Multistyle Training

Take training data.
Corrupt/transform training data in various representative
fashions.
Collect training data in a variety of representative
environments.
Pool all such data together; retrain system.

12 / 87



Issues with System Retraining

Simplistic models of degradations
E.g. telephony degradations more than just a decrease
in bandwidth.

Hard to anticipate every possibility.
In high noise environment, person speaks louder with
resultant effects on glottal waveform, speed, etc.

System performance in clean envrironment can be
degraded.
Retraining system for each environment is very expensive.
Therefore other schemes - noise modeling and general
forms of adaptation - are needed and sometimes used in
tandem with these other schemes.

13 / 87

Where Are We?

1 Robustness through Training

2 Explicit Handling of Noise and Channel Variations

3 Robustness via Adaptation

14 / 87

Where Are We?

2 Explicit Handling of Noise and Channel Variations

Cepstral Mean Normalization

Spectral Subtraction

Codeword Dependent Cepstral Normalization

Parallel Model Combination

15 / 87

Cepstral Mean Normalization

We can model a large class of channel and speaker distortions
as a simple linear filter applied to the speech:

ŷ [n] = x̂ [n] ∗ ĥ[n]

where ĥ[n] is our linear filter and ∗ denotes convolution (Lecture
1). In the frequency domain we can write

Ŷ (k) = X̂ (k)Ĥ(k)

Taking the logarithms of the amplitudes:

log Ŷ (k) = log X̂ (k) + log Ĥ(k)

that is, the effect of the linear distortion is to add a constant
vector to the amplitudes in the log domain.

16 / 87



Cepstral Mean Normalization (con’t)

Now if we examine our normal cepstral processing, we can write
this as the following processing sequence.

O′[k ] = Cepst(log Bin(FFT(x̂ [n] ∗ ĥ(n))))

= Cepst(log Bin(X̂ (k)Ĥ(k)))

≈ Cepst(log(X̂ (k)Ĥ(k)))

≈ Cepst(log X̂ (k)) + Cepst(log Ĥ(k)))

17 / 87

Cepstral Mean Normalization (con’t)

So, we can essentially model the effect of linear filtering as just
adding a constant vector in the cepstral domain:

O′[k ] = O[k ] + b[k ]

and robustness can be achieved by estimating b[k ] and
subtracting it from the observed O′[k ].

18 / 87

Cepstral Mean Normalization -
Implementation

How do we eliminate effects of linear filtering?

Basic Idea: Assume all speech is linearly filtered but that the
linear filter changes slowly with respect to speech (many
seconds or minutes).

Given a set of cepstral vectors Ot we can compute the mean:

Ō =
1
N

N∑
t=1

Ot

In "Cepstral mean normalization” we subtract the mean of a set
of cepstral vectors from each vector individually

Ôt = Ot − Ō
19 / 87

Cepstral Mean Normalization -
Implementation (con’t)

If we apply a linear filter to the signal, the output Ot is "distorted"
by the addition of a vector b:

yt = Ot + b

The mean of yt is

ȳ =
1
N

N∑
t=1

yt =
1
N

N∑
t=1

(Ot + b) = Ō + b

so after “Cepstral Mean Normalization”

ŷt = yt − ȳ = Ôt

That is, the same output as if the filter b had not been applied.
20 / 87



Cepstral Mean Normalization - Issues

Error rates for utterances even in the same environment
improves (Why?).
Must be performed on both training and test data.
Bad things happen if utterances are very short (Why?).
Bad things happen if there is a lot of variable length silence
in the utterance (Why?)
Cannot be used in a real time system (Why?).

21 / 87

Cepstral Mean Normalization - Real Time
Implementation

Can estimate mean dynamically as

Ōt = αOt + (1− α)Ōt−1

In real-life applications, it is useful run a silence detector in
parallel and turn adaptation off (set α to zero) when silence is
detected, hence:

Ōt = α(s)Ot + (1− α(s))Ōt−1

22 / 87

Cepstral Mean Normalization - Real Time
Illustration

23 / 87

Cepstral Mean Normalization - Typical
Results

From “Environmental Normalization for Robust Speech
Recognition Using Direct Cepstral Compensation” F. Liu, R.
STern, A. Acero and P. Moreno Proc. ICASSP 1994, Adelaide
Australia

Close Other
Talking Microphones

Base 8.1 38.5
CMN 7.6 21.4
Best Noise 8.4 13.5
Immunity Scheme

Task is 5000-word WSJ LVCSR
24 / 87



Where Are We?

2 Explicit Handling of Noise and Channel Variations

Cepstral Mean Normalization

Spectral Subtraction

Codeword Dependent Cepstral Normalization

Parallel Model Combination

25 / 87

Spectral Subtraction - Background

Another common type of environmental distortion is additive
noise. In such a case, we may write

y [i ] = x [i ] + n[i ]

where n[i ] is some noise signal. Since we are dealing with linear
operations, we can write in the frequency domain

Y [k ] = X [k ] + N[k ]

26 / 87

Spectral Subtraction - Background

The power spectrum (Lecture 1) is therefore

|Y [k ]|2 = |X [k ]|2 + |N[k ]|2 + X [k ]N∗[k ] + X ∗[k ]N[k ]

If we assume n[i ] is zero mean and uncorrelated with x [i ], the
last two terms on the average would also be zero. Even though
we window the signal and also bin the resultant amplitudes of
the spectrum in the mel filter computation, it is still reasonable to
assume the net contribution of the cross terms will be zero.

In such a case we can write

|Y [k ]|2 = |X [k ]|2 + |N[k ]|2

27 / 87

Spectral Subtraction - Background

28 / 87



Spectral Subtraction - Basic Idea

In such a case, it is reasonable to estimate |X [k ]|2 as:

|X̂ [k ]|2 = |Y [k ]|2 − |N̂[k ]|2

where |N̂[k ]|2 is some estimate of the noise.

29 / 87

Spectral Subtraction - Basic Idea

One way to estimate N(k) is to average |Y [k ]|2 over a sequence
of frames known to be silence (by using a silence detection
scheme):

|N̂[k ]|2 =
1
M

M−1∑
t=0

|Yt [k ]|2

Note that Y [k ] here can either be the FFT output (when trying to
actually reconstruct the original signal) or, in speech recognition,
the output of the FFT after Mel binning.

30 / 87

Spectral Subtraction - Issues

The main issue with Spectral Subtraction is that |N̂[k ]|2 is only
an estimate of the noise, not the actual noise value itself. In a
given frame, |Y [k ]|2 may be less than |N̂[k ]|2. In such a case,
|X̂ [k ]|2 would be negative, wreaking havoc when we take the
logarithm of the amplitude when computing the mel-cepstra.

31 / 87

Spectral Subtraction - Issues

The standard solution to this problem is just to “floor” the
estimate of |X̂ [k ]|2:

|X̂ [k ]|2 = max(|Y [k ]|2 − |N̂[k ]|2, β)

where β is some appropriately chosen constant.

32 / 87



Spectral Subtraction - Issues

Given that for any realistic signal, the actual |X (k)|2 has some
amount of background noise, we can estimate this noise during
training similarly to how we estimate |N(k)|2. Call this estimate
|Ntrain[k ]|2. In such a case our estimate for |X (k)|2 becomes

|X̂ [k ]|2 = max(|Y [k ]|2 − |N̂[k ]|2, |Ntrain[k ]|2)

33 / 87

Spectral Subtraction - Issues

Because of the variance of the noise process, little “spikes” still
arise. To deal with this, sometimes “oversubtraction” is used:

|X̂ [k ]|2 = max(|Y [k ]|2 − α|N̂[k ]|2, |Ntrain[k ]|2)
where α is some constant chosen to minimize the noise spikes
when there is no speech.

34 / 87

Spectral Subtraction - Performance

35 / 87

Administrivia

Lab 4 due tonight at 11:59pm.
Reading projects: If you haven’t already . . .

E-mail Stan paper selection ASAP!
Make-up class: Wednesday, December 12, 4:10–6:40pm.

Location: right here, Mudd 633.
Non-reading projects.

A couple things in setups left to finish.
Ask Stan if you need anything!

36 / 87



Where Are We?

2 Explicit Handling of Noise and Channel Variations

Cepstral Mean Normalization

Spectral Subtraction

Codeword Dependent Cepstral Normalization

Parallel Model Combination

37 / 87

Speech Model Based Robustness

Yet another problem with Spectral Subtraction is that the
reconstructed speech vector may not look like "real" speech.

Why? There is no explicit model of speech used - just a model
for the "noise".

38 / 87

Generalization: Minimum Mean Square Error
Estimation

Let x be a speech vector and y be some corrupted version of x .
We get to observe y and wish to devise an estimate for x , x̂ .
One possibility: find an estimate such that the average value of
(x − x̂)2 is minimized.

It can be shown that the best estimator x̂ in such a case is:

x̂ = E(x |y) =

∫
x p(x |y)dx

Observe that implicitly through p(x |y) there is a model for the
input speech x (why?).

39 / 87

Modeling p(x |y) via Gaussian Mixtures

Now
p(x |y) = p(x , y)/p(y)

Let us model p(x , y) as a function of a sum of K distributions:

p(x , y) =
K∑

k=1

p(x , y |k)p(k)

Let us write
p(x , y |k) = p(y |x , k)q(x |k)

where
q(x |k) =

1
K

1√
2πσ

e−
(x−µk )2

2σ2

Questions: What is the speech model? What is the
degradation model?

40 / 87



Model for Noise and Channel Degradations

Let’s combine the effects of speaker/channel distortion and additive noise on
the spectrum:

Y = HX + N

Taking logarithms

ln Y = ln X + ln H + ln(1 +
N

HX
)

Switching to the log domain we get

y l = x l + hl + ln(1 + enl−x l−hl
)

Using the notation y = Cy l to move to the cepstral domain we get

y = x + h + C ln(1 + eC−1(n−x−h)) = x + h + r(x , n, h)

so to reconstruct x given estimates of h and n

x = y − h − r(x , n, h)

41 / 87

Incorporating a Model of Noise and Channel
Degradation

From above, our degradation model is

x = y − h − r(x , n, h)

which is equivalent to saying p(y |x , k) is just a deterministic
mapping. Mathematically, this can be written as

p(y |x , k) = δ(x − (y − h − r(x , n, h)))

where δ(t) is a delta (impulse) function.

What’s the problem with just using this to estimate x?

42 / 87

CDCN - Codeword Dependent Cepstral
Normalization

Remember that

r(x , n, h) = C ln(1 + eC−1(n−x−h))

The main assumption in CDCN is that the correction vector
r(x , n, h) is constant for a given mixture component k and only
depends on the mean of the component.

r [k ] = C ln(1 + eC−1(n−µk−h))

In this case we can write

p(y |x , k) = δ(x − (y − h − r [k ]))

43 / 87

CDCN - Codeword Dependent Cepstral
Normalization

Note also that because of the nature of the delta function:

p(y) =

∫
p(x , y)dx

=

∫ K∑
k=1

δ(x − (y − h − r [k ]))q(x |k)dx

=
K∑

k=1

∫
δ(x − (y − h − r [k ]))q(x |k)dx

=
K∑

k=1

q(y − h − r [k ]|k)

44 / 87



Estimation Equations

We now may write the estimate for x as

x̂ =

∫
x p(x |y)dx

=

∫
x

p(x , y)∑K
l=1 q(y − h − r [l ]|l)

dx

=

∫
x

∑K
k=1 δ(x − (y − h − r [k ]))q(x |k)∑K

l=1 q(y − h − r [l ]|l)
dx

=
K∑

k=1

(y − h − r [k ])q(y − h − r [k ]|k)∑K
l=1 q(y − h − r [l ]|l)

Note the term involving q is just the mixture of gaussian
posterior probability we saw in Lecture 3. Iterative equations for
estimating h and n can also be developed; refer to the reading
for more information.

45 / 87

Other Variations

Vector Taylor Series is a CDCN variant in which r is
approximated as a linearized function with respect to x and µk

rather than assumed constant.

Algonquin is a more sophistcated CDCN variant in which
p(y |x , k) is assumed to have an actual probability distribution
(e.g., Normal) to model noise phase uncertainty.

46 / 87

CDCN Performance

From Alex Acero’s PhD Thesis “Acoustical and Environmental
Robustness in Automatic Speech Recognition” CMU (1990):

TRAIN/TEST CLS/CLS CLS/PZM PZM/CLS PZM/PZM
BASE 14.7 81.4 63.1 23.5
CMR N/A 61.7 49.1 23.5
PSUB N/A 61.4 29.4 29.9
MSUB N/A 37.4 28.3 28.7
CDCN 14.7 25.1 26.3 22.1

Error rates for a SI alphanumeric task recorded on two different
microphones.

47 / 87

Additional Performance Figures

48 / 87



Additional Performance Figures

49 / 87

Where Are We?

2 Explicit Handling of Noise and Channel Variations

Cepstral Mean Normalization

Spectral Subtraction

Codeword Dependent Cepstral Normalization

Parallel Model Combination

50 / 87

Parallel Model Combination - Basic Idea

Idea: Incorporate model of noise directly into our GMM-based
HMMs.

If our observations were just the FFT outputs this would be
straightforward. In such a case, the corrupted version of our
signal x with noise n is just:

y = x + n

If x ∼ N(µx , σ
2
x ) and n ∼ N(µn, σ

2
n) then y ∼ N(µx + µn, σ

2
x + σ2

n)

But our observations are cepstral parameters - extremely
nonlinear transformations of the space in which the noise is
additive. What do we do?

51 / 87

Parallel Model Combination - One
Dimensional Case

Let us make a Very Simple approximation to Cepstral
parameters: X = ln x , N = ln n.

Pretend we are modeling these “cepstral” parameters with
“HMMs” in the form of univariate Gaussians. In such a case, let
us say X ∼ N(µX , σ2

X ) and N ∼ N(µN , σ2
N). We can then write:

Y = ln(eX + eN)

What is the probability distribution of Y?

52 / 87



Parallel Model Combination - Log Normal
Distribution

If X is a Gaussian random variable with mean µ and variance σ2

then x = eX follows the lognormal distribution:

p(x) =
1

xσ
√

2π
exp(−(ln x − µ)2

2σ2 )

The mean of this distribution can be shown to be

E(x) =

∫
x p(x)dx = exp(µ + σ2/2)

and the variance

E((x − E(x))2) =

∫
(x − E(x))2p(x)dx = µ2(exp(σ2)− 1)

53 / 87

Parallel Model Combination - Log Normal
Distribution

54 / 87

Parallel Model Combination - Lognormal
Approximation

Since back in the linear domain

y = x + n

the distribution of y will correspond to the distribution of a sum of
two lognormal variables x and n.

µx = exp(µX + σ2
X/2)

σ2
x = µ2

X (exp(σ2
X )− 1)

µn = exp(µN + σ2
N/2)

σ2
n = µ2

N(exp(σ2
N)− 1)

If x and n are uncorrelated, we can write:

µy = µx + µn

σ2
y = σ2

x + σ2
n

55 / 87

Parallel Model Combination - Lognormal
Approximation

Unfortunately, although the sum of two Gaussian variables is a
Gaussian, the sum of two lognormal variables is not lognormal.

As good engineers, we will promptly ignore this fact and act as if
y DOES have a lognormal distribution (!). In such a case,
Y = ln y is Gaussian and the mean and variance are given by:

µY = ln µy −
1
2

ln

[
σ2

y

µ2
y

+ 1

]

σ2
Y = ln

[
σ2

y

µ2
y

+ 1

]
The matrix and vector forms of the modified means and
variances, similar to the unidimensional forms above, can be
found in HAH pg. 533 56 / 87



Parallel Model Combination - Actual Cepstra

Remember that the mel-cepstra are computed from mel-spectra by the
following formula:

c[n] =
M−1∑
m=0

X [m] cos(πn(m − 1/2)/M)

We can view this as just a matrix multiplication:

c = Cx

where x is just the vector of the X [m]s and the components of matrix C are

Cij = cos(πj(i − 1/2)/M)

In such a case, the mean and covariance matrix in the mel-spectral domain
can be computed as

µx = C−1µc

Σx = C−1Σc(C−1)T

and similarly for the noise cepstra.
57 / 87

Parallel Model Combination - Performance

“PMC for Speech Recognition in Convolutional and Additive Noise” by Mark Gales and Steve Young TR-154 Cambridge U. 1993.

Although comparisons seem to be rare, when PMC is compared
to schemes such as VTS, VTS seems to have proved somewhat
superior in performance. However, the basic concepts of PMC
have been recently combined with EM-like estimation schemes
to significantly enhance performance.

58 / 87

Where Are We?

1 Robustness through Training

2 Explicit Handling of Noise and Channel Variations

3 Robustness via Adaptation

59 / 87

Where Are We?

3 Robustness via Adaptation

MAP Adaptation

Maximum Likelihood Linear Regression

Feature-Based MLLR

60 / 87



Maximum A Posteriori Parameter Estimation
- Basic Idea

Another way to achieve robustness is to take a fully trained
HMM system, a small amount of data from a new domain, and
combine the information from the old and new systems together.

To put everything on a sound framework, we will utilize the
parameters of the fully-trained HMM system as prior
information.

61 / 87

Maximum A Posteriori Parameter Estimation
- Basic Idea

In Maximum Likelihood Estimation (Lecture 3) we try to pick a
set of parameters θ̂ that maximize the likelihood of the data:

θ̂ = arg max
θ

L(ON
1 |θ)

In Maximum A Posterior Estimation we assume there is some
prior probability distribution on θ, p(θ) and we try to pick θ̂ to
maximize the a posteriori probability of θ given the observations:

θ̂ = arg max
θ

p(θ|ON
1 )

= arg max
θ

L(ON
1 |θ)p(θ)

62 / 87

Maximum A Posteriori Parameter Estimation
- Conjugate Priors

What form should we use for p(θ)? To simplify later calculations,
we try to use an expression so that L(ON

1 |θ)p(θ) has the same
functional form as L(ON

1 |θ). This type of form for the prior is
called a conjugate prior.

In the case of a univariate Gaussian we are trying to estimate µ
and σ. Let r = 1/σ2. An appropriate conjugate prior is:

p(θ) = p(µ, r) ∝ r (α−1)/2exp(−τ r
2

(µ− µp)
2)exp(−(σ2

pr/2)

where µp and σ2
p are prior estimates/knowledge of the mean and

variance from some initial set of training data. Note how ugly the
functional forms get even for a relatively simple case!

63 / 87

Maximum A Posteriori Parameter Estimation
- Univariate Gaussian Case

Without torturing you with the math, we can plug in the
conjugate prior expression and compute µ and r to maximize
the a posteriori probability. We get

µ̂ =
N

N + τ
µO +

τ

N + τ
µp

where µO is the mean of the data computed using the ML
procedure.

σ̂2 =
N

N + α− 1
σ2

O +
τ(µO − µ̂)2 + σ2

p

N + α− 1

64 / 87



Maximum A Posteriori Parameter Estimation
- General HMM Case

Through a set of similar manipulations, we can generalize the
previous formula to the HMM case.

1 Align adaptation data against a set of existing HMM models.
2 Collect counts Ct(i , j), the fractional count (aka the posterior

probability) at time t for being in mixture component j of
state i

Either a simple Viterbi alignment or the complete F-B algorithm
can be used to estimate Ct(i , j)

65 / 87

Maximum A Posteriori Parameter Estimation
- General HMM Case

cik is the prior estimate for the mixture weight k for state i

νik , µik , Σik are the prior estimates for the mixture counts, mean
and covariance matrix of mixture component k for state i from a
previously trained HMM system. In this case:

ĉik =
νik − 1 +

∑
t Ct(i , k)∑

l(νil − 1 +
∑

t Ct(i , l))

µ̂ik =
τikµik +

∑N
t=1 Ct(i , k)Ot

τik +
∑

t Ct(i , k)

66 / 87

Maximum A Posteriori Parameter Estimation
- General HMM Case

Σ̂ik =
(αik − D)Σik

αik − D +
∑N

t=1 Ct(i , k)

+
τik(µ̂ik − µik)(µ̂ik − µik)

t

αik − D +
∑N

t=1 Ct(i , k)

+

∑N
t=1 Ct(i , k)(Ot − µ̂ik)(Ot − µ̂ik)

t

αik − D +
∑N

t=1 Ct(i , k)

Both τ and α are balancing parameters that can be tuned to
optimize performance on different test domains. In practice, a
single τ is adequate across all states and Gaussians, and
variance adaptation rarely has been successful.

67 / 87

Where Are We?

3 Robustness via Adaptation

MAP Adaptation

Maximum Likelihood Linear Regression

Feature-Based MLLR

68 / 87



Maximum Likelihood Linear Regression -
Basic Idea

In MAP, the different HMM Gaussians are free to move in any
direction. In Maximum Likelihood Linear Regression the means
of the Gaussians are constrained to only move according to an
affine transformation (Ax + b).

69 / 87

Simple Linear Regression - Review
Say we have a set of points (x1, y1), (x2, y2), . . . , (xN , yN) and we want to find coefficients a, b
so that

NX
t=1

(Ot − (axt + b))2

is minimized. Define w to be the column vector consisting of (a, b), and the column vector xt
corresponding to (xt , 1) We can then write the above set of equations as

NX
t=1

(Ot − xT
t w)2

Taking derivatives with respect to w we get

NX
t=1

2xt (Ot − xT
t w) = 0

so collecting terms we get

w =

" NX
t=1

xt xT
t

#−1 NX
t=1

xt Ot

In MLLR, the x values will turn out to correspond to the means of the Gaussians.
70 / 87

MLLR for Univariate GMMs

We can write the likelihood of a string of observations
ON

1 = O1, O2, . . . , ON from a Gaussian Mixture Model as:

L(ON
1 ) =

N∏
t=1

K∑
k=1

pk√
2πσk

e
− (Ot−µk )2

2σ2
k

It is usually more convenient to deal with the log likelihood

L(ON
1 ) =

N∑
t=1

ln

[
K∑

k=1

pk√
2πσk

e
− (Ot−µk )2

2σ2
k

]

71 / 87

MLLR for Univariate GMMs

Let us now say we want to transform all the means of the
Gaussian by aµk + b. It is convenient to define w as above, and
to the augmented mean vector µk as the column vector
corresponding to (µk , 1).

In such a case we can write the overall likelihood as

L(ON
1 ) =

N∑
t=1

ln

[
K∑

k=1

pk√
2πσk

e
− (Ot−µT

k w)2

2σ2
k

]

To maximize the likelihood of this expression we utilize the E-M
algorithm we have briefly alluded to in our discussion of the
Forward-Backward (aka Baum-Welch) algorithm.

72 / 87



E-M Review

The E-M Theorem states that if

Q(w, w′) =
∑

x

pw(X N
1 |ON

1 ) ln pw′(X N
1 , ON

1 )

>
∑

x

pw(X N
1 |ON

1 ) ln pw(X N
1 , ON

1 )

then
pw′(ON

1 ) > pw(ON
1 )

Therefore if we can find

ŵ′ = arg max
w′

Q(w, w′)

we can iterate to find a w that maximizes pw(ON
1 ) or equivalently

L(ON
1 )

73 / 87

E-M for MLLR

For a Gaussian mixture, it can be shown that

Q(w, w′) =
K∑

k=1

N∑
t=1

Ct(k)[ln pk

− ln
√

2πσk − (Ot − µT
k w′)2/2σ2

k ]

where

Ct(k) = pw(k |O) =

pk√
2πσk

e
− (Ot−µT

k w)2

2σ2
k

∑K
l=1

pl√
2πσl

e
−

(Ot−µT
l w)2

2σ2
l

74 / 87

E-M for MLLR

We can maximize Q(w, w′) by computing it’s derivative and
setting it equal to zero:

N∑
t=1

[
K∑

k=1

Ct(k)
µk

σ2
k
(Ot − µT

k w′)

]
= 0

Collecting terms we get

N∑
t=1

K∑
k=1

Ct(k)
µkµ

T
k

σ2
k

w′ =
N∑

t=1

K∑
k=1

Ct(k)
µk

σ2
k

Ot

Switching the summations we get

K∑
k=1

µkµ
T
k

σ2
k

w′
N∑

t=1

Ct(k) =
K∑

k=1

µk

σ2
k

N∑
t=1

Ct(k)Ot

75 / 87

E-M for MLLR

Define C(k) =
∑

t Ct(k) and Ō(k) = 1
C(k)

∑
t Ct(k)Ot , we can

rewrite the above as[
K∑

k=1

C(k)
µkµ

T
k

σ2
k

]
w′ =

K∑
k=1

C(k)
µk

σ2
k

Ō(k)

so we may compute w’ as just:

w′ =

[
K∑

k=1

C(k)
µkµ

T
k

σ2
k

]−1 K∑
k=1

C(k)
µk

σ2
k

Ō(k)

compare to the expression for simple linear regression:

w =

[
N∑

t=1

xtxT
t

]−1 N∑
t=1

xtOt

76 / 87



E-M for MLLR

In actual speech recognition systems, the observations are
vectors, not scalars, so the transform to be estimated is of the
form

Aµ + b

where A is a matrix and b is a vector. The resultant MLLR
equations are somewhat more complex but follow the same
basic form. We refer you to the readings for the details.

77 / 87

MLLR - Additional Considerations

Typical parameter vector: 39 dimensions (why?)
So the number of matrix parameters to be estimated is
roughly 1600.
Approximately one frame of data gives you enough
information to estimate one parameter
Therefore, need at least 16 seconds of speech to estimate
a full 39x39 MLLR matrix.

78 / 87

MLLR - Multiple Transforms

Single MLLR transform for all of speech is very restrictive.
Multiple transforms can be created having state dependent
transforms.
Arrange states in form of tree
If there are enough frames at a node, a separate transform
is estimated for all the phones at the node.

79 / 87

MLLR - Performance

80 / 87



Where Are We?

3 Robustness via Adaptation

MAP Adaptation

Maximum Likelihood Linear Regression

Feature-Based MLLR

81 / 87

Feature Based MLLR

Let’s say we now want to transform all the means by

µk/a− b/a

and the variances by
σ2

k/a2

Define Ot as the augmented column observation vector (Ot ,1),
w = (a, b)T as above, and r = (1, 0)T We can therefore write

Q(w, w′) =
K∑

k=1

N∑
t=1

Ct(k)[ln pk

− ln
√

2πσk + ln rT w′ − (OT
t w′ − µk)

2/2σ2
k ]

with Ct(k) defined similarly as in the MLLR discussion.

82 / 87

Feature-Based fMLLR

The primary advantage is that the resultant likelihood can also
be produced by just linearly transforming the input features

O′
t = w′Ot

Therefore, the transformation can be easily applied at runtime
rather than updating the models (why is that expensive?)

The details on how to solve the optimization equations are given
in the paper in the readings (“Maximum Likelihood Linear
Transformations for HMM-Based Speech Recognition”, Mark
Gales, Computer Speech and Language 1998 Volume 12).

83 / 87

Performance of MLLR and fMLLR

Test1 Test2
BASE 9.57 9.20
MLLR 8.39 8.21
fMLLR 9.07 7.97
SAT 8.26 7.26

Task is Broadcast News with a 65K vocabulary.

SAT refers to “Speaker Adaptive Training”. In SAT, a transform is
computed for each speaker during test and training; it is a very
common training technique in ASR today.

84 / 87



MLLR and MAP - Performance

85 / 87

MLLR - Comments on Noise Immunity
Performance

Last but not least, one can also apply MLLR and fMLLR as a
noise compensation scheme.

it is claimed that MLLR/fMLLR alone is inferior to the most
recent sophisticated model-based noise compensation schemes
incorporating E-M estimation of PMC updates but
comprehensive comparisons are not readily available.

See “HIGH-PERFORMANCE HMM ADAPTATION WITH JOINT
COMPENSATION OF ADDITIVE AND CONVOLUTIVE
DISTORTIONS VIA VECTOR TAYLOR SERIES" Jinyu Li1, Li
Deng, Dong Yu, Yifan Gong, and Alex Acero” (ASRU 2007,
Japan) for more details.

86 / 87

COURSE FEEDBACK

Was this lecture mostly clear or unclear? What was the
muddiest topic?
Other feedback (pace, content, atmosphere)?

87 / 87


	Robustness through Training
	Introduction to Robustness Issues
	Training-Based Robustness

	Explicit Handling of Noise and Channel Variations
	Cepstral Mean Normalization
	Spectral Subtraction
	Codeword Dependent Cepstral Normalization
	Parallel Model Combination

	Robustness via Adaptation
	MAP Adaptation
	Maximum Likelihood Linear Regression
	Feature-Based MLLR


