What We’re Talking About Today

Lecture 8 @ Large-vocabulary continuous speech recognition (LVCSR).
@ Acoustic model training.
LVCSR Training and Decoding e How to estimate parameters, e.g., for GMM’s.
e How to build phonetic decision trees.
@ Decoding.
Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen o How to select best word sequence ...

e Given audio sample.

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA
{picheny, bhuvana, stanchen}Qus.ibm.com

12 November 2012
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Part |

@ x — Observations; sequence of ~40d feature vectors.

LVCSR Training @ w— word sequence.

@ Fundamental equation of ASR.

w* =argmax P(w|x) =argmax P(w)P,(x)
@ P,(x) — acoustic model.
e For word sequence w, how likely are features x?
@ P(w)— language model.
e How likely is word sequence w?
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Review: Acoustic Modeling Acoustic Likelihoods: Small Vocabulary

@ For word sequence w, construct associated HMM.

g1/0.5 92/0.5 93/0.5 g4/0.5 95/0.5 96/0.5

8 g1/0.5 Q g./0.5 R g3/0.5 Q 94/0.5 R gs5/0.5 Qgg/O.S
-/ -/ -/ -/ / @

@ Each x can be output by many paths through HMM.
@ Compute P, (x) by summing over path likelihoods.

P.(X)= > P,(x,A)

paths A

@ Compute path likelihood by ...
e Multiplying arc and GMM output probs along path.
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P.(X)= > P,(x,A)

paths A

= Z Hpaf X P(?t|at)

paths A t=1

T
Y TIPS Pu T N )

paths A t=1 comp j dim d

@ p, — transition probability for arc a.

@ p,; — mixture weight, jth component of GMM on arc a.

@ /15j4 — Mean, dth dim, jth component, GMM on arc a.

@ o5, 4 — variance, dth dim, jth component, GMM on arc a.
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Acoustic Likelihoods: Large Vocabulary

P.(X)= > Pu,(x,A)

paths A

= Z Hpaf X P(?t|at)

paths A t=1

-
= Z Hpa, Z Pa H N(Xt,d;/iatﬂﬁd?(fgt,/,d)

paths A t=1 comp j dim d

@ p, — transition probability for arc a.

@ p,; — mixture weight, jth component of GMM on arc a.

@ 154 — Mean, dth dim, jth component, GMM on arc a.

@ o5, 4 — variance, dth dim, jth component, GMM on arc a.
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So, What'’s Different for Large Vocabulary?

@ The HMM.
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Where Are We? Review: Building HMM’s, Small Vocabulary

@ Training.
e Enumerate possible word sequences given transcript.
e Replace each word with its HMM; collect FB counts.

HMM

O eight O HMMiwo @

@ Decoding.
e Enumerate possible word sequences.
e Replace each word with its HMM; run Viterbi.

@ Acoustic Modeling for LVCSR
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Example: Word Models (Training HMM) What'’s the Problem With Word Models?
@ One HMM per word (two states per phone, say). @ What if want to be able to decode ...
e Each HMM has own GMM'’s (one per state). e Word not in training set, e.g., REDONKULOUS?
@ e.g., reference transcript: EIGHT TWO. @ Lots of data for some words.
e EYTD T UW e Almost no data for others.

@ Not scalable to large vocabulary.

HMMeight

HMMtwo @

Jeight, 1 Jeight,2 Jeight.3 Jei ght4 Jtwo, 1 0,2 Jtwo,3 Gtwo 4

Jeight, 189 ight, Q/QQ leight,3 9 eight, 4 Gtwo IRgtwo,ZQgtwoﬁ@gtﬂ:@
é% NN

O

QZ)
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Phonetic Modeling Phonetic Modeling

@ One HMM per phoneme.
e Each HMM has own GMM’s.
@ Need pronunciation or baseform for each word.

TWO= TUW
EIGHT = EY TD

TWO= T UW
TEN= TEYN

@ Concatenate phoneme HMM'’s to form HMM for word.

, 91,2 B
e ’ n r Il words ...
o/ e ’ Share GMM S for pho e aC OSS a O dS 9EVY.1 9EY2Q9TD1 91D 2Q 911 Q g1.2 QQUW,I Juw,2
e Containing that phone. ) NN AN O

@ What if word not in training? No problemo.
@ What if phoneme not in training? Unlikely.
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Whats the Difference?

@ Scenario:

Jeight, 1 Geight,2 Feight,3 Jeight, 4 Gtwo,1 Gtwo,2 gt

Y G0 N G0 PR G0 PN G0 USRS G0 DRGSO G0 DR 6 PR o 1000 word vocabulary; 50 phonemes.
8L8g Qg Qg 89 89 - 89—’© e Avg. word length = 5 phones; two states per phoneme.

w

IGtwo,4

@ Word modeling: one HMM per word.
gra gr.2 Juw,1 guw,2

. g1D.2
e How many GMM'’s per word on average?
%gEY’28gTD189TD28W 89” 89UW189U—W3© o How many GMM’s in whole system?
@ Phonetic modeling: one HMM per phoneme.

e How many GMM'’s per phoneme?
e How many GMM’s in whole system?

@ HMM topology typically doesn’t change.
@ HMM parameterization changes.
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Context-Independent Phonetic Modeling Context-Dependent Phonetic Modeling

@ Same phoneme HMM independent of phonetic context. @ Separate HMM for each context of each phoneme?
@ What'’s the problem? e e.g., triphone model = context is + 1 phone.
o Is‘L’in‘SLIH and ‘IH L Z’ the same? e Separate HMM for L-S+IH, L-IH+Z, . ..
e Allophonic variation; coarticulation. @ What’s the problem?
@ Symptom: too few GMM'’s = underfitting. @ Solution: cluster triphones.

e e.g., L-S+IH, L-S+AA, L-S+AE, L-S+EH, ...
e Separate HMM for each cluster.
e Most popular method: decision trees.
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Example: Tree for Phoneme T How Many Trees?

@ Which phoneme position affects pronunciation of ...

SpOTSS'IZ e Beginning of current phoneme the most?
\N‘ e What about end of current phoneme?
Y o5 +1 @ Separate decision tree for each phoneme HMM state!
e
: AXR ER Ry e If 50 phones, 2 states/phone, how many trees total?
N pos +1 e For each tree, one GMM per leaf.

] AX AXR B o HMM topology fixed
T2 5D CH D opology fixed.

UW .. LN e Choose GMM to use at each position ...

] pos +1 e By finding leaf in corresponding tree.
' IH X 1Y

N
]
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Example: Tree for Phoneme T, State 2 Context-Dependent Phonetic Modeling

@ Start with phoneme sequence.

pos -1

HMMgy . HMMTp HMM HMM
() () ()
ST52 U O @, @, ), O
\4 bos +1 @ Substitute in HMM topology for each phoneme.
AXR ER R gev1 g2 gTD.1 gTD 2 911 9122 guw.1 guw.2
N § %
N pos +1 9EY189EY2Q9TD1Q9TD2R9TIQQTZ /qguw18gu_wz©
Y AX AXR B NN AN AN
= BD CH D @ Select GMM for each state using associated tree.
L UW L N Jev.1? JEv.2,? gtz gtD.2? gt gr.23 Juw.1.7 Juw.2,?
pos +1 8&.1,7895Y.2,7Q9TD.1,?/C2€TD 2,7Q9T 1,?Q9T.2,3;¥9UW.1,‘{%£.2;7
— HIX 1Y (AN AN @
N
Y
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Size Matters

@ Scenario: @ Typical model sizes:
e 1000 word vocabulary; 50 phonemes. ,
e Avg. word length = 5 phones; two states per phoneme. GMM's/ , .
e Each decision tree contains 1 00 leaves on average type HMM state | GMM's | Gaussians
_ ' word per word 1 10-500 | 100-10k
@ Word modeling: one HMM per word. Cl phone | per phone 1 ~150 1k—3k
o How many GMM’s per word on average? 10. CD phone | per phone | 1-200 | 1k—10k | 10k—300k
e How many GMM'’s in whole system? 10,000.
@ Phonetic modeling, Cl: one HMM per phoneme. @ 40d feature vectors = 80 parameters/Gaussian.
e How many GMM'’s per phoneme? 2. @ Big models can have tens of millions of parameters.

e How many GMM'’s in whole system? 100.

@ Phonetic modeling, CD: many HMM’s per phoneme.

e How many GMM'’s per phoneme?
e How many GMM’s in whole system?
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Recap Discussion

@ Word modeling doesn’t scale. @ CD phonetic modeling with decision trees.

e Don’t share data between words. e State of the art since early 1990’s.

e Some words have lots of data; other very little. e No serious challenger on horizon?

e Can’t model coarticulation across words. e triphone model — 41 phones of context.
@ Phonetic mode"ng scales. <) qUinphone model — £+2 phoneS of context.

o Share data between words; parameter tying. e Longer context makes decoding much harder!

o Every phoneme has lots of data . ... @ Basic issue: parameter tying.

e But some lots more than others. e Each state for each phoneme has own decision tree.
) Context_dependent phonetic mode”ng_ e Each leaf in each decision tree has own GMM.

e Share leaf GMM across all words containing leaf.

e Models coarticulation, including cross-word. ,
e What are other possible schemes?

e More data = more leaves = more parameters.
e Can spread data evenly across GMM’s.
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Where Are We? Training < Parameter Estimation

@ Likelihood of training data is function of parameter values.
e Transition probabilities.
o GMM'’s: mixture weights; means and variances.
e The Local Maxima Problem @ Find parameter values to maximize likelihood.
@ Tool: Forward-Backward algorithm.

e Given initial values, iteratively adjust parameters . ..
e To improve likelihood.
e i.e., find closest local maximum to start.
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Small Vocabulary Training — Lab 2 Large Vocabulary Training

@ Phase 1: Flat start. @ What's changed?
e Initialize all Gaussian means to 0, variances to 1. e Lab 2: <2500 parameters.
@ Phase 2: Run Forward-Backward algorithm to convergence. o Large vocabulary: up to 10M+ parameters.
@ Phase 3: Profit! @ Realistically, can’t do simple hill-climbing search ...

e On 10M+ parameters and find good local maximum.
e It's a miracle it works with 2500 parameters.
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Hill Climbing and Local Maxima Where Do Local Maxima Come From?

@ FB finds “nearest” maximum to initial parameters. @ ML estimation for non-hidden models is easy.
e With bad starting point, final model will be garbage. e e.g., non-hidden HMM’s; Gaussians; multinomials.
@ How to find good starting point? e Count and normalize; no search necessary.

@ Problem must be hidden variables!

likelihood
likelihood

parameter values parameter values
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What Are The Hidden Variables? Hidden Variables and Local Maxima

.
Po(x) = Z Hpat Z Pa,j H N (Xtd; prayj.d- Ui,,j,d)

paths A t=1 comp j dim d

@ Look for sums or max’s.
@ Path through HMM =- which GMM/state at each frame.
@ Which component in each GMM at each frame.

Alignments and Parameter Initialization Example: Good and Bad Alignments

@ Fixing alignment = making corpus non-hidden.
e Easy to do ML estimation of parameters.
o Like Viterbi-style training in Lab 2.
e i.e., can use alignment to initialize parameters.
@ Data used to train given GMM comes from ...
e All frames aligned to that GMM.
@ If seed parameters using “bad” alignment ...
e Wrong data used to train GMM’s.
e Parameters near bad maximum?
@ If seed parameters using “good” alignment ...

e Right data used to train GMM’s.
e Parameters near good maximum?
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@ Assume each GMM has single component = not hidden.
@ Let’s assign values to every hidden variable ...
e In whole training set.
e i.e., which GMM generates each frame.

gev1

geEY.2

gTtD.1 g1D.2

9eY 1899( ZQQTD 1Q9TD 2
8 NN

gt1

gt.2 guw.1 guw.2

frame

0

1

2

/QQU/QQTQ /quw18gu_wz©
(AN AN
3 4 5 |...

GMM

EY.1

EY.1

EY.2

EY.2 | EY.2 | TD.1

@ Call hidden assignment over whole corpus an alignment.

9EY.1 9EY.2

91D.1

g1D.2

gTa
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gT.2 guw.1 guw.2

8911}89& 2/Q9TD.1/Q9TD.2/Q gT1 Q g2 QQUW 189[1_WEO
N Y

@ Good alignment — matches “truth”.

e GMM models what it's supposed to be modeling.
e e.g., GMM associated with first state of TD-EY+T ...
e Aligns to initial frames of ‘TD’ in this context.

frame 0 1 2 3 4 5
truth | EY.1 | EY.1 | EY.2 | EY.2 | EY.2 | TD.1
hyp | EY.1 | EY.1 | EY.2 | EY.2 | EY.2 | TDA1

@ Bad alignment — doesn’t match “truth”.

frame 0 1 2 3 4 5
truth | EY.1 | EY.1 | EY.2 | EY.2 | EY.2 | TD.1
hyp || EY.1 | EY.2 | EY.2 | TD.1 | TD.1 | TD.2
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Parameter Initialization

@ Key to finding good starting point for FB:
e Need good alignment to seed parameters!
@ Point: if have existing “good” model ...

e Use model to compute (Viterbi) alignment.
e Use alignment to bootstrap another model.
e Repeat to build more and more complex models!

@ Where to get first “good” model?
e Where does FB with flat start actually work!?

@ Build lots of incrementally more complex models . . .
e Or go straight from initial model to final model?
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Ways to Seed Next Model From Last One

@ Via alignment.
e Do Viterbi-style training for next model ...
e Using Viterbi alignment computed using last model.

frame 0 1 2 3 4 5
GMM || EY.1 | EY.1 | EY.2 | EY.2 | EY.2 | TD.1

@ Via parameters.
e Seed parameters of next model so ...
e Viterbi alignment is same (or close) as for last model.
e e.g., GMM splitting (clone each Gaussian, perturb).
e e.g., Cl = CD GMM’s (clone each CI GMM).
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The Basic Plan

@ Step 1: Build Cl model with 1 Gaussian/GMM.
e Know flat start + FB works!
@ Step 2: Build Cl model with 2 Gaussians/GMM.
e Seed using alignment from last system; run FB.

@ Step k: Build CD model with 128 Gaussians/GMM.
e Seed using alignment from last system; run FB.
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@ For models with millions of parameters . ..
e Flat start and FB just doesn’t cut it.
@ Local maxima due to hidden variables.
e i.e., space of possible alignments.
@ If have good alignment . ..
e Can initialize parameters so near good maximum.
@ Key idea: use simple models to bootstrap ...
e Incrementally more complex models.
@ More gory details to follow.
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Where Are We? Overview of Training Process

@ Start: Cl, GMM’s contain single component.
@ End: CD, GMM’s contain 128 components, say.
@ How to get here from there?
e More than one way.
@ Let’s go through one recipe, start to finish.

© Recipes for LVCSR Training
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Step 0: Prerequisites The Pronunciation Dictionary

@ Data. @ Need pronunciation of every word in training data.
e Utterances with transcripts. e Without pronunciation, can’t build HMM for word.
o Pronunciation/baseform dictionary. @ Words may have multiple pronunciations.
e Questions to ask in phonetic decision tree. THE(01) DH AH
@ Decisions. THE(02) DH IY
o For each phoneme, HMM topology/size. @ Where to get baseforms for new words?
e Number of components in GMM’s. o Ask a linguist? (We fired them.)

@ Period. e Where else?
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Step 1: Cl, 1 component/GMM Step 2: Cl, 32 components/GMM

@ Flat start. @ Split Gaussians = 2 components/GMM.
e Transition probabilities, mixture weights uniform. e Run bunch of iterations of FB.
o Gaussian means 0, variances 1. @ Split Gaussians = 4 components/GMM.
@ Run FB to convergence (Lab 2). e Run bunch of iterations of FB.
@ Before: alignments are garbage. @ Split Gaussians = 8 components/GMM.
@ After: alignments are reasonable (but flawed). e Run bunch of iterations of FB.

@ Split Gaussians = 16 components/GMM.
e Run bunch of iterations of FB.
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Example: Gaussian Splitting Example: Gaussian Splitting

@ Train single Gaussian via Forward-Backward. @ Split each Gaussian in two (+0.2 x &)
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Example: Gaussian Splitting Example: Gaussian Splitting

@ Run FB for a few iterations. @ Split each Gaussian in two (+0.2 x &)
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Example: Gaussian Splitting There is also k-Means

@ Run FB for a few iterations. @ Use centers as means of Gaussians; train.
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The Final Mixtures, Splitting vs. k-Means
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Handling All Possible Alternatives What To Do?

@ In theory, optional silence, multiple pronunciations . ..

e No problem! Just build appropriate HMM.
e Consider all possible paths over whole training process.

SIL(01) ~SIL(01) DOGO1) ~SIL(01

THE(01) DOG(02) @
THE(02) DOG(03)

@ In practice, painful.

e Expensive computationally.
e Building training HMM with CD models tricky.
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Step 3: Select Pronunciation Variants

@ Reference transcript doesn’t tell you everything.
@ Missing silence, filled pauses (e.g., UH).
@ Doesn't tell you which pronunciation .. .
e For words with multiple pronunciations.
e e.g., whether THE pronounced ‘DH AH’ or ‘DH IY".

THE(O1) DH AH
THE(02) DH 1IY
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@ Solution: nail down “exact” transcript.

Q ~SILOD) _/~ \ THEOL _/~ \ DOG02 _/ \ -~SILOD @
_/ _/ _/

@ Once model sufficiently good, compute Viterbi path.

e |dentify pronunciations (and silences) along path.
@ Fix “exact” transcript for remainder of training.

e Or recompute periodically.
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Step 3: Select Pronunciation Variants Step 4: Building Phonetic Decision Trees

@ Run Viterbi algorithm on training set. @ Goal: build phonetic decision tree ...
e Compute “exact” transcript for each utterance. e For each state in each phone HMM (~150 total).
@ Run bunch of iterations of FB. © g,AA.1,AA.2,AA.3,AE. 1, ...

@ What do we need?

e Data aligned to each phone HMM state.
e List of candidate questions.
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Training Data for Decision Trees Building a (Triphone) Tree

@ Run Viterbi algorithm. @ Input: list of triples (X;, pLi, Pr.i)-
e For each frame, identify which feature vector, . .. @ At each node on frontier of tree:
e Which GMM/HMM state, and phonetic context. e Choose question of form ...

evi  Gev2  groa g2 9T1 9Tz Guwa  Guw e “Does phone in position j belong to setq?” ...

e Where each leaf distribution is single Gaussian.
@ Can efficiently build whole level of tree in single pass.
@ See Lecture 6 slides and readings for gory details.

gEY.18gEY.2QgTD IQQTD ZQ 911 QQT.Q quw.18%© ) Opt|m|Z|ng Hi P()_(‘I“eaf(pL,h pR,i)) .
8 (A A Y
2 3 4 5 |...

frame 0 1
GMM || EY.1 | EY.1 | EY.2 | EY.2 | EY.2 | TD.1

@ e.g., feature vector x5 used to train tree for TD. 1.

e (Triphone) contextis —-EY+T.
o Data for tree is list of triples (X, p., pr); €.9., (X5, EY, T).
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The List of Candidate Questions Example Questions

@ Created by linguist many decades ago. e AA e OW UW
e Passed down from mother to daughter, father to son. e AE @ SH ZH
@ Corresponds to phonetic concepts. ° ... eS7Z
e e.g., vowel? dipthong? fricative? nasal? etc. e 7H @ AE EH EY
@ Each question represented as set of phones. e AO OY eBDG
e Does phoneme belong to set of not? @ AX IH @ FHHTH
e CHJUH e KPT
e DHV e MNNG
e ERR @ STSZ
e FTH @ AH AO AXEY
o IHIY @ CHJH SH ZH
o lYY @ DHFTHYV
oLW ° ...
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Example Output Step 4: Building Phonetic Decision Trees

@ Build phonetic decision tree for each phone state.

AQ‘;: E+R1R @ Before: one (Cl) GMM per phone state.
e After: one (CD) GMM per leaf for each phone state.
N e Seed CD GMM’s by cloning original Cl GMM.
/ \ @ Initially, same Viterbi alignment as Cl model.
pos -1 Bpé’;-éH e In computing I?kelih_ood, replace Cl with CD GMM ...
BDG b DD DH e But these are identical.
KPT @ Run bunch of iterations of FB.
N N
Y Y

| gno.2,1 | | gno.2,2 | | gno.2,3 | | 9gno.2.4 |
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Step 5: D, 128 components/GMM

@ Split Gaussians = 32 components/GMM. @ Step 0: Collect data.
e Run bunch of iterations of FB. e Make baseforms for all words in reference transcripts.
@ Split Gaussians = 64 components/GMM. @ Step 1: Build Cl, 1 component/GMM model from flat start.
e Run bunch of iterations of FB. @ Step 2: Build Cl, many component GMM model.
@ Split Gaussians = 128 components/GMM. e Repeated Gaussian splitting.
e Run bunch of iterations of FB. @ Step 3: Find “exact” transcripts, pronunciation variants.

e Viterbi algorithm.

@ Step 4: Build phonetic decision tree.
e From alignment created by Cl model.

@ Step 5: Build CD, many component GMM model.
e Repeated Gaussian splitting.
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Where Are We?

@ One of many possible recipes.
@ Training is complicated, multi-step process.
@ Motifs.

e Seed complex model using simpler model.
e Run lots of Forward-Backward.

© Discussion
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LVCSR Training Doesn’t Require Much Training Is an Art

@ Data. @ Hidden model training fraught with local maxima.
e Utterances with transcripts. @ Seed more complex models with simpler models.
e Pronunciation/baseform dictionary. e Incrementally improve alignments; avoid bad maxima.
e Questions to ask in phonetic decision tree.

@ Recipes developed over decades.
e Discovered via sweat and tears.
@ No one believes these find global maxima.
e How well recipe works depends on data?

@ Algorithms.

e Viterbi; Forward-Backward.
e Decision-tree building.
e Almost same as in small vocabulary.
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Speeding Up Training When To Use One or the Other?

@ Requires many, many iterations of Forward-Backward. @ Use Viterbi-style when can = cheaper.
@ Full Forward-Backward training. e Optimization: need not realign every iteration.

e Compute posterior of each alignment. @ Intuitively, full FB may find better maxima ...

o Collect counts over all possible alignments. o But if posteriors very sharp, do almost same thing.
@ Viterbi-style training. e Remember example posteriors in Lab 27

e Pick single alignment, e.g., using Viterbi. @ Rule of thumb:

o Collect counts over single alignment. o When first training “new” model, use full FB.

@ Both valid = guaranteed to increase (Viterbi) likelihood. e Once “locked in” to local maximum, Viterbi is fine.
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Bootstrapping One Model From Another Whew, That Was Pretty Complicated!

@ Bootstrap complex model from simpler model . .. @ The tip of the iceberg.
e Using alignment computed from simpler model. @ Adaptation (VTLN, fMLLR, mMLLR).

@ Point: models need not be of same form! @ Discriminative training (LDA, MMI, MPE, fMPE).
e Can use WSJ model to bootstrap Switchboard model. @ Model combination (cross adaptation, ROVER).

e Can use triphone model to bootstrap quinphone model.
e Can use GMM/HMM model to bootstrap DBN model.

@ Requirement: same phonemes, states per phoneme.
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Things Can Get Pretty Hairy How Long Does Training Take?

@ It's a secret.
45.9% Eval’98 WER (SWB only) . ,
384% Eval0l WER @ Measure in terms of real-time factor.

MFCC PLP

e How many hours to process one hour of speech?
@ If 1,000 hours of speech, 10x real time ...

42.6%
35.6%

41.6%
34.3%

38.5% 39.3% 37.7% 38.7% H H
‘MMI—SAT ‘nwﬁ ‘ML—SAT—L‘ 32.1%.;‘ ML-SAT ‘ ‘MMI—SAT ‘303'72 ‘ML—SAT—L‘ 31.9‘7:" ML-SAT ‘ Y HOW many days to train on one mach|ne?
@ Parallelization is key.
‘MMI—AD Bﬁ;z‘ ‘ML—AD—L ‘ ;’:;Z" ML-AD ‘ ‘MMI—AD Bg';z’ ‘ML—AD—L ‘ ;g‘:fj‘ ML-AD ‘ arallelization is key,
T e o Data parallelization: collect FB counts on £th corpus.
100-best | 37.1%)| 100-best |35.9% 100-best | 36.9%)| H 1
excorng ) 301 o |90 Lnewome | 301t e Sum FB counts before parameter reestimation.
{4g m }{4-grm }{4—grm }{4 ram }{4—gram } 4-gram 4-gram 4-gram 4-gram 4-gram
rrrrrrrr rescori scoring | | rescoring | _rescorin; rescoring | | rescoring | | rescoring | | rescoring J | rescoring
L l I R
29.2%
} ‘ } } konscnsus }C\Ju Cnsu. ‘ Fl Sens ‘ k' ‘ }COHSQHSUS FOHSCHSUS
36.5% 38.1% 37.2% 35.5% 352% 37.7% 36.3%
29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%
34.0%
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@ In theory, training involves simple algorithms. @ Clear (6); mostly clear (4).
@ In practice, training is insanely complicated . .. @ Pace: OK (5), slow (2).
e For state-of-the-art systems. @ Muddiest: dcs trees and Gaussians (2); dcs trees and

HMM’s (2); criterion for constructing dcs trees (1).
@ Feedback (2+ votes):

e More info on reading project (2).

@ http://www.ee.columbia.edu/~stanchen/
falll2/e6870/readings/project_f1l2.html
(same password as readings).

e Don’t need to worry about this yet.
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@ Lab 2, Lab 3.

o Not graded yet; handed back next lecture. Segue: Intro to LVCSR Decoding

o Answers:
/userl/faculty/stanchen/e6870/1lab2_ans/.

@ Lab 4.

e Postponed because material not covered yet.
e Will announce when lab posted + new due date.

@ Make-up lecture.
e What days can you make it (same time)?

@ Working on setups for non-reading projects.

Part |
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http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html
http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html

Decoding for LVCSR Decoding: Small Vocabulary

@ Now know how to build models for LVCSR: @ Take (H)MM representing allowable word sequences/LM.

e n-gram LM’s P(w) via counting and smoothing.
e CD acoustic models P, (x) via complex recipes.

@ This part: given test audio x, how to compute ...
e Most likely word sequence w*.

w* =argmax P(w|x) =argmax P(w)P,(x)

@ Initially, let’s ignore efficiency.
e How to do this conceptually?

@ Run Viterbi algorithm!

81/120 82/120

Can We Do Same Thing for LVCSR? Issue 1: Is n-Gram Model an (H)MM?

@ Can we express LM as (H)MM? @ Yup; n-gram model is Markov model of order n — 1.
@ How to expand word HMM to full HMM? @ Example: trigram model P(w;|w;_ow;_1).
© Graph not too big? Not too slow to decode? @ One state for each history w;_ow;_1.

o Arrive here iff last two words are w;_», w;_1.
@ Each state w;_»w;_¢ has outgoing arc for every w; ...
e To state w;_{w; with probability P(w;|w;_ow;_+).
@ For each word sequence wy, ..., w ..
e Single path through HMM with total probability

P(wy,...,w) = H P(w;|w;_ow;_1)
i
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Trigram LM, Morse Code, Basic Structure Trigram LM, Morse Code, With Probabilities

dit/ P(dit|dit dit)

dah/P(dah|dah dah)

Pop Quiz Issue 2: Graph Expansion
@ How many states in HMM representing trigram model . .. @ Training: only single word sequence, e.g., EIGHT TWO.
e With vocabulary size |V|?
@ How many arcs? EY TD T uw
’ O O O O

I\
N\

O EY-I+TD ~ TD-EY+T ~T-TD+UW ~ UW-T+| @
N N\ N\

JEY.1,9 JeEY.2.2 91D.1,6 g1D.2,7 911,15 g1.2,3 Juw.1,4 Juw.2,1

%99{.2,2 D 1,6Q€TD.2.7Q9T 1,15Q9T 2 3QQUW 1, @ﬂ,@
N Y
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Context-Dependent Graph Expansion Issue: How Big The Graph?

@ Decoding: many possible word sequences.
@ CD expansion: handling branch points is tricky.

@ Other issues: single-phoneme words; quinphone models.

TWO

Issue: How Slow Decoding?

@ In each frame, loop through every state in graph.
@ If 100 frames/sec, 10'° states . ..

e How many cells to compute per second?
@ PC’s can do ~ 10 floating-point ops per second.

89/120

91/120

@ Trigram model (e.g., vocabulary size |V| = 2)

@ |V|® word arcs in FSA representation.

@ Say words are ~4 phones = 12 states on average.
@ If |V| = 50000, 50000° x 12 ~ 10'® states in graph.
@ PC’s have ~ 10'° bytes of memory.

90/120

Recap: Small vs. Large Vocabulary Decoding

@ In theory, can use same exact techniques.
@ In practice, three big problems:

e Context-dependent graph expansion is complicated.
e Decoding graphs way too big.
e Decoding way too slow.

@ How can we handle this?
@ Next week:

e Finite-state machines.
e How to make decoding efficient.

92/120



Part Il A View of Graph Expansion
- _ @ Step 1: Take word graph as input.
Finite-State Machines o Convert into phone graph.

@ Step 2: Take phone graph as input.

e Convert into context-dependent phone graph.
@ Step 3: Take context-dependent phone graph.

e Convert into final HMM.
@ Goal: want framework for ...

@ Representing graphs.
@ Transforming graphs.

93/120 94/120

A View of Graph Expansion A Framework for Rewriting Graphs

@ How to represent graphs?
e HMM'’s = finite-state acceptors (FSA’s)!
@ How to represent graph transformations?
e Finite-state transducers (FST’s)!
@ What operation applies transformations to graphs?
T e Composition!

N-AH+W N-AH+T @ T-N+UW @O
o/

UW-T+W

W-N-+AH AH-W+N !
W-UW-AH /@
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Where Are We? What is a Finite-State Acceptor?

@ It’s like an HMM, but without probabilities.
@ It has states.

e Exactly one initial state; one or more final states.
@ It has arcs.

e Each arc has a label, which may be empty (e).

@ The Basics

97/120 98/120

What Does an FSA Mean?

@ The (possibly infinite) list of strings it accepts. @ Are these equivalent?
e i.e., strings that label path from initial to final state. e i.e., do they have same meaning?

@ Meaning: a, ab, ac. : .,
( > a b @
C
O=O~-00O
@ Meaning: b, bb, bbb, bbbb, ... /

b @ Things that don'’t affect meaning.
e How labels are distributed along path.

( ) b e Invalid paths.
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What is a Finite-State Transducer?

@ It’s like a finite-state acceptor, except ...
@ Each arc has two labels instead of one.

e An input label (possibly empty).
e An output label (possibly empty).

Cc.C

101/120

What is Composition?

@ Applying FST T to FSA Ato create new FSA Ao T.
o lfae Aand (a,3) € T,then 5 € Ao T.
@ A has meaning: a, ab, ac.

< > a b
C
@ T has meaning: (a, A), (ab, AB), (ac, AC).
( ) a:A b:B @

c.C

@ Ao T has meaning: A, AB, AC.

O-Q=0

C
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What Does an FST Mean?

@ A (possibly infinite) list of pairs of strings ...
e An input string and an output string.
@ Meaning: (a, A), (ab, AB), (ac, AC).

c:.C

@ Meaning: (¢, €), (b, a), (bb, aa), (bbb, aaa), ...
a:A

102/120

@ Finite-state acceptor (FSA): one label on each arc.

@ Finite-state transducer (FST): two labels on each arc.

@ Finite-state machine (FSM): FSA or FST.
e Also, finite-state automaton.

@ FST’s can be used to transform FSA’s via composition.

@ The point: can express each stage in graph expansion ...
e As applying FST via composition.
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Where Are We? The Composition Operation

@ A simple and efficient algorithm for computing . ..
e Result of applying transducer to acceptor.
@ What can composition do?

9 Composition

105/120 106/120

Rewriting Single String A Single Way Rewriting Single String A Single Way

A@a@b@d@ A@a@b@d@

AoT ABD
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Transforming a Single String The Magic of FST’s and Composition

@ Let’s say have string, e.g., @ Let’s say have (possibly infinite) list of strings ...
THE DOG e Expressed as an FSA, as this is compact.
@ Let’s say want to apply one-to-one transformation. @ How to transform all strings in FSA in one go?
e e.g., map words to their (single) baseforms. @ How to do one-to-many or one-to-zero transformations?
DH AH D AO G @ Can we express (possibly infinite) list of output strings ...
@ This is easy, e.g., use sed or perl or ... o As (compact) FSA?
o Fast?

109/120 110/120

Rewriting Many Strings At Once Rewriting Single String Many Ways
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Rewriting Some Strings Zero Ways Computing Composition: The Basic Idea

@ Foreverystate sc A, t € T, create state (s,f) e Ao T ...
e Corresponding to being in states s and t at same time.
@ Make arcs in intuitive way.

113/120 114/120

Computing Composition: More Formally

@ For now, pretend no e-labels.
A @ - @ : @ @ Forevery state s € A, t € T, create state (s,f) € Ao T.
7 @ aA @ bB @ @ Create arc from (sy, ;) to (s2, &) with label o iff . ..

e There is arc from s; to s, in Awith label jand ...

@ @ e Thereis arc from t; to t in T with label / : o.

g @ (s, t) is initial iff s and t are initial; similarly for final states.

@ (Remove arcs and states that are “unreachable”.)
AoT L ,
© @ @ @ @ What is time complexity?

@ Optimization: start from initial state, build outward.
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Another Example Composition and e-Transitions

@ Basic idea: can take e-transition in one FSM . ..
e Without moving in other FSM.

A e Tricky to do exactly right.
e Do readings if you care: (Pereira, Riley, 1997)
T A,T 0 <epsilon> a B @ Ga BB @
AoT GO~

117/120 18/120

Recap FSM Toolkits

@ FST’s can express wide range of string transformations. @ AT&T FSM toolkit = OpenFST,; lots of others.
@ Composition lets us efficiently . .. e Implements composition, lots of finite-state operations.
e Apply FST to all strings in FSA in one go! @ A syntax for specifying FSA’s and FST’s, e.g.,
1 2 C
2 3 A
3 4 B
4

@C@A@B@
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