
Lecture 8

LVCSR Training and Decoding

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen}@us.ibm.com

12 November 2012

What We’re Talking About Today

Large-vocabulary continuous speech recognition (LVCSR).
Acoustic model training.

How to estimate parameters, e.g., for GMM’s.
How to build phonetic decision trees.

Decoding.
How to select best word sequence . . .
Given audio sample.

2 / 120

Part I

LVCSR Training

3 / 120

Review

x — Observations; sequence of ∼40d feature vectors.
ω — word sequence.
Fundamental equation of ASR.

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)Pω(x)

Pω(x) — acoustic model.
For word sequence ω, how likely are features x?

P(ω) — language model.
How likely is word sequence ω?

4 / 120

Review: Acoustic Modeling

For word sequence ω, construct associated HMM.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

Each x can be output by many paths through HMM.
Compute Pω(x) by summing over path likelihoods.

Pω(x) =
∑

paths A

Pω(x, A)

Compute path likelihood by . . .
Multiplying arc and GMM output probs along path.

5 / 120

Acoustic Likelihoods: Small Vocabulary

Pω(x) =
∑

paths A

Pω(x, A)

=
∑

paths A

T∏
t=1

pat × P(~xt |at)

=
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ; µat ,j,d , σ2
at ,j,d)

pa — transition probability for arc a.
pa,j — mixture weight, j th component of GMM on arc a.
µa,j,d — mean, d th dim, j th component, GMM on arc a.
σ2

a,j,d — variance, d th dim, j th component, GMM on arc a.

6 / 120

Acoustic Likelihoods: Large Vocabulary

Pω(x) =
∑

paths A

Pω(x, A)

=
∑

paths A

T∏
t=1

pat × P(~xt |at)

=
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ; µat ,j,d , σ2
at ,j,d)

pa — transition probability for arc a.
pa,j — mixture weight, j th component of GMM on arc a.
µa,j,d — mean, d th dim, j th component, GMM on arc a.
σ2

a,j,d — variance, d th dim, j th component, GMM on arc a.

7 / 120

So, What’s Different for Large Vocabulary?

The HMM.

8 / 120

Where Are We?

1 Acoustic Modeling for LVCSR

2 The Local Maxima Problem

3 Recipes for LVCSR Training

4 Discussion

9 / 120

Review: Building HMM’s, Small Vocabulary

Training.
Enumerate possible word sequences given transcript.
Replace each word with its HMM; collect FB counts.

HMMeight HMMtwo

Decoding.
Enumerate possible word sequences.
Replace each word with its HMM; run Viterbi.

HMMone

HMMtwo

HMMthree

.

�

10 / 120

Example: Word Models (Training HMM)

One HMM per word (two states per phone, say).
Each HMM has own GMM’s (one per state).

e.g., reference transcript: EIGHT TWO.
EY TD T UW

HMMeight HMMtwo

geight,1 geight,2 geight,3 geight,4 gtwo,1 gtwo,2 gtwo,3 gtwo,4

geight,1 geight,2 geight,3 geight,4 gtwo,1 gtwo,2 gtwo,3 gtwo,4

11 / 120

What’s the Problem With Word Models?

What if want to be able to decode . . .
Word not in training set, e.g., REDONKULOUS?

Lots of data for some words.
Almost no data for others.

Not scalable to large vocabulary.

12 / 120

Phonetic Modeling

One HMM per phoneme.
Each HMM has own GMM’s.

Need pronunciation or baseform for each word.

TWO ⇒ T UW
TEN ⇒ T EY N

Concatenate phoneme HMM’s to form HMM for word.
i.e., share GMM’s for phone across all words . . .
Containing that phone.

What if word not in training? No problemo.
What if phoneme not in training? Unlikely.

13 / 120

Phonetic Modeling

TWO ⇒ T UW
EIGHT ⇒ EY TD

HMMEY HMMTD HMMT HMMUW

gEY,1 gEY,2 gTD,1 gTD,2 gT,1 gT,2 gUW,1 gUW,2

gEY,1 gEY,2 gTD,1 gTD,2 gT,1 gT,2 gUW,1 gUW,2

14 / 120

What’s the Difference?

geight,1 geight,2 geight,3 geight,4 gtwo,1 gtwo,2 gtwo,3 gtwo,4

geight,1 geight,2 geight,3 geight,4 gtwo,1 gtwo,2 gtwo,3 gtwo,4

gEY,1 gEY,2 gTD,1 gTD,2 gT,1 gT,2 gUW,1 gUW,2

gEY,1 gEY,2 gTD,1 gTD,2 gT,1 gT,2 gUW,1 gUW,2

HMM topology typically doesn’t change.
HMM parameterization changes.

15 / 120

Pop Quiz

Scenario:
1000 word vocabulary; 50 phonemes.
Avg. word length = 5 phones; two states per phoneme.

Word modeling: one HMM per word.
How many GMM’s per word on average?
How many GMM’s in whole system?

Phonetic modeling: one HMM per phoneme.
How many GMM’s per phoneme?
How many GMM’s in whole system?

16 / 120

Context-Independent Phonetic Modeling

Same phoneme HMM independent of phonetic context.
What’s the problem?

Is ‘L’ in ‘S L IH ’ and ‘IH L Z ’ the same?
Allophonic variation; coarticulation.

Symptom: too few GMM’s ⇒ underfitting.

17 / 120

Context-Dependent Phonetic Modeling

Separate HMM for each context of each phoneme?
e.g., triphone model ⇒ context is ± 1 phone.
Separate HMM for L-S+IH, L-IH+Z, . . .

What’s the problem?
Solution: cluster triphones.

e.g., L-S+IH, L-S+AA, L-S+AE, L-S+EH, . . .
Separate HMM for each cluster.
Most popular method: decision trees.

18 / 120

Example: Tree for Phoneme T

pos -1

S TS Z

HMMT,1

pos +1

AXR ER R

HMMT,2

pos +1

AX AXR B

BD CH D

. . . UW . . .

HMMT,3

pos +1

IH IX IY

HMMT,4 HMMT,5

Y

N

Y

N

Y

N

Y

N

19 / 120

How Many Trees?

Which phoneme position affects pronunciation of . . .
Beginning of current phoneme the most?
What about end of current phoneme?

Separate decision tree for each phoneme HMM state!
If 50 phones, 2 states/phone, how many trees total?
For each tree, one GMM per leaf.

HMM topology fixed.
Choose GMM to use at each position . . .
By finding leaf in corresponding tree.

20 / 120

Example: Tree for Phoneme T, State 2

pos -1

S TS Z

gT.2,1
pos +1

AXR ER R

gT.2,2

pos +1

AX AXR B

BD CH D

. . . UW . . .

gT.2,3
pos +1

IH IX IY

gT.2,4 gT.2,5

Y

N

Y

N

Y

N

Y

N

21 / 120

Context-Dependent Phonetic Modeling

Start with phoneme sequence.
HMMEY HMMTD HMMT HMMUW

Substitute in HMM topology for each phoneme.

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

Select GMM for each state using associated tree.

gEY.1,? gEY.2,? gTD.1,? gTD.2,? gT.1,? gT.2,3 gUW.1,? gUW.2,?

gEY.1,? gEY.2,? gTD.1,? gTD.2,? gT.1,? gT.2,3 gUW.1,? gUW.2,?

22 / 120

Pop Quiz

Scenario:
1000 word vocabulary; 50 phonemes.
Avg. word length = 5 phones; two states per phoneme.
Each decision tree contains 100 leaves on average.

Word modeling: one HMM per word.
How many GMM’s per word on average? 10.
How many GMM’s in whole system? 10,000.

Phonetic modeling, CI: one HMM per phoneme.
How many GMM’s per phoneme? 2.
How many GMM’s in whole system? 100.

Phonetic modeling, CD: many HMM’s per phoneme.
How many GMM’s per phoneme?
How many GMM’s in whole system?

23 / 120

Size Matters

Typical model sizes:

GMM’s/
type HMM state GMM’s Gaussians
word per word 1 10–500 100–10k
CI phone per phone 1 ∼150 1k–3k
CD phone per phone 1–200 1k–10k 10k–300k

40d feature vectors ⇒ 80 parameters/Gaussian.
Big models can have tens of millions of parameters.

24 / 120

Recap

Word modeling doesn’t scale.
Don’t share data between words.
Some words have lots of data; other very little.
Can’t model coarticulation across words.

Phonetic modeling scales.
Share data between words; parameter tying.
Every phoneme has lots of data . . .
But some lots more than others.

Context-dependent phonetic modeling.
Models coarticulation, including cross-word.
More data ⇒ more leaves ⇒ more parameters.
Can spread data evenly across GMM’s.

25 / 120

Discussion

CD phonetic modeling with decision trees.
State of the art since early 1990’s.
No serious challenger on horizon?
triphone model — ±1 phones of context.
quinphone model — ±2 phones of context.
Longer context makes decoding much harder!

Basic issue: parameter tying.
Each state for each phoneme has own decision tree.
Each leaf in each decision tree has own GMM.
Share leaf GMM across all words containing leaf.
What are other possible schemes?

26 / 120

Where Are We?

1 Acoustic Modeling for LVCSR

2 The Local Maxima Problem

3 Recipes for LVCSR Training

4 Discussion

27 / 120

Training ⇔ Parameter Estimation

Likelihood of training data is function of parameter values.
Transition probabilities.
GMM’s: mixture weights; means and variances.

Find parameter values to maximize likelihood.
Tool: Forward-Backward algorithm.

Given initial values, iteratively adjust parameters . . .
To improve likelihood.
i.e., find closest local maximum to start.

28 / 120

Small Vocabulary Training — Lab 2

Phase 1: Flat start.
Initialize all Gaussian means to 0, variances to 1.

Phase 2: Run Forward-Backward algorithm to convergence.
Phase 3: Profit!

29 / 120

Large Vocabulary Training

What’s changed?
Lab 2: <2500 parameters.
Large vocabulary: up to 10M+ parameters.

Realistically, can’t do simple hill-climbing search . . .
On 10M+ parameters and find good local maximum.
It’s a miracle it works with 2500 parameters.

30 / 120

Hill Climbing and Local Maxima

FB finds “nearest” maximum to initial parameters.
With bad starting point, final model will be garbage.

How to find good starting point?

lik
el

ih
oo

d

parameter values

lik
el

ih
oo

d

parameter values

31 / 120

Where Do Local Maxima Come From?

ML estimation for non-hidden models is easy.
e.g., non-hidden HMM’s; Gaussians; multinomials.
Count and normalize; no search necessary.

Problem must be hidden variables!

32 / 120

What Are The Hidden Variables?

Pω(x) =
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ; µat ,j,d , σ2
at ,j,d)

Look for sums or max’s.
Path through HMM ⇒ which GMM/state at each frame.
Which component in each GMM at each frame.

33 / 120

Hidden Variables and Local Maxima

Assume each GMM has single component ⇒ not hidden.
Let’s assign values to every hidden variable . . .

In whole training set.
i.e., which GMM generates each frame.

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

frame 0 1 2 3 4 5 . . .
GMM EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .

Call hidden assignment over whole corpus an alignment.

34 / 120

Alignments and Parameter Initialization

Fixing alignment ⇒ making corpus non-hidden.
Easy to do ML estimation of parameters.
Like Viterbi-style training in Lab 2.
i.e., can use alignment to initialize parameters.

Data used to train given GMM comes from . . .
All frames aligned to that GMM.

If seed parameters using “bad” alignment . . .
Wrong data used to train GMM’s.
Parameters near bad maximum?

If seed parameters using “good” alignment . . .
Right data used to train GMM’s.
Parameters near good maximum?

35 / 120

Example: Good and Bad Alignments

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

Good alignment — matches “truth”.
GMM models what it’s supposed to be modeling.
e.g., GMM associated with first state of TD-EY+T . . .
Aligns to initial frames of ‘TD’ in this context.

frame 0 1 2 3 4 5 . . .
truth EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .
hyp EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .

Bad alignment — doesn’t match “truth”.
frame 0 1 2 3 4 5 . . .
truth EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .
hyp EY.1 EY.2 EY.2 TD.1 TD.1 TD.2 . . .

36 / 120

Parameter Initialization

Key to finding good starting point for FB:
Need good alignment to seed parameters!

Point: if have existing “good” model . . .
Use model to compute (Viterbi) alignment.
Use alignment to bootstrap another model.
Repeat to build more and more complex models!

Where to get first “good” model?
Where does FB with flat start actually work!?

Build lots of incrementally more complex models . . .
Or go straight from initial model to final model?

37 / 120

The Basic Plan

Step 1: Build CI model with 1 Gaussian/GMM.
Know flat start + FB works!

Step 2: Build CI model with 2 Gaussians/GMM.
Seed using alignment from last system; run FB.

.

.

.

Step k : Build CD model with 128 Gaussians/GMM.
Seed using alignment from last system; run FB.

38 / 120

Ways to Seed Next Model From Last One

Via alignment.
Do Viterbi-style training for next model . . .
Using Viterbi alignment computed using last model.

frame 0 1 2 3 4 5 . . .
GMM EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .

Via parameters.
Seed parameters of next model so . . .
Viterbi alignment is same (or close) as for last model.
e.g., GMM splitting (clone each Gaussian, perturb).
e.g., CI ⇒ CD GMM’s (clone each CI GMM).

39 / 120

Recap

For models with millions of parameters . . .
Flat start and FB just doesn’t cut it.

Local maxima due to hidden variables.
i.e., space of possible alignments.

If have good alignment . . .
Can initialize parameters so near good maximum.

Key idea: use simple models to bootstrap . . .
Incrementally more complex models.

More gory details to follow.

40 / 120

Where Are We?

1 Acoustic Modeling for LVCSR

2 The Local Maxima Problem

3 Recipes for LVCSR Training

4 Discussion

41 / 120

Overview of Training Process

Start: CI, GMM’s contain single component.
End: CD, GMM’s contain 128 components, say.
How to get here from there?

More than one way.
Let’s go through one recipe, start to finish.

42 / 120

Step 0: Prerequisites

Data.
Utterances with transcripts.
Pronunciation/baseform dictionary.
Questions to ask in phonetic decision tree.

Decisions.
For each phoneme, HMM topology/size.
Number of components in GMM’s.

Period.

43 / 120

The Pronunciation Dictionary

Need pronunciation of every word in training data.
Without pronunciation, can’t build HMM for word.

Words may have multiple pronunciations.
THE(01) DH AH
THE(02) DH IY

Where to get baseforms for new words?
Ask a linguist? (We fired them.)
Where else?

44 / 120

Step 1: CI, 1 component/GMM

Flat start.
Transition probabilities, mixture weights uniform.
Gaussian means 0, variances 1.

Run FB to convergence (Lab 2).
Before: alignments are garbage.
After: alignments are reasonable (but flawed).

45 / 120

Step 2: CI, 32 components/GMM

Split Gaussians ⇒ 2 components/GMM.
Run bunch of iterations of FB.

Split Gaussians ⇒ 4 components/GMM.
Run bunch of iterations of FB.

Split Gaussians ⇒ 8 components/GMM.
Run bunch of iterations of FB.

Split Gaussians ⇒ 16 components/GMM.
Run bunch of iterations of FB.

46 / 120

Example: Gaussian Splitting

Train single Gaussian via Forward-Backward.

47 / 120

Example: Gaussian Splitting

Split each Gaussian in two (±0.2× ~σ)

48 / 120

Example: Gaussian Splitting

Run FB for a few iterations.

49 / 120

Example: Gaussian Splitting

Split each Gaussian in two (±0.2× ~σ)

50 / 120

Example: Gaussian Splitting

Run FB for a few iterations.

51 / 120

There is also k -Means

Use centers as means of Gaussians; train.

-4

-2

 0

 2

 4

-10 -5 0 5 10

52 / 120

The Final Mixtures, Splitting vs. k -Means

-4-2 0 2 4

-1
0

-5
 0

 5
 1

0

-4-2 0 2 4

-1
0

-5
 0

 5
 1

0

53 / 120

Step 3: Select Pronunciation Variants

Reference transcript doesn’t tell you everything.
Missing silence, filled pauses (e.g., UH).
Doesn’t tell you which pronunciation . . .

For words with multiple pronunciations.
e.g., whether THE pronounced ‘DH AH ’ or ‘DH IY ’.

THE(01) DH AH
THE(02) DH IY

54 / 120

Handling All Possible Alternatives

In theory, optional silence, multiple pronunciations . . .
No problem! Just build appropriate HMM.
Consider all possible paths over whole training process.

~SIL(01)

THE(01)

THE(02)

~SIL(01)
DOG(01)

DOG(02)

DOG(03)

~SIL(01)

In practice, painful.
Expensive computationally.
Building training HMM with CD models tricky.

55 / 120

What To Do?

Solution: nail down “exact” transcript.
~SIL(01) THE(01) DOG(02) ~SIL(01)

Once model sufficiently good, compute Viterbi path.
Identify pronunciations (and silences) along path.

Fix “exact” transcript for remainder of training.
Or recompute periodically.

56 / 120

Step 3: Select Pronunciation Variants

Run Viterbi algorithm on training set.
Compute “exact” transcript for each utterance.

Run bunch of iterations of FB.

57 / 120

Step 4: Building Phonetic Decision Trees

Goal: build phonetic decision tree . . .
For each state in each phone HMM (∼150 total).
e.g., AA.1, AA.2, AA.3, AE.1, . . .

What do we need?
Data aligned to each phone HMM state.
List of candidate questions.

58 / 120

Training Data for Decision Trees

Run Viterbi algorithm.
For each frame, identify which feature vector, . . .
Which GMM/HMM state, and phonetic context.

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

gEY.1 gEY.2 gTD.1 gTD.2 gT.1 gT.2 gUW.1 gUW.2

frame 0 1 2 3 4 5 . . .
GMM EY.1 EY.1 EY.2 EY.2 EY.2 TD.1 . . .

e.g., feature vector x5 used to train tree for TD.1.
(Triphone) context is -EY+T.
Data for tree is list of triples (~x , pL, pR); e.g., (x5,EY,T).

59 / 120

Building a (Triphone) Tree

Input: list of triples (~xi , pL,i , pR,i).
At each node on frontier of tree:

Choose question of form . . .
“Does phone in position j belong to set q?” . . .
Optimizing

∏
i P(~xi |leaf(pL,i , pR,i)) . . .

Where each leaf distribution is single Gaussian.
Can efficiently build whole level of tree in single pass.
See Lecture 6 slides and readings for gory details.

60 / 120

The List of Candidate Questions

Created by linguist many decades ago.
Passed down from mother to daughter, father to son.

Corresponds to phonetic concepts.
e.g., vowel? dipthong? fricative? nasal? etc.

Each question represented as set of phones.
Does phoneme belong to set of not?

61 / 120

Example Questions

AA
AE
. . .
ZH
AO OY
AX IH
CH JH
DH V
ER R
F TH
IH IY
IY Y
L W

OW UW
SH ZH
S Z
AE EH EY
B D G
F HH TH
K P T
M N NG
S TS Z
AH AO AX EY
CH JH SH ZH
DH F TH V
. . .

62 / 120

Example Output

pos +1

AXR ER R

pos -1

B D G

K P T

pos -1

B BD CH

D DD DH

. . .

gAO.2,1 gAO.2,2 gAO.2,3 gAO.2,4

Y

N

Y

N

Y

N

63 / 120

Step 4: Building Phonetic Decision Trees

Build phonetic decision tree for each phone state.
Before: one (CI) GMM per phone state.

After: one (CD) GMM per leaf for each phone state.
Seed CD GMM’s by cloning original CI GMM.

Initially, same Viterbi alignment as CI model.
In computing likelihood, replace CI with CD GMM . . .
But these are identical.

Run bunch of iterations of FB.

64 / 120

Step 5: CD, 128 components/GMM

Split Gaussians ⇒ 32 components/GMM.
Run bunch of iterations of FB.

Split Gaussians ⇒ 64 components/GMM.
Run bunch of iterations of FB.

Split Gaussians ⇒ 128 components/GMM.
Run bunch of iterations of FB.

65 / 120

Recap

Step 0: Collect data.
Make baseforms for all words in reference transcripts.

Step 1: Build CI, 1 component/GMM model from flat start.
Step 2: Build CI, many component GMM model.

Repeated Gaussian splitting.
Step 3: Find “exact” transcripts, pronunciation variants.

Viterbi algorithm.
Step 4: Build phonetic decision tree.

From alignment created by CI model.
Step 5: Build CD, many component GMM model.

Repeated Gaussian splitting.

66 / 120

Discussion

One of many possible recipes.
Training is complicated, multi-step process.
Motifs.

Seed complex model using simpler model.
Run lots of Forward-Backward.

67 / 120

Where Are We?

1 Acoustic Modeling for LVCSR

2 The Local Maxima Problem

3 Recipes for LVCSR Training

4 Discussion

68 / 120

LVCSR Training Doesn’t Require Much

Data.
Utterances with transcripts.
Pronunciation/baseform dictionary.
Questions to ask in phonetic decision tree.

Algorithms.
Viterbi; Forward-Backward.
Decision-tree building.
Almost same as in small vocabulary.

69 / 120

Training Is an Art

Hidden model training fraught with local maxima.
Seed more complex models with simpler models.

Incrementally improve alignments; avoid bad maxima.
Recipes developed over decades.

Discovered via sweat and tears.
No one believes these find global maxima.

How well recipe works depends on data?

70 / 120

Speeding Up Training

Requires many, many iterations of Forward-Backward.
Full Forward-Backward training.

Compute posterior of each alignment.
Collect counts over all possible alignments.

Viterbi-style training.
Pick single alignment, e.g., using Viterbi.
Collect counts over single alignment.

Both valid ⇒ guaranteed to increase (Viterbi) likelihood.

71 / 120

When To Use One or the Other?

Use Viterbi-style when can ⇒ cheaper.
Optimization: need not realign every iteration.

Intuitively, full FB may find better maxima . . .
But if posteriors very sharp, do almost same thing.
Remember example posteriors in Lab 2?

Rule of thumb:
When first training “new” model, use full FB.
Once “locked in” to local maximum, Viterbi is fine.

72 / 120

Bootstrapping One Model From Another

Bootstrap complex model from simpler model . . .
Using alignment computed from simpler model.

Point: models need not be of same form!
Can use WSJ model to bootstrap Switchboard model.
Can use triphone model to bootstrap quinphone model.
Can use GMM/HMM model to bootstrap DBN model.

Requirement: same phonemes, states per phoneme.

73 / 120

Whew, That Was Pretty Complicated!

The tip of the iceberg.
Adaptation (VTLN, fMLLR, mMLLR).
Discriminative training (LDA, MMI, MPE, fMPE).
Model combination (cross adaptation, ROVER).

74 / 120

Things Can Get Pretty Hairy

ML-SAT-L

ML-AD-L

ROVER

Consensus

rescoring
100-best

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus Consensus Consensus

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus

36.3%

MFCC

ML-SAT-L

VTLN

ML-AD-L

ML-SAT

ML-AD

MMI-SAT

MMI-AD

ML-SAT

ML-AD

MFCC-SI

PLP

VTLN

MMI-SAT

MMI-AD

Consensus

4-gram

100-best
rescoring

rescoring

38.4% Eval’01 WER

35.6%

31.6%

30.3%

30.1% 30.5%

31.0%

32.1%

29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%

27.8%

29.2%

29.5% 30.1%

29.8%

30.9% 31.9%

34.3%
42.6%

45.9% Eval’98 WER (SWB only)

34.0%

41.6%

39.3%38.5% 37.7% 38.7%

38.1% 36.7%38.7%
30.8%
37.9%

38.1%37.1% 36.9%35.9%

35.2%

35.7%

36.5% 38.1% 37.2% 35.5% 37.7%

75 / 120

How Long Does Training Take?

It’s a secret.
Measure in terms of real-time factor.

How many hours to process one hour of speech?
If 1,000 hours of speech, 10x real time . . .

How many days to train on one machine?
Parallelization is key.

Data parallelization: collect FB counts on 1
k th corpus.

Sum FB counts before parameter reestimation.

76 / 120

Recap

In theory, training involves simple algorithms.
In practice, training is insanely complicated . . .

For state-of-the-art systems.

77 / 120

Administrivia

Clear (6); mostly clear (4).
Pace: OK (5), slow (2).
Muddiest: dcs trees and Gaussians (2); dcs trees and
HMM’s (2); criterion for constructing dcs trees (1).
Feedback (2+ votes):

More info on reading project (2).
http://www.ee.columbia.edu/~stanchen/
fall12/e6870/readings/project_f12.html
(same password as readings).
Don’t need to worry about this yet.

78 / 120

Administrivia

Lab 2, Lab 3.
Not graded yet; handed back next lecture.
Answers:
/user1/faculty/stanchen/e6870/lab2_ans/.

Lab 4.
Postponed because material not covered yet.
Will announce when lab posted + new due date.

Make-up lecture.
What days can you make it (same time)?

Working on setups for non-reading projects.

79 / 120

Part II

Segue: Intro to LVCSR Decoding

80 / 120

http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html
http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html

Decoding for LVCSR

Now know how to build models for LVCSR:
n-gram LM’s P(ω) via counting and smoothing.
CD acoustic models Pω(x) via complex recipes.

This part: given test audio x, how to compute . . .
Most likely word sequence ω∗.

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)Pω(x)

Initially, let’s ignore efficiency.
How to do this conceptually?

81 / 120

Decoding: Small Vocabulary

Take (H)MM representing allowable word sequences/LM.

one

two

three

.

�

Replace each word with corresponding HMM.

HMMone

HMMtwo

HMMthree

.

�

one

two

three

four

�ve

six

seven
eight

nine

zero

Run Viterbi algorithm!

82 / 120

Can We Do Same Thing for LVCSR?

1 Can we express LM as (H)MM?
2 How to expand word HMM to full HMM?
3 Graph not too big? Not too slow to decode?

83 / 120

Issue 1: Is n-Gram Model an (H)MM?

Yup; n-gram model is Markov model of order n − 1.
Example: trigram model P(wi |wi−2wi−1).
One state for each history wi−2wi−1.

Arrive here iff last two words are wi−2, wi−1.
Each state wi−2wi−1 has outgoing arc for every wi . . .

To state wi−1wi with probability P(wi |wi−2wi−1).
For each word sequence w1, . . . , wL . . .

Single path through HMM with total probability

P(w1, . . . , wL) =
∏

i

P(wi |wi−2wi−1)

84 / 120

Trigram LM, Morse Code, Basic Structure

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

85 / 120

Trigram LM, Morse Code, With Probabilities

dit

dah

dit

dit

dah

dah

dah

dit

dah/P (dahjdit dah)

dit/P (ditjdah dah)

dit/P (ditjdah dit)

dah/P (dahjdit dit)

dit/
P
(ditjdit

dah)

dah/
P
(dahjdah

dit)

dit/P (ditjdit dit)

dah/P (dahjdah dah)

86 / 120

Pop Quiz

How many states in HMM representing trigram model . . .
With vocabulary size |V |?

How many arcs?

87 / 120

Issue 2: Graph Expansion

Training: only single word sequence, e.g., EIGHT TWO.

EY TD T UW

EY-j+TD TD-EY+T T-TD+UW UW-T+j

gEY.1,9 gEY.2,2 gTD.1,6 gTD.2,7 gT.1,15 gT.2,3 gUW.1,4 gUW.2,1

gEY.1,9 gEY.2,2 gTD.1,6 gTD.2,7 gT.1,15 gT.2,3 gUW.1,4 gUW.2,1

88 / 120

Context-Dependent Graph Expansion

Decoding: many possible word sequences.
CD expansion: handling branch points is tricky.
Other issues: single-phoneme words; quinphone models.

ONE

TWO UW

T

W

N

AH

UW-T+T

UW-T+W

N-AH+W N-AH+T T-UW+UW

W-N+AH

T-N+UW

W-UW+AH

AH-W+N

89 / 120

Issue: How Big The Graph?

Trigram model (e.g., vocabulary size |V | = 2)

dit

dah

dit

dit

dah

dah

dah

dit

dah

dit

dit

dah

d
it

d
ah

dit

dah

|V |3 word arcs in FSA representation.
Say words are ∼4 phones = 12 states on average.
If |V | = 50000, 500003 × 12 ≈ 1015 states in graph.
PC’s have ∼ 1010 bytes of memory.

90 / 120

Issue: How Slow Decoding?

In each frame, loop through every state in graph.
If 100 frames/sec, 1015 states . . .

How many cells to compute per second?
PC’s can do ∼ 1010 floating-point ops per second.

91 / 120

Recap: Small vs. Large Vocabulary Decoding

In theory, can use same exact techniques.
In practice, three big problems:

Context-dependent graph expansion is complicated.
Decoding graphs way too big.
Decoding way too slow.

How can we handle this?
Next week:

Finite-state machines.
How to make decoding efficient.

92 / 120

Part III

Finite-State Machines

93 / 120

A View of Graph Expansion

Step 1: Take word graph as input.
Convert into phone graph.

Step 2: Take phone graph as input.
Convert into context-dependent phone graph.

Step 3: Take context-dependent phone graph.
Convert into final HMM.

Goal: want framework for . . .
1 Representing graphs.
2 Transforming graphs.

94 / 120

A View of Graph Expansion

ONE

TWO UW

T

W

N

AH

UW-T+T

UW-T+W

N-AH+W N-AH+T T-UW+UW

W-N+AH

T-N+UW

W-UW+AH

AH-W+N

one

two

three

four

�ve

six

seven
eight

nine

zero

95 / 120

A Framework for Rewriting Graphs

How to represent graphs?
HMM’s ⇒ finite-state acceptors (FSA’s)!

How to represent graph transformations?
Finite-state transducers (FST’s)!

What operation applies transformations to graphs?
Composition!

96 / 120

Where Are We?

1 The Basics

2 Composition

97 / 120

What is a Finite-State Acceptor?

It’s like an HMM, but without probabilities.
It has states.

Exactly one initial state; one or more final states.
It has arcs.

Each arc has a label, which may be empty (ε).

a

a

�

c

b

98 / 120

What Does an FSA Mean?

The (possibly infinite) list of strings it accepts.
i.e., strings that label path from initial to final state.

Meaning: a, ab, ac.

a b

c

Meaning: b, bb, bbb, bbbb, . . .

b

b

99 / 120

Pop Quiz

Are these equivalent?
i.e., do they have same meaning?

a

� a b

Things that don’t affect meaning.
How labels are distributed along path.
Invalid paths.

100 / 120

What is a Finite-State Transducer?

It’s like a finite-state acceptor, except . . .
Each arc has two labels instead of one.

An input label (possibly empty).
An output label (possibly empty).

a:a

a:�

�:b

c:c

b:a

101 / 120

What Does an FST Mean?

A (possibly infinite) list of pairs of strings . . .
An input string and an output string.

Meaning: (a, A), (ab, AB), (ac, AC).

a:A b:B

c:C

Meaning: (ε, ε), (b, a), (bb, aa), (bbb, aaa), . . .

a:A

102 / 120

What is Composition?

Applying FST T to FSA A to create new FSA A ◦ T .
If α ∈ A and (α, β) ∈ T , then β ∈ A ◦ T .

A has meaning: a, ab, ac.
a b

c

T has meaning: (a, A), (ab, AB), (ac, AC).
a:A b:B

c:C

A ◦ T has meaning: A, AB, AC.
A B

C

103 / 120

Recap

Finite-state acceptor (FSA): one label on each arc.
Finite-state transducer (FST): two labels on each arc.
Finite-state machine (FSM): FSA or FST.

Also, finite-state automaton.
FST’s can be used to transform FSA’s via composition.
The point: can express each stage in graph expansion . . .

As applying FST via composition.

104 / 120

Where Are We?

1 The Basics

2 Composition

105 / 120

The Composition Operation

A simple and efficient algorithm for computing . . .
Result of applying transducer to acceptor.

What can composition do?

106 / 120

Rewriting Single String A Single Way

A 1 2a 3b 4d

T 1 2a:A 3b:B 4d:D

A ◦ T 1 2A 3B 4D

107 / 120

Rewriting Single String A Single Way

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1 2A 3B 4D

108 / 120

Transforming a Single String

Let’s say have string, e.g.,
THE DOG

Let’s say want to apply one-to-one transformation.
e.g., map words to their (single) baseforms.

DH AH D AO G

This is easy, e.g., use sed or perl or . . .

109 / 120

The Magic of FST’s and Composition

Let’s say have (possibly infinite) list of strings . . .
Expressed as an FSA, as this is compact.

How to transform all strings in FSA in one go?
How to do one-to-many or one-to-zero transformations?
Can we express (possibly infinite) list of output strings . . .

As (compact) FSA?
Fast?

110 / 120

Rewriting Many Strings At Once

A 1

2c

d

6

b

3a

5

a

a

4

b

d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1

3
B

2

C

D

4

A

A

5
A 6

D

B

111 / 120

Rewriting Single String Many Ways

A 1 2a 3b 4a

T
1

a:a
a:A
b:b
b:B

A ◦ T 1 2a
A

3b
B

4a
A

112 / 120

Rewriting Some Strings Zero Ways

A 1

2a

d

6

b

3a

5

a

a

4

b

a

T 1

a:a

A ◦ T 1 2a
3a

4

a

5a

113 / 120

Computing Composition: The Basic Idea

For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T . . .
Corresponding to being in states s and t at same time.

Make arcs in intuitive way.

114 / 120

Example

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

Optimization: start from initial state, build outward.

115 / 120

Computing Composition: More Formally

For now, pretend no ε-labels.
For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T .
Create arc from (s1, t1) to (s2, t2) with label o iff . . .

There is arc from s1 to s2 in A with label i and . . .
There is arc from t1 to t2 in T with label i : o.

(s, t) is initial iff s and t are initial; similarly for final states.
(Remove arcs and states that are “unreachable”.)
What is time complexity?

116 / 120

Another Example

A
1

2
a

3a

b

b

T 1 2

a:A

b:B

a:a

b:b

A ◦ T 1,1 3,2

A

2,2A

b

3,1b 1,2B

a
2,1a B

117 / 120

Composition and ε-Transitions

Basic idea: can take ε-transition in one FSM . . .
Without moving in other FSM.

Tricky to do exactly right.
Do readings if you care: (Pereira, Riley, 1997)

A, T 1 2<epsilon>

A
3B 1 2<epsilon>:B

A:A
3B:B

A ◦ T

1,1

2,2

A

1,2

B

2,1
eps

3,3

B

eps

1,3 2,3
eps

B

3,1

3,2

B

118 / 120

Recap

FST’s can express wide range of string transformations.
Composition lets us efficiently . . .

Apply FST to all strings in FSA in one go!

119 / 120

FSM Toolkits

AT&T FSM toolkit ⇒ OpenFST; lots of others.
Implements composition, lots of finite-state operations.

A syntax for specifying FSA’s and FST’s, e.g.,

1 2 C
2 3 A
3 4 B
4

1 2C 3A 4B

120 / 120

	LVCSR Training
	Acoustic Modeling for LVCSR
	The Local Maxima Problem
	Recipes for LVCSR Training
	Discussion

	Segue: Intro to LVCSR Decoding
	Finite-State Machines
	The Basics
	Composition

