Lecture 8
LVCSR Training and Decoding

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA
{picheny,bhuvana,stanchen}@us.ibm.com

12 November 2012

Part I
LVCSR Training

What We’re Talking About Today

- Large-vocabulary continuous speech recognition (LVCSR).
- Acoustic model training.
 - How to estimate parameters, e.g., for GMM’s.
 - How to build phonetic decision trees.
- Decoding.
 - How to select best word sequence . . .
 - Given audio sample.

Review

- \mathbf{x} — Observations; sequence of \sim40d feature vectors.
- ω — word sequence.
- Fundamental equation of ASR.

$$\omega^* = \arg \max_{\omega} P(\omega | \mathbf{x}) = \arg \max_{\omega} P(\omega) P_{\omega}(\mathbf{x})$$

- $P_{\omega}(\mathbf{x})$ — acoustic model.
 - For word sequence ω, how likely are features \mathbf{x}?
- $P(\omega)$ — language model.
 - How likely is word sequence ω?
Review: Acoustic Modeling

- For word sequence \(\omega \), construct associated HMM.

\[
g_1/0.5 \quad g_2/0.5 \quad g_3/0.5 \quad g_4/0.5 \quad g_5/0.5 \quad g_6/0.5
\]

- Each \(x \) can be output by many \textit{paths} through HMM.
- Compute \(P(\omega \mid x) \) by summing over path likelihoods.

\[
P(\omega \mid x) = \sum_{\text{paths } A} P(\omega \mid x, A)
\]

- Compute path likelihood by . . .
 - Multiplying arc and GMM output probs along path.

Acoustic Likelihoods: Small Vocabulary

\[
P(\omega \mid x) = \sum_{\text{paths } A} P(\omega \mid x, A)
\]

\[
= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \times P(\tilde{x}_t \mid a_t)
\]

\[
= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \sum_{\text{comp } j} \prod_{\text{dim } d} N(x_{t,d}; \mu_{a_t,j,d}, \sigma_{a_t,j,d}^2)
\]

- \(p_a \) — transition probability for arc \(a \).
- \(p_{a,j} \) — mixture weight, \(j \)th component of GMM on arc \(a \).
- \(\mu_{a,j,d} \) — mean, \(d \)th dim, \(j \)th component, GMM on arc \(a \).
- \(\sigma_{a,j,d}^2 \) — variance, \(d \)th dim, \(j \)th component, GMM on arc \(a \).

Acoustic Likelihoods: Large Vocabulary

\[
P(\omega \mid x) = \sum_{\text{paths } A} P(\omega \mid x, A)
\]

\[
= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \times P(\tilde{x}_t \mid a_t)
\]

\[
= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \sum_{\text{comp } j} \prod_{\text{dim } d} N(x_{t,d}; \mu_{a_t,j,d}, \sigma_{a_t,j,d}^2)
\]

- \(p_a \) — transition probability for arc \(a \).
- \(p_{a,j} \) — mixture weight, \(j \)th component of GMM on arc \(a \).
- \(\mu_{a,j,d} \) — mean, \(d \)th dim, \(j \)th component, GMM on arc \(a \).
- \(\sigma_{a,j,d}^2 \) — variance, \(d \)th dim, \(j \)th component, GMM on arc \(a \).

So, What’s Different for Large Vocabulary?

- The HMM.
Where Are We?

1. Acoustic Modeling for LVCSR
2. The Local Maxima Problem
3. Recipes for LVCSR Training
4. Discussion

Example: Word Models (Training HMM)

- One HMM per word (two states per phone, say).
 - Each HMM has own GMM’s (one per state).
 - e.g., reference transcript: EIGHT TWO.
 - EY TD T UW

Review: Building HMM’s, Small Vocabulary

- Training.
 - Enumerate possible word sequences given transcript.
 - Replace each word with its HMM; collect FB counts.

- Decoding.
 - Enumerate possible word sequences.
 - Replace each word with its HMM; run Viterbi.

Example: Word Models (Training HMM)

- What’s the Problem With Word Models?
 - What if want to be able to decode . . .
 - Word not in training set, e.g., REDONKULOUS?
 - Lots of data for some words.
 - Almost no data for others.
 - Not scalable to large vocabulary.
Phonetic Modeling

- One HMM per phoneme.
 - Each HMM has own GMM's.
 - Need pronunciation or baseform for each word.

\[
\begin{align*}
 \text{TWO} & \Rightarrow T \ UW \\
 \text{TEN} & \Rightarrow T \ EY \ N
\end{align*}
\]

- Concatenate phoneme HMM's to form HMM for word.
 - \textit{i.e.}, share GMM's for phone across all words . . .
 - Containing that phone.
- What if word not in training? No problemo.
- What if phoneme not in training? Unlikely.

What's the Difference?

- HMM \textit{topology} typically doesn't change.
- HMM \textit{parameterization} changes.

Pop Quiz

- Scenario:
 - 1000 word vocabulary; 50 phonemes.
 - Avg. word length = 5 phones; two states per phoneme.
- Word modeling: one HMM per word.
 - How many GMM’s per word on average?
 - How many GMM’s in whole system?
- Phonetic modeling: one HMM per phoneme.
 - How many GMM’s per phoneme?
 - How many GMM’s in whole system?
Context-Independent Phonetic Modeling

- Same phoneme HMM independent of phonetic context.
- What’s the problem?
 - Is ‘L’ in ‘S L IH’ and ‘IH L Z’ the same?
 - Allophonic variation; coarticulation.
- Symptom: too few GMM’s ⇒ underfitting.

Context-Dependent Phonetic Modeling

- Separate HMM for each context of each phoneme?
 - e.g., triphone model ⇒ context is ± 1 phone.
 - Separate HMM for L-S+IH, L-IH+Z, . . .
- What’s the problem?
 - Solution: cluster triphones.
 - e.g., L-S+IH, L-S+AA, L-S+AE, L-S+EH, . . .
 - Separate HMM for each cluster.
 - Most popular method: decision trees.

Example: Tree for Phoneme T

<table>
<thead>
<tr>
<th>pos -1</th>
<th>pos +1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S TS Z</td>
<td>AXR ER</td>
</tr>
</tbody>
</table>

HMMₜ,1 HMMₜ,2

<table>
<thead>
<tr>
<th>pos -1</th>
<th>pos +1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX AXR B BD CH D . . . UW . . .</td>
<td></td>
</tr>
</tbody>
</table>

HMMₜ,2 HMMₜ,3

<table>
<thead>
<tr>
<th>pos +1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH IX IY</td>
</tr>
</tbody>
</table>

HMMₜ,3 HMMₜ,4 HMMₜ,5

How Many Trees?

- Which phoneme position affects pronunciation of . . .
 - Beginning of current phoneme the most?
 - What about end of current phoneme?
- Separate decision tree for each phoneme HMM state!
 - If 50 phones, 2 states/phone, how many trees total?
 - For each tree, one GMM per leaf.
- HMM topology fixed.
 - Choose GMM to use at each position . . .
 - By finding leaf in corresponding tree.
Context-Dependent Phonetic Modeling

- Start with phoneme sequence.
- Substitute in HMM topology for each phoneme.
- Select GMM for each state using associated tree.

Pop Quiz

- Scenario:
 - 1000 word vocabulary; 50 phonemes.
 - Avg. word length = 5 phones; two states per phoneme.
 - Each decision tree contains 100 leaves on average.
- Word modeling: one HMM per word.
 - How many GMM’s per word on average? 10.
 - How many GMM’s in whole system? 10,000.
- Phonetic modeling, CI: one HMM per phoneme.
 - How many GMM’s per phoneme? 2.
 - How many GMM’s in whole system? 100.
- Phonetic modeling, CD: many HMM’s per phoneme.
 - How many GMM’s per phoneme?
 - How many GMM’s in whole system?

Size Matters

- Typical model sizes:

<table>
<thead>
<tr>
<th>type</th>
<th>HMM</th>
<th>GMM’s/</th>
<th>GMM’s</th>
<th>Gaussians</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>word</td>
<td>per word</td>
<td>1</td>
<td>10–500</td>
<td>100–10k</td>
</tr>
<tr>
<td>CI phone</td>
<td>per phone</td>
<td>1</td>
<td>~150</td>
<td>1k–3k</td>
</tr>
<tr>
<td>CD phone</td>
<td>per phone</td>
<td>1–200</td>
<td>1k–10k</td>
<td>10k–300k</td>
</tr>
</tbody>
</table>

- 40d feature vectors ⇒ 80 parameters/Gaussian.
- Big models can have tens of millions of parameters.
Recap

- Word modeling doesn't scale.
 - Don't share data between words.
 - Some words have lots of data; other very little.
 - Can't model coarticulation across words.
- Phonetic modeling scales.
 - Share data between words; parameter tying.
 - Every phoneme has lots of data . . .
 - But some lots more than others.
- Context-dependent phonetic modeling.
 - Models coarticulation, including cross-word.
 - More data ⇒ more leaves ⇒ more parameters.
 - Can spread data evenly across GMM’s.

Discussion

- CD phonetic modeling with decision trees.
 - State of the art since early 1990's.
 - No serious challenger on horizon?
 - triphone model — ±1 phones of context.
 - quinphone model — ±2 phones of context.
 - Longer context makes decoding much harder!
- Basic issue: parameter tying.
 - Each state for each phoneme has own decision tree.
 - Each leaf in each decision tree has own GMM.
 - Share leaf GMM across all words containing leaf.
 - What are other possible schemes?

Where Are We?

1. Acoustic Modeling for LVCSR
2. The Local Maxima Problem
3. Recipes for LVCSR Training
4. Discussion

Training ⇔ Parameter Estimation

- Likelihood of training data is function of parameter values.
 - Transition probabilities.
 - GMM’s: mixture weights; means and variances.
- Find parameter values to maximize likelihood.
- Tool: Forward-Backward algorithm.
 - Given initial values, iteratively adjust parameters . . .
 - To improve likelihood.
 - i.e., find closest local maximum to start.
Small Vocabulary Training — Lab 2

- Phase 1: Flat start.
 - Initialize all Gaussian means to 0, variances to 1.
- Phase 2: Run Forward-Backward algorithm to convergence.
- Phase 3: Profit!

Large Vocabulary Training

- What’s changed?
 - Lab 2: <2500 parameters.
 - Large vocabulary: up to 10M+ parameters.
- Realistically, can’t do simple hill-climbing search . . .
 - On 10M+ parameters and find good local maximum.
 - It’s a miracle it works with 2500 parameters.

Hill Climbing and Local Maxima

- FB finds “nearest” maximum to initial parameters.
 - With bad starting point, final model will be garbage.
- How to find good starting point?

Where Do Local Maxima Come From?

- ML estimation for non-hidden models is easy.
 - e.g., non-hidden HMM's; Gaussians; multinomials.
 - Count and normalize; no search necessary.
- Problem must be hidden variables!
What Are The Hidden Variables?

\[P_\omega (x) = \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \sum_{\text{comp } j} \prod_{\text{dim } d} N(x_t; \mu_{a_t,j,d}, \sigma^2_{a_t,j,d}) \]

- Look for sums or max's.
- Path through HMM ⇒ which GMM/state at each frame.
- Which component in each GMM at each frame.

Hidden Variables and Local Maxima

- Assume each GMM has single component ⇒ not hidden.
- Let's assign values to every hidden variable . . .
 - In whole training set.
 - *i.e.*, which GMM generates each frame.
 - Call hidden assignment over whole corpus an alignment.

Alignments and Parameter Initialization

- Fixing alignment ⇒ making corpus non-hidden.
 - Easy to do ML estimation of parameters.
 - Like Viterbi-style training in Lab 2.
 - *i.e.*, can use alignment to initialize parameters.
- Data used to train given GMM comes from . . .
 - All frames aligned to that GMM.
- If seed parameters using “bad” alignment . . .
 - Wrong data used to train GMM's.
 - Parameters near bad maximum?
- If seed parameters using “good” alignment . . .
 - Right data used to train GMM's.
 - Parameters near good maximum?

Example: Good and Bad Alignments

- Good alignment — matches “truth”.
 - GMM models what it's supposed to be modeling.
 - *e.g.*, GMM associated with first state of TD-EY+T . . .
 - Aligns to initial frames of 'TD' in this context.
- Bad alignment — doesn’t match “truth”.
 - Right data used to train GMM's.
 - Parameters near good maximum?
Parameter Initialization

- Key to finding good starting point for FB:
 - Need good alignment to seed parameters!
- Point: if have existing “good” model . . .
 - Use model to compute (Viterbi) alignment.
 - Use alignment to bootstrap another model.
 - Repeat to build more and more complex models!
- Where to get first “good” model?
 - Where does FB with flat start actually work!?
- Build lots of incrementally more complex models . . .
 - Or go straight from initial model to final model?

Ways to Seed Next Model From Last One

- Via alignment.
 - Do Viterbi-style training for next model . . .
 - Using Viterbi alignment computed using last model.

<table>
<thead>
<tr>
<th>frame</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM</td>
<td>EY.1</td>
<td>EY.1</td>
<td>EY.2</td>
<td>EY.2</td>
<td>EY.2</td>
<td>TD.1</td>
<td>. . .</td>
</tr>
</tbody>
</table>

- Via parameters.
 - Seed parameters of next model so . . .
 - Viterbi alignment is same (or close) as for last model.
 - e.g., GMM splitting (clone each Gaussian, perturb).
 - e.g., CI ⇒ CD GMM’s (clone each CI GMM).

The Basic Plan

- Step 1: Build CI model with 1 Gaussian/GMM.
 - Know flat start + FB works!
- Step 2: Build CI model with 2 Gaussians/GMM.
 - Seed using alignment from last system; run FB.
 -
 -
 -
- Step k: Build CD model with 128 Gaussians/GMM.
 - Seed using alignment from last system; run FB.

Recap

- For models with millions of parameters . . .
 - Flat start and FB just doesn’t cut it.
- Local maxima due to hidden variables.
 - *i.e.*, space of possible alignments.
- If have good alignment . . .
 - Can initialize parameters so near good maximum.
- Key idea: use simple models to bootstrap . . .
 - Incrementally more complex models.
- More gory details to follow.
Where Are We?

Acoustic Modeling for LVCSR

The Local Maxima Problem

Recipes for LVCSR Training

Discussion

Overview of Training Process

- Start: CI, GMM's contain single component.
- End: CD, GMM's contain 128 components, say.
- How to get here from there?
 - More than one way.
 - Let's go through one recipe, start to finish.

Step 0: Prerequisites

- Data.
 - Utterances with transcripts.
 - Pronunciation/baseform dictionary.
 - Questions to ask in phonetic decision tree.
- Decisions.
 - For each phoneme, HMM topology/size.
 - Number of components in GMM's.
- Period.

The Pronunciation Dictionary

- Need pronunciation of every word in training data.
 - Without pronunciation, can’t build HMM for word.
- Words may have multiple pronunciations.

 THE(01) DH AH
 THE(02) DH IY
- Where to get baseforms for new words?
 - Ask a linguist? (We fired them.)
 - Where else?
Step 1: CI, 1 component/GMM
- Flat start.
 - Transition probabilities, mixture weights uniform.
 - Gaussian means 0, variances 1.
- Run FB to convergence (Lab 2).
- Before: alignments are garbage.
- After: alignments are reasonable (but flawed).

Step 2: CI, 32 components/GMM
- Split Gaussians ⇒ 2 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 4 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 8 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 16 components/GMM.
 - Run bunch of iterations of FB.

Example: Gaussian Splitting
- Train single Gaussian via Forward-Backward.

Example: Gaussian Splitting
- Split each Gaussian in two ($\pm 0.2 \times \sigma$)
Example: Gaussian Splitting

- Run FB for a few iterations.

Example: Gaussian Splitting

- Split each Gaussian in two ($\pm 0.2 \times \bar{\sigma}$)

There is also k-Means

- Use centers as means of Gaussians; train.
The Final Mixtures, Splitting vs. \(k \)-Means

Step 3: Select Pronunciation Variants

- Reference transcript doesn’t tell you everything.
- Missing silence, filled pauses (e.g., \(UH \)).
- Doesn’t tell you which pronunciation . . .
 - For words with multiple pronunciations.
 - e.g., whether \(THE \) pronounced ‘\(DH \ AH \)’ or ‘\(DH \ IY \)’.

\[
\begin{align*}
\text{THE(01)} & \quad \text{DH AH} \\
\text{THE(02)} & \quad \text{DH IY}
\end{align*}
\]

Handling All Possible Alternatives

- In theory, optional silence, multiple pronunciations . . .
 - No problem! Just build appropriate HMM.
 - Consider all possible paths over whole training process.

- In practice, painful.
 - Expensive computationally.
 - Building training HMM with CD models tricky.

What To Do?

- Solution: nail down “exact” transcript.
 - Once model sufficiently good, compute Viterbi path.
 - Identify pronunciations (and silences) along path.
 - Fix “exact” transcript for remainder of training.
 - Or recompute periodically.
Step 3: Select Pronunciation Variants
- Run Viterbi algorithm on training set.
 - Compute “exact” transcript for each utterance.
- Run bunch of iterations of FB.

Step 4: Building Phonetic Decision Trees
- Goal: build phonetic decision tree ...
 - For each state in each phone HMM (~150 total).
 - e.g., AA.1, AA.2, AA.3, AE.1, ...
 - What do we need?
 - Data aligned to each phone HMM state.
 - List of candidate questions.

Training Data for Decision Trees
- Run Viterbi algorithm.
 - For each frame, identify which feature vector, ...
 - Which GMM/HMM state, and phonetic context.

```
frame  GMM   EY.1   EY.1   EY.2   EY.2   TD.1   ...
      0     1     2     3     4     5     ...
```

- e.g., feature vector x_5 used to train tree for TD.1.
 - (Triphone) context is $-EY+T$.
 - Data for tree is list of triples $(\tilde{x}_i, p_{L,i}, p_{R,i})$; e.g., (x_5, EY, T).

Building a (Triphone) Tree
- Input: list of triples $(\tilde{x}_i, p_{L,i}, p_{R,i})$.
- At each node on frontier of tree:
 - Choose question of form “Does phone in position j belong to set q?” ...
 - Optimizing $\prod_i P(\tilde{x}_i | \text{leaf}(p_{L,i}, p_{R,i}))$...
 - Where each leaf distribution is single Gaussian.
 - Can efficiently build whole level of tree in single pass.
- See Lecture 6 slides and readings for gory details.
The List of Candidate Questions

- Created by linguist many decades ago.
 - Passed down from mother to daughter, father to son.
- Corresponds to phonetic concepts.
 - e.g., vowel? diphong? fricative? nasal? etc.
- Each question represented as set of phones.
 - Does phoneme belong to set of not?

Example Questions

- AA
- AE
- ...
- ZH
- AO OY
- AX IH
- CH JH
- DH V
- ER R
- F TH
- IH IY
- IY Y
- L W
- OW UW
- SH ZH
- S Z
- AE EH EY
- B D G
- F HH TH
- K P T
- M N NG
- S TS Z
- AH AO AX EY
- CH JH SH ZH
- DH F TH V
- ...

Example Output

```
pos +1
AXR ER R
```

```
pos -1
B D G
K P T
```

```
pos -1
B BD CH
D DD DH
. . .
```

```
A O.2,1
A O.2,2
A O.2,3
A O.2,4
```

```
Y
N
Y
N
Y
N
```

Step 4: Building Phonetic Decision Trees

- Build phonetic decision tree for each phone state.
- Before: one (CI) GMM per phone state.
 - After: one (CD) GMM per leaf for each phone state.
 - Seed CD GMM’s by cloning original CI GMM.
- Initially, same Viterbi alignment as CI model.
 - In computing likelihood, replace CI with CD GMM . . .
 - But these are identical.
- Run bunch of iterations of FB.
Step 5: CD, 128 components/GMM

- Split Gaussians ⇒ 32 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 64 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 128 components/GMM.
 - Run bunch of iterations of FB.

Recap

- Step 0: Collect data.
 - Make baseforms for all words in reference transcripts.
- Step 1: Build CI, 1 component/GMM model from flat start.
- Step 2: Build CI, many component GMM model.
 - Repeated Gaussian splitting.
- Step 3: Find “exact” transcripts, pronunciation variants.
 - Viterbi algorithm.
- Step 4: Build phonetic decision tree.
 - From alignment created by CI model.
- Step 5: Build CD, many component GMM model.
 - Repeated Gaussian splitting.

Discussion

- One of many possible recipes.
- Training is complicated, multi-step process.
- Motifs.
 - Seed complex model using simpler model.
 - Run lots of Forward-Backward.

Where Are We?

1. Acoustic Modeling for LVCSR
2. The Local Maxima Problem
3. Recipes for LVCSR Training
4. Discussion
LVCSR Training Doesn’t Require Much

- Data.
 - Utterances with transcripts.
 - Pronunciation/baseform dictionary.
 - Questions to ask in phonetic decision tree.
- Algorithms.
 - Viterbi; Forward-Backward.
 - Decision-tree building.
 - Almost same as in small vocabulary.

Training Is an Art

- Hidden model training fraught with local maxima.
- Seed more complex models with simpler models.
 - Incrementally improve alignments; avoid bad maxima.
- Recipes developed over decades.
 - Discovered via sweat and tears.
- No one believes these find global maxima.
 - How well recipe works depends on data?

Speeding Up Training

- Requires many, many iterations of Forward-Backward.
- Full Forward-Backward training.
 - Compute posterior of each alignment.
 - Collect counts over all possible alignments.
- Viterbi-style training.
 - Pick single alignment, e.g., using Viterbi.
 - Collect counts over single alignment.
- Both valid ⇒ guaranteed to increase (Viterbi) likelihood.

When To Use One or the Other?

- Use Viterbi-style when can ⇒ cheaper.
 - Optimization: need not realign every iteration.
- Intuitively, full FB may find better maxima . . .
 - But if posteriors very sharp, do almost same thing.
 - Remember example posteriors in Lab 2?
- Rule of thumb:
 - When first training “new” model, use full FB.
 - Once “locked in” to local maximum, Viterbi is fine.
Bootstrapping One Model From Another

- Bootstrap complex model from simpler model . . .
 - Using alignment computed from simpler model.
- Point: models need not be of same form!
 - Can use WSJ model to bootstrap Switchboard model.
 - Can use triphone model to bootstrap quinphone model.
 - Can use GMM/HMM model to bootstrap DBN model.
- Requirement: same phonemes, states per phoneme.

Whew, That Was Pretty Complicated!

- The tip of the iceberg.
- Adaptation (VTLN, fMLLR, mMLLR).
- Discriminative training (LDA, MMI, MPE, fMPE).
- Model combination (cross adaptation, ROVER).

Things Can Get Pretty Hairy

How Long Does Training Take?

- It’s a secret.
- Measure in terms of real-time factor.
 - How many hours to process one hour of speech?
- If 1,000 hours of speech, 10x real time . . .
 - How many days to train on one machine?
- Parallelization is key.
 - Data parallelization: collect FB counts on kth corpus.
 - Sum FB counts before parameter reestimation.
Recap

- In theory, training involves simple algorithms.
- In practice, training is insanely complicated . . .
 - For state-of-the-art systems.

Administrivia

- Clear (6); mostly clear (4).
- Pace: OK (5), slow (2).
- Muddiest: dcs trees and Gaussians (2); dcs trees and HMM's (2); criterion for constructing dcs trees (1).
- Feedback (2+ votes):
 - More info on reading project (2).
 - Don’t need to worry about this yet.

Lab 2, Lab 3.
- Not graded yet; handed back next lecture.
- Answers:
 /user1/faculty/stanchen/e6870/lab2_ans/.

Lab 4.
- Postponed because material not covered yet.
 - Will announce when lab posted + new due date.
- Make-up lecture.
 - What days can you make it (same time)?
- Working on setups for non-reading projects.

Part II

Segue: Intro to LVCSR Decoding
Decoding for LVCSR

Now know how to build models for LVCSR:
- \(n \)-gram LM’s \(P(\omega) \) via counting and smoothing.
- CD acoustic models \(P_\omega(x) \) via complex recipes.

This part: given test audio \(x \), how to compute . . .
- Most likely word sequence \(\omega^* \).

\[
\omega^* = \arg \max_{\omega} P(\omega|x) = \arg \max_{\omega} P(\omega)P_\omega(x)
\]
- Initially, let’s ignore efficiency.
- How to do this conceptually?

Can We Do Same Thing for LVCSR?

- Can we express LM as (H)MM?
- How to expand word HMM to full HMM?
- Graph not too big? Not too slow to decode?

Issue 1: Is \(n \)-Gram Model an (H)MM?

- Yup; \(n \)-gram model is Markov model of order \(n - 1 \).
- Example: trigram model \(P(w_i|w_{i-2}w_{i-1}) \).
- One state for each history \(w_{i-2}w_{i-1} \).
 - Arrive here iff last two words are \(w_{i-2}, w_{i-1} \).
- Each state \(w_{i-2}w_{i-1} \) has outgoing arc for every \(w_i \) . . .
 - To state \(w_{i-1}w_i \) with probability \(P(w_i|w_{i-2}w_{i-1}) \).
- For each word sequence \(w_1, \ldots, w_L \) . . .
 - Single path through HMM with total probability

\[
P(w_1, \ldots, w_L) = \prod_i P(w_i|w_{i-2}w_{i-1})
\]
Trigram LM, Morse Code, Basic Structure

Trigram LM, Morse Code, With Probabilities

Pop Quiz
- How many states in HMM representing trigram model . . .
 - With vocabulary size $|V|$?
- How many arcs?

Issue 2: Graph Expansion
- Training: only single word sequence, e.g., *EIGHT TWO.*
Context-Dependent Graph Expansion

- Decoding: many possible word sequences.
- CD expansion: handling branch points is tricky.
- Other issues: single-phoneme words; quinphone models.

Issue: How Big The Graph?

- Trigram model (e.g., vocabulary size $|V| = 2$)
- $|V|^3$ word arcs in FSA representation.
- Say words are \sim4 phones = 12 states on average.
- If $|V| = 50000$, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- PC’s have $\sim 10^{10}$ bytes of memory.

Issue: How Slow Decoding?

- In each frame, loop through every state in graph.
- If 100 frames/sec, 10^{15} states . . .
 - How many cells to compute per second?
- PC’s can do $\sim 10^{10}$ floating-point ops per second.

Recap: Small vs. Large Vocabulary Decoding

- In theory, can use same exact techniques.
- In practice, three big problems:
 - Context-dependent graph expansion is complicated.
 - Decoding graphs way too big.
 - Decoding way too slow.
- How can we handle this?
- Next week:
 - Finite-state machines.
 - How to make decoding efficient.
Part III

Finite-State Machines

A View of Graph Expansion

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into final HMM.
- Goal: want framework for . . .
 - Representing graphs.
 - Transforming graphs.

A Framework for Rewriting Graphs

- How to represent graphs?
 - HMM's \(\Rightarrow\) finite-state acceptors (FSA's)!
- How to represent graph transformations?
 - Finite-state transducers (FST's)!
- What operation applies transformations to graphs?
 - Composition!
What is a Finite-State Acceptor?

- It's like an HMM, but without probabilities.
- It has states.
 - Exactly one initial state; one or more final states.
- It has arcs.
 - Each arc has a label, which may be empty (ϵ).

What Does an FSA Mean?

- The (possibly infinite) list of strings it accepts.
 - i.e., strings that label path from initial to final state.
- Meaning: a, ab, ac.

Pop Quiz

- Are these equivalent?
 - i.e., do they have same meaning?

- Things that don’t affect meaning.
 - How labels are distributed along path.
 - Invalid paths.
What is a Finite-State Transducer?

- It’s like a finite-state acceptor, except . . .
- Each arc has two labels instead of one.
 - An input label (possibly empty).
 - An output label (possibly empty).

What Does an FST Mean?

- A (possibly infinite) list of pairs of strings . . .
 - An input string and an output string.
 - Meaning: \((a, A), (ab, AB), (ac, AC) \).

- Meaning: \((\epsilon, \epsilon), (b, a), (bb, aa), (bbb, aaa), \ldots \)

What is Composition?

- Applying FST \(T \) to FSA \(A \) to create new FSA \(A \circ T \).
 - If \(\alpha \in A \) and \((\alpha, \beta) \in T \), then \(\beta \in A \circ T \).
 - \(A \) has meaning: \(a, ab, ac \).

- \(T \) has meaning: \((a, A), (ab, AB), (ac, AC) \).

- \(A \circ T \) has meaning: \(A, AB, AC \).

Recap

- Finite-state acceptor (FSA): one label on each arc.
- Finite-state transducer (FST): two labels on each arc.
- Finite-state machine (FSM): FSA or FST.
 - Also, finite-state automaton.
- FST’s can be used to transform FSA’s via composition.
- The point: can express each stage in graph expansion . . .
 - As applying FST via composition.
Where Are We?

The Basics

Composition

The Composition Operation

- A simple and efficient algorithm for computing...
 - Result of applying transducer to acceptor.
 - What can composition do?

Rewriting Single String A Single Way

\[A \circ T \]

\[A \]

\[T \]

\[A \circ T \]
Transforming a Single String

- Let’s say have string, *e.g.*, THE DOG
- Let’s say want to apply one-to-one transformation. *e.g.*, map words to their (single) baseforms.
 - DH AH D AO G
- This is easy, *e.g.*, use `sed` or `perl` or ...

The Magic of FST’s and Composition

- Let’s say have (possibly infinite) list of strings ... *e.g.*
- Expressed as an FSA, as this is compact.
- How to transform all strings in FSA in one go?
- How to do one-to-many or one-to-zero transformations?
- Can we express (possibly infinite) list of output strings ...
 - As (compact) FSA?
- Fast?

Rewriting Many Strings At Once

- A
- T
- A ◦ T

Rewriting Single String Many Ways

- A
- T
- A ◦ T
Computing Composition: The Basic Idea

- For every state \(s \in A, \ t \in T \), create state \((s, t) \in A \circ T\) ...
 - Corresponding to being in states \(s \) and \(t \) at same time.
 - Make arcs in intuitive way.

Example

Computing Composition: More Formally

- For now, pretend no \(\epsilon \)-labels.
- For every state \(s \in A, \ t \in T \), create state \((s, t) \in A \circ T\).
- Create arc from \((s_1, t_1)\) to \((s_2, t_2)\) with label \(o \) iff ...
 - There is arc from \(s_1 \) to \(s_2 \) in \(A \) with label \(i \) and ...
 - There is arc from \(t_1 \) to \(t_2 \) in \(T \) with label \(i : o \).
- \((s, t)\) is initial iff \(s \) and \(t \) are initial; similarly for final states.
- (Remove arcs and states that are “unreachable”.)
- What is time complexity?

- Optimization: start from initial state, build outward.
Another Example

Composition and ϵ-Transitions

Basic idea: can take ϵ-transition in one FSM . . .
- Without moving in other FSM.
- Tricky to do exactly right.
 - Do readings if you care: (Pereira, Riley, 1997)

Recap

- FST’s can express wide range of string transformations.
- Composition lets us efficiently . . .
 - Apply FST to all strings in FSA in one go!

FSM Toolkits

- AT&T FSM toolkit \Rightarrow OpenFST; lots of others.
 - Implements composition, lots of finite-state operations.
- A syntax for specifying FSA’s and FST’s, e.g.,

 1 2 C
 2 3 A
 3 4 B
 4

 1 C A 3 B 4