Lecture 8

LVCSR Training and Decoding

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com

12 November 2012

What We're Talking About Today

- Large-vocabulary continuous speech recognition (LVCSR).
- Acoustic model training.
 - How to estimate parameters, e.g., for GMM's.
 - How to build phonetic decision trees.
- Decoding.
 - How to select best word sequence . . .
 - Given audio sample.

Part I

LVCSR Training

Review

- x Observations; sequence of ~40d feature vectors.
- ullet ω word sequence.
- Fundamental equation of ASR.

$$\omega^* = \underset{\omega}{\operatorname{arg\,max}} \ P(\omega|\mathbf{x}) = \underset{\omega}{\operatorname{arg\,max}} \ P(\omega)P_{\omega}(\mathbf{x})$$

- $P_{\omega}(\mathbf{x})$ acoustic model.
 - For word sequence ω , how likely are features **x**?
- $P(\omega)$ language model.
 - How likely is word sequence ω ?

Review: Acoustic Modeling

• For word sequence ω , construct associated HMM.

- Each x can be output by many paths through HMM.
- Compute $P_{\omega}(\mathbf{x})$ by summing over path likelihoods.

$$P_{\omega}(\mathbf{x}) = \sum_{\mathsf{paths}\; A} P_{\omega}(\mathbf{x},A)$$

- Compute path likelihood by . . .
 - Multiplying arc and GMM output probs along path.

Review: Acoustic Modeling

• For word sequence ω , construct associated HMM.

- Each **x** can be output by many *paths* through HMM.
- Compute $P_{\omega}(\mathbf{x})$ by summing over path likelihoods.

$$P_{\omega}(\mathbf{x}) = \sum_{\mathsf{paths}\; A} P_{\omega}(\mathbf{x},A)$$

- Compute path likelihood by . . .
 - Multiplying arc and GMM output probs along path.

Review: Acoustic Modeling

• For word sequence ω , construct associated HMM.

- Each **x** can be output by many *paths* through HMM.
- Compute $P_{\omega}(\mathbf{x})$ by summing over path likelihoods.

$$P_{\omega}(\mathbf{x}) = \sum_{\mathsf{paths}\; A} P_{\omega}(\mathbf{x},A)$$

- Compute path likelihood by . . .
 - Multiplying arc and GMM output probs along path.

Acoustic Likelihoods: Small Vocabulary

$$\begin{split} P_{\omega}(\mathbf{x}) &= \sum_{\text{paths } A} P_{\omega}(\mathbf{x}, A) \\ &= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \times P(\vec{x}_t | a_t) \\ &= \sum_{\text{paths } A} \prod_{t=1}^{T} p_{a_t} \sum_{\text{comp } j} p_{a_t, j} \prod_{\text{dim } d} \mathcal{N}(\mathbf{x}_{t, d}; \mu_{a_t, j, d}, \sigma^2_{a_t, j, d}) \end{split}$$

- p_a transition probability for arc a.
- p_{a,j} mixture weight, jth component of GMM on arc a.
- $\mu_{a,j,d}$ mean, dth dim, jth component, GMM on arc a.
- $\sigma_{a,j,d}^2$ variance, dth dim, jth component, GMM on arc a.

Acoustic Likelihoods: Large Vocabulary

$$egin{aligned} P_{\omega}(\mathbf{x}) &= \sum_{\mathsf{paths}\,A} P_{\omega}(\mathbf{x},A) \ &= \sum_{\mathsf{paths}\,A} \prod_{t=1}^{T} p_{a_t} imes P(ec{x}_t | a_t) \ &= \sum_{\mathsf{paths}\,A} \prod_{t=1}^{T} p_{a_t} \sum_{\mathsf{comp}\,j} p_{a_t,j} \prod_{\mathsf{dim}\,d} \mathcal{N}(x_{t,d}; \mu_{a_t,j,d}, \sigma^2_{a_t,j,d}) \end{aligned}$$

- p_a transition probability for arc a.
- p_{a,j} mixture weight, jth component of GMM on arc a.
- $\mu_{a,j,d}$ mean, dth dim, jth component, GMM on arc a.
- $\sigma_{a,j,d}^2$ variance, dth dim, jth component, GMM on arc a.

So, What's Different for Large Vocabulary?

• The HMM.

Where Are We?

- Acoustic Modeling for LVCSR
- The Local Maxima Problem
- Recipes for LVCSR Training
- 4 Discussion

Review: Building HMM's, Small Vocabulary

- Training.
 - Enumerate possible word sequences given transcript.
 - Replace each word with its HMM; collect FB counts.

- Decoding.
 - Enumerate possible word sequences.
 - Replace each word with its HMM; run Viterbi.

Example: Word Models (Training HMM)

- One HMM per word (two states per phone, say).
 - Each HMM has own GMM's (one per state).
- e.g., reference transcript: EIGHT TWO.
 - EY TD T UW

What's the Problem With Word Models?

- What if want to be able to decode . . .
 - Word not in training set, e.g., REDONKULOUS?
- Lots of data for some words.
 - Almost no data for others.
- Not scalable to large vocabulary.

Phonetic Modeling

- One HMM per phoneme.
 - Each HMM has own GMM's.
- Need pronunciation or baseform for each word.

$$TWO \Rightarrow TUW$$

 $TEN \Rightarrow TEYN$

- Concatenate phoneme HMM's to form HMM for word.
 - i.e., share GMM's for phone across all words . . .
 - Containing that phone.
- What if word not in training? No problemo.
- What if phoneme not in training? Unlikely.

Phonetic Modeling

$$TWO \Rightarrow TUW$$

 $EIGHT \Rightarrow EYTD$

What's the Difference?

- HMM topology typically doesn't change.
- HMM parameterization changes.

Pop Quiz

- Scenario:
 - 1000 word vocabulary; 50 phonemes.
 - Avg. word length = 5 phones; two states per phoneme.
- Word modeling: one HMM per word.
 - How many GMM's per word on average?
 - How many GMM's in whole system?
- Phonetic modeling: one HMM per phoneme.
 - How many GMM's per phoneme?
 - How many GMM's in whole system?

Context-Independent Phonetic Modeling

- Same phoneme HMM independent of phonetic context.
- What's the problem?
 - Is 'L' in 'S L IH' and 'IH L Z' the same?
 - Allophonic variation; coarticulation.
- Symptom: too few GMM's \Rightarrow underfitting.

Context-Dependent Phonetic Modeling

- Separate HMM for each context of each phoneme?
 - *e.g.*, *triphone* model \Rightarrow context is \pm 1 phone.
 - Separate HMM for *L-S+IH*, *L-IH+Z*, . . .
- What's the problem?
- Solution: cluster triphones.
 - e.g., L-S+IH, L-S+AA, L-S+AE, L-S+EH, . . .
 - Separate HMM for each cluster.
 - Most popular method: decision trees

Context-Dependent Phonetic Modeling

- Separate HMM for each context of each phoneme?
 - *e.g.*, *triphone* model \Rightarrow context is \pm 1 phone.
 - Separate HMM for L-S+IH, L-IH+Z, ...
- What's the problem?
- Solution: cluster triphones.
 - e.g., L-S+IH, L-S+AA, L-S+AE, L-S+EH, . . .
 - Separate HMM for each cluster.
 - Most popular method: decision trees.

Example: Tree for Phoneme T

How Many Trees?

- Which phoneme position affects pronunciation of . . .
 - Beginning of current phoneme the most?
 - What about end of current phoneme?
- Separate decision tree for each phoneme HMM state!
 - If 50 phones, 2 states/phone, how many trees total?
 - For each tree, one GMM per leaf.
- HMM topology fixed.
 - Choose GMM to use at each position . . .
 - By finding leaf in corresponding tree.

Example: Tree for Phoneme T, State 2

Context-Dependent Phonetic Modeling

Start with phoneme sequence.

Substitute in HMM topology for each phoneme.

Select GMM for each state using associated tree.

Pop Quiz

- Scenario:
 - 1000 word vocabulary; 50 phonemes.
 - Avg. word length = 5 phones; two states per phoneme.
 - Each decision tree contains 100 leaves on average.
- Word modeling: one HMM per word.
 - How many GMM's per word on average? 10.
 - How many GMM's in whole system? 10,000.
- Phonetic modeling, CI: one HMM per phoneme.
 - How many GMM's per phoneme? 2.
 - How many GMM's in whole system? 100.
- Phonetic modeling, CD: many HMM's per phoneme.
 - How many GMM's per phoneme?
 - How many GMM's in whole system?

Size Matters

Typical model sizes:

		GMM's/		
type	HMM	state	GMM's	Gaussians
word	per word	1	10-500	100–10k
CI phone	per phone	1	~150	1k–3k
CD phone	per phone	1–200	1k–10k	10k–300k

- 40d feature vectors ⇒ 80 parameters/Gaussian.
- Big models can have tens of millions of parameters.

Recap

- Word modeling doesn't scale.
 - Don't share data between words.
 - Some words have lots of data; other very little.
 - Can't model coarticulation across words.
- Phonetic modeling scales.
 - Share data between words; parameter tying.
 - Every phoneme has lots of data . . .
 - But some lots more than others.
- Context-dependent phonetic modeling.
 - Models coarticulation, including cross-word.
 - More data ⇒ more leaves ⇒ more parameters.
 - Can spread data evenly across GMM's.

Discussion

- CD phonetic modeling with decision trees.
 - State of the art since early 1990's.
 - No serious challenger on horizon?
 - *triphone* model ± 1 phones of context.
 - quinphone model ± 2 phones of context.
 - Longer context makes decoding much harder!
- Basic issue: parameter tying.
 - Each state for each phoneme has own decision tree.
 - Each leaf in each decision tree has own GMM.
 - Share leaf GMM across all words containing leaf.
 - What are other possible schemes?

Where Are We?

- Acoustic Modeling for LVCSR
- The Local Maxima Problem
- Recipes for LVCSR Training
- 4 Discussion

Training ⇔ Parameter Estimation

- Likelihood of training data is function of parameter values.
 - Transition probabilities.
 - GMM's: mixture weights; means and variances.
- Find parameter values to maximize likelihood.
- Tool: Forward-Backward algorithm.
 - Given initial values, iteratively adjust parameters . . .
 - To improve likelihood.
 - i.e., find closest local maximum to start.

Small Vocabulary Training — Lab 2

- Phase 1: Flat start.
 - Initialize all Gaussian means to 0, variances to 1.
- Phase 2: Run Forward-Backward algorithm to convergence.
- Phase 3: Profit!

Large Vocabulary Training

- What's changed?
 - Lab 2: <2500 parameters.
 - Large vocabulary: up to 10M+ parameters.
- Realistically, can't do simple hill-climbing search . . .
 - On 10M+ parameters and find good local maximum.
 - It's a miracle it works with 2500 parameters.

Hill Climbing and Local Maxima

- FB finds "nearest" maximum to initial parameters.
 - With bad starting point, final model will be garbage.
- How to find good starting point?

Where Do Local Maxima Come From?

- ML estimation for non-hidden models is easy.
 - e.g., non-hidden HMM's; Gaussians; multinomials.
 - Count and normalize; no search necessary.
- Problem must be hidden variables!

What Are The Hidden Variables?

$$P_{\omega}(\mathbf{x}) = \sum_{\text{paths } A} \prod_{t=1}^{I} p_{a_t} \sum_{\text{comp } j} p_{a_t,j} \prod_{\text{dim } d} \mathcal{N}(x_{t,d}; \mu_{a_t,j,d}, \sigma^2_{a_t,j,d})$$

- Look for sums or max's.
- Path through HMM ⇒ which GMM/state at each frame.
- Which component in each GMM at each frame.

Hidden Variables and Local Maxima

- Assume each GMM has single component ⇒ not hidden.
- Let's assign values to every hidden variable . . .
 - In whole training set.
 - i.e., which GMM generates each frame.

• Call hidden assignment over whole corpus an alignment.

Alignments and Parameter Initialization

- Fixing alignment ⇒ making corpus non-hidden.
 - Easy to do ML estimation of parameters.
 - Like Viterbi-style training in Lab 2.
 - *i.e.*, can use alignment to initialize parameters.
- Data used to train given GMM comes from . . .
 - All frames aligned to that GMM.
- If seed parameters using "bad" alignment . . .
 - Wrong data used to train GMM's.
 - Parameters near bad maximum?
- If seed parameters using "good" alignment . . .
 - Right data used to train GMM's.
 - Parameters near good maximum?

Example: Good and Bad Alignments

- Good alignment matches "truth".
 - GMM models what it's supposed to be modeling.
 - e.g., GMM associated with first state of TD-EY+T . . .
 - Aligns to initial frames of 'TD' in this context.

frame	0	1	2	3	4	5	
truth	EY.1	EY.1	EY.2	EY.2	EY.2	TD.1	
hyp	EY.1	EY.1	EY.2	EY.2	EY.2	TD.1	

Bad alignment — doesn't match "truth".

frame	0	1	2	3	4	5	
truth	EY.1	EY.1	EY.2	EY.2	EY.2	TD.1	
hyp	EY.1	EY.2	EY.2	TD.1	TD.1	TD.2	

Parameter Initialization

- Key to finding good starting point for FB:
 - Need good alignment to seed parameters!
- Point: if have existing "good" model . . .
 - Use model to compute (Viterbi) alignment.
 - Use alignment to bootstrap another model.
 - Repeat to build more and more complex models!
- Where to get first "good" model?
 - Where does FB with flat start actually work!?
- Build lots of incrementally more complex models . . .
 - Or go straight from initial model to final model?

The Basic Plan

- Step 1: Build CI model with 1 Gaussian/GMM.
 - Know flat start + FB works!
- Step 2: Build CI model with 2 Gaussians/GMM.
 - Seed using alignment from last system; run FB.

.....

- Step k: Build CD model with 128 Gaussians/GMM.
 - Seed using alignment from last system; run FB.

Ways to Seed Next Model From Last One

- Via alignment.
 - Do Viterbi-style training for next model . . .
 - Using Viterbi alignment computed using last model.

frame	0	1	2	3	4	5	
GMM	EY.1	EY.1	EY.2	EY.2	EY.2	TD.1	

- Via parameters.
 - Seed parameters of next model so . . .
 - Viterbi alignment is same (or close) as for last model.
 - e.g., GMM splitting (clone each Gaussian, perturb).
 - e.g., CI ⇒ CD GMM's (clone each CI GMM).

Recap

- For models with millions of parameters . . .
 - Flat start and FB just doesn't cut it.
- Local maxima due to hidden variables.
 - *i.e.*, space of possible alignments.
- If have good alignment . . .
 - Can initialize parameters so near good maximum.
- Key idea: use simple models to bootstrap . . .
 - Incrementally more complex models.
- More gory details to follow.

Where Are We?

- Acoustic Modeling for LVCSR
- The Local Maxima Problem
- Recipes for LVCSR Training
- 4 Discussion

Overview of Training Process

- Start: CI, GMM's contain single component.
- End: CD, GMM's contain 128 components, say.
- How to get here from there?
 - More than one way.
- Let's go through one recipe, start to finish.

Step 0: Prerequisites

- Data.
 - Utterances with transcripts.
 - Pronunciation/baseform dictionary.
 - Questions to ask in phonetic decision tree.
- Decisions.
 - For each phoneme, HMM topology/size.
 - Number of components in GMM's.
- Period.

The Pronunciation Dictionary

- Need pronunciation of every word in training data.
 - Without pronunciation, can't build HMM for word.
- Words may have multiple pronunciations.

```
THE(01) DH AH
THE(02) DH IY
```

- Where to get baseforms for new words?
 - Ask a linguist? (We fired them.)
 - Where else?

Step 1: CI, 1 component/GMM

- Flat start.
 - Transition probabilities, mixture weights uniform.
 - Gaussian means 0, variances 1.
- Run FB to convergence (Lab 2).
- Before: alignments are garbage.
- After: alignments are reasonable (but flawed).

Step 2: CI, 32 components/GMM

- Split Gaussians ⇒ 2 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 4 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 8 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 16 components/GMM.
 - Run bunch of iterations of FB.

• Train single Gaussian via Forward-Backward.

• Split each Gaussian in two $(\pm 0.2 \times \vec{\sigma})$

Run FB for a few iterations.

• Split each Gaussian in two $(\pm 0.2 \times \vec{\sigma})$

Run FB for a few iterations.

There is also *k*-Means

• Use centers as means of Gaussians; train.

The Final Mixtures, Splitting vs. k-Means

Step 3: Select Pronunciation Variants

- Reference transcript doesn't tell you everything.
- Missing silence, filled pauses (e.g., UH).
- Doesn't tell you which pronunciation . . .
 - For words with multiple pronunciations.
 - e.g., whether THE pronounced 'DH AH' or 'DH IY'.

```
THE(01) DH AH
THE(02) DH IY
```

Handling All Possible Alternatives

- In theory, optional silence, multiple pronunciations . . .
 - No problem! Just build appropriate HMM.
 - Consider all possible paths over whole training process.

- In practice, painful.
 - Expensive computationally.
 - Building training HMM with CD models tricky.

What To Do?

Solution: nail down "exact" transcript.

- Once model sufficiently good, compute Viterbi path.
 - Identify pronunciations (and silences) along path.
- Fix "exact" transcript for remainder of training.
 - Or recompute periodically.

Step 3: Select Pronunciation Variants

- Run Viterbi algorithm on training set.
 - Compute "exact" transcript for each utterance.
- Run bunch of iterations of FB.

Step 4: Building Phonetic Decision Trees

- Goal: build phonetic decision tree . . .
 - For each state in each phone HMM (\sim 150 total).
 - *e.g.*, AA.1, AA.2, AA.3, AE.1, ...
- What do we need?
 - Data aligned to each phone HMM state.
 - List of candidate questions.

Training Data for Decision Trees

- Run Viterbi algorithm.
 - For each frame, identify which feature vector, . . .
 - Which GMM/HMM state, and phonetic context.

- e.g., feature vector **x**₅ used to train tree for TD.1.
 - (Triphone) context is -EY+T.
 - Data for tree is list of triples (\vec{x}, p_L, p_R) ; e.g., $(\mathbf{x}_5, \text{EY}, \text{T})$.

Building a (Triphone) Tree

- Input: list of triples $(\vec{x}_i, p_{L,i}, p_{R,i})$.
- At each node on frontier of tree:
 - Choose question of form . . .
 - "Does phone in position j belong to set q?" ...
 - Optimizing $\prod_i P(\vec{x}_i | \text{leaf}(p_{L,i}, p_{R,i})) \dots$
 - Where each leaf distribution is single Gaussian.
- Can efficiently build whole level of tree in single pass.
- See Lecture 6 slides and readings for gory details.

The List of Candidate Questions

- Created by linguist many decades ago.
 - Passed down from mother to daughter, father to son.
- Corresponds to phonetic concepts.
 - e.g., vowel? dipthong? fricative? nasal? etc.
- Each question represented as set of phones.
 - Does phoneme belong to set of not?

Example Questions

- AA
- AE
- ...
- ZH
- AO OY
- AX IH
- CH JH
- DH V
- ER R
- F TH
- IH IY
- IY Y
- L W

- OW UW
- SH ZH
- S Z
- AE EH EY
 - BDG
 - F HH TH
 - KPT
 - M N NG
 - S TS Z
- AH AO AX EY
 - CH JH SH ZH
 - DH F TH V
 - ...

Example Output

Step 4: Building Phonetic Decision Trees

- Build phonetic decision tree for each phone state.
- Before: one (CI) GMM per phone state.
 - After: one (CD) GMM per leaf for each phone state.
 - Seed CD GMM's by cloning original CI GMM.
- Initially, same Viterbi alignment as CI model.
 - In computing likelihood, replace CI with CD GMM . . .
 - But these are identical.
- Run bunch of iterations of FB.

Step 5: CD, 128 components/GMM

- Split Gaussians ⇒ 32 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 64 components/GMM.
 - Run bunch of iterations of FB.
- Split Gaussians ⇒ 128 components/GMM.
 - Run bunch of iterations of FB.

Recap

- Step 0: Collect data.
 - Make baseforms for all words in reference transcripts.
- Step 1: Build CI, 1 component/GMM model from flat start.
- Step 2: Build CI, many component GMM model.
 - Repeated Gaussian splitting.
- Step 3: Find "exact" transcripts, pronunciation variants.
 - Viterbi algorithm.
- Step 4: Build phonetic decision tree.
 - From alignment created by CI model.
- Step 5: Build CD, many component GMM model.
 - Repeated Gaussian splitting.

Discussion

- One of many possible recipes.
- Training is complicated, multi-step process.
- Motifs.
 - Seed complex model using simpler model.
 - Run lots of Forward-Backward.

Where Are We?

- Acoustic Modeling for LVCSR
- The Local Maxima Problem
- Recipes for LVCSR Training
- Discussion

LVCSR Training Doesn't Require Much

- Data.
 - Utterances with transcripts.
 - Pronunciation/baseform dictionary.
 - Questions to ask in phonetic decision tree.
- Algorithms.
 - Viterbi; Forward-Backward.
 - Decision-tree building.
 - Almost same as in small vocabulary.

Training Is an Art

- Hidden model training fraught with local maxima.
- Seed more complex models with simpler models.
 - Incrementally improve alignments; avoid bad maxima.
- Recipes developed over decades.
 - Discovered via sweat and tears.
- No one believes these find global maxima.
 - How well recipe works depends on data?

Speeding Up Training

- Requires many, many iterations of Forward-Backward.
- Full Forward-Backward training.
 - Compute posterior of each alignment.
 - Collect counts over all possible alignments.
- Viterbi-style training.
 - Pick single alignment, e.g., using Viterbi.
 - Collect counts over single alignment.
- Both valid ⇒ guaranteed to increase (Viterbi) likelihood.

When To Use One or the Other?

- Use Viterbi-style when can ⇒ cheaper.
 - Optimization: need not realign every iteration.
- Intuitively, full FB may find better maxima . . .
 - But if posteriors very sharp, do almost same thing.
 - Remember example posteriors in Lab 2?
- Rule of thumb:
 - When first training "new" model, use full FB.
 - Once "locked in" to local maximum, Viterbi is fine.

Bootstrapping One Model From Another

- Bootstrap complex model from simpler model . . .
 - Using alignment computed from simpler model.
- Point: models need not be of same form!
 - Can use WSJ model to bootstrap Switchboard model.
 - Can use triphone model to bootstrap quinphone model.
 - Can use GMM/HMM model to bootstrap DBN model.
- Requirement: same phonemes, states per phoneme.

Whew, That Was Pretty Complicated!

- The tip of the iceberg.
- Adaptation (VTLN, fMLLR, mMLLR).
- Discriminative training (LDA, MMI, MPE, fMPE).
- Model combination (cross adaptation, ROVER).

Things Can Get Pretty Hairy

How Long Does Training Take?

- It's a secret.
- Measure in terms of real-time factor.
 - How many hours to process one hour of speech?
- If 1,000 hours of speech, 10x real time ...
 - How many days to train on one machine?
- Parallelization is key.
 - Data parallelization: collect FB counts on $\frac{1}{k}$ th corpus.
 - Sum FB counts before parameter reestimation.

Recap

- In theory, training involves simple algorithms.
- In practice, training is insanely complicated ...
 - For state-of-the-art systems.

Administrivia

- Clear (6); mostly clear (4).
- Pace: OK (5), slow (2).
- Muddiest: dcs trees and Gaussians (2); dcs trees and HMM's (2); criterion for constructing dcs trees (1).
- Feedback (2+ votes):
 - More info on reading project (2).
 - http://www.ee.columbia.edu/~stanchen/ fall12/e6870/readings/project_f12.html (same password as readings).
 - Don't need to worry about this yet.

Administrivia

- Lab 2, Lab 3.
 - Not graded yet; handed back next lecture.
 - Answers: /user1/faculty/stanchen/e6870/lab2_ans/.
- Lab 4.
 - Postponed because material not covered yet.
 - Will announce when lab posted + new due date.
- Make-up lecture.
 - What days can you make it (same time)?
- Working on setups for non-reading projects.

Part II

Segue: Intro to LVCSR Decoding

Decoding for LVCSR

- Now know how to build models for LVCSR:
 - *n*-gram LM's $P(\omega)$ via counting and smoothing.
 - CD acoustic models $P_{\omega}(\mathbf{x})$ via complex recipes.
- This part: given test audio x, how to compute . . .
 - Most likely word sequence ω^* .

$$\omega^* = \underset{\omega}{\operatorname{arg\,max}} \ P(\omega|\mathbf{x}) = \underset{\omega}{\operatorname{arg\,max}} \ P(\omega)P_{\omega}(\mathbf{x})$$

- Initially, let's ignore efficiency.
 - How to do this conceptually?

Decoding: Small Vocabulary

• Take (H)MM representing allowable word sequences/LM.

Replace each word with corresponding HMM.

Run Viterbi algorithm!

Can We Do Same Thing for LVCSR?

- Can we express LM as (H)MM?
- 4 How to expand word HMM to full HMM?
- Graph not too big? Not too slow to decode?

Issue 1: Is *n*-Gram Model an (H)MM?

- Yup; n-gram model is Markov model of order n-1.
- Example: trigram model $P(w_i|w_{i-2}w_{i-1})$.
- One state for each history $w_{i-2}w_{i-1}$.
 - Arrive here iff last two words are w_{i-2} , w_{i-1} .
- Each state $w_{i-2}w_{i-1}$ has outgoing arc for every w_i ...
 - To state $w_{i-1}w_i$ with probability $P(w_i|w_{i-2}w_{i-1})$.
- For each word sequence $w_1, \ldots, w_L \ldots$
 - Single path through HMM with total probability

$$P(w_1,\ldots,w_L) = \prod_i P(w_i|w_{i-2}w_{i-1})$$

Trigram LM, Morse Code, Basic Structure

Trigram LM, Morse Code, With Probabilities

Pop Quiz

- How many states in HMM representing trigram model . . .
 - With vocabulary size |V|?
- How many arcs?

Issue 2: Graph Expansion

• Training: only single word sequence, e.g., EIGHT TWO.

Context-Dependent Graph Expansion

- Decoding: many possible word sequences.
- CD expansion: handling branch points is tricky.
- Other issues: single-phoneme words; quinphone models.

Issue: How Big The Graph?

• Trigram model (e.g., vocabulary size |V| = 2)

- $|V|^3$ word arcs in FSA representation.
- Say words are \sim 4 phones = 12 states on average.
- If |V| = 50000, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- PC's have $\sim 10^{10}$ bytes of memory.

Issue: How Slow Decoding?

- In each frame, loop through every state in graph.
- If 100 frames/sec, 10¹⁵ states . . .
 - How many cells to compute per second?
- PC's can do $\sim 10^{10}$ floating-point ops per second.

Recap: Small vs. Large Vocabulary Decoding

- In theory, can use same exact techniques.
- In practice, three big problems:
 - Context-dependent graph expansion is complicated.
 - Decoding graphs way too big.
 - Decoding way too slow.
- How can we handle this?
- Next week:
 - Finite-state machines.
 - How to make decoding efficient.

Part III

Finite-State Machines

A View of Graph Expansion

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into final HMM.
- Goal: want framework for . . .
 - Representing graphs.
 - Transforming graphs.

A View of Graph Expansion

A Framework for Rewriting Graphs

- How to represent graphs?
 - HMM's ⇒ finite-state acceptors (FSA's)!
- How to represent graph transformations?
 - Finite-state transducers (FST's)!
- What operation applies transformations to graphs?
 - Composition!

Where Are We?

- The Basics
- Composition

What is a Finite-State Acceptor?

- It's like an HMM, but without probabilities.
- It has states.
 - Exactly one initial state; one or more final states.
- It has arcs.
 - Each arc has a label, which may be empty (ϵ) .

What Does an FSA Mean?

- The (possibly infinite) list of strings it accepts.
 - i.e., strings that label path from initial to final state.
- Meaning: a, ab, ac.

Meaning: b, bb, bbb, bbbb, . . .

Pop Quiz

- Are these equivalent?
 - *i.e.*, do they have same meaning?

- Things that don't affect meaning.
 - How labels are distributed along path.
 - Invalid paths.

What is a Finite-State Transducer?

- It's like a finite-state acceptor, except . . .
- Each arc has two labels instead of one.
 - An input label (possibly empty).
 - An output label (possibly empty).

What Does an FST Mean?

- A (possibly infinite) list of pairs of strings . . .
 - An input string and an output string.
- Meaning: (a, A), (ab, AB), (ac, AC).

• Meaning: (ϵ, ϵ) , (b, a), (bb, aa), (bbb, aaa), ...

What is Composition?

- Applying FST T to FSA A to create new FSA $A \circ T$.
 - If $\alpha \in A$ and $(\alpha, \beta) \in T$, then $\beta \in A \circ T$.
- A has meaning: a, ab, ac.

• *T* has meaning: (*a*, *A*), (*ab*, *AB*), (*ac*, *AC*).

• $A \circ T$ has meaning: A, AB, AC.

Recap

- Finite-state acceptor (FSA): one label on each arc.
- Finite-state transducer (FST): two labels on each arc.
- Finite-state machine (FSM): FSA or FST.
 - Also, finite-state automaton.
- FST's can be used to transform FSA's via composition.
- The point: can express each stage in graph expansion . . .
 - As applying FST via composition.

Where Are We?

- The Basics
- Composition

The Composition Operation

- A simple and efficient algorithm for computing . . .
 - Result of applying transducer to acceptor.
- What can composition do?

Rewriting Single String A Single Way

$$A \circ T$$
 $\begin{pmatrix} 1 & A & 2 & B & 3 & D & 4 \end{pmatrix}$

Rewriting Single String A Single Way

Transforming a Single String

Let's say have string, e.g.,
 THE DOG

- Let's say want to apply one-to-one transformation.
 - e.g., map words to their (single) baseforms.

DH AH D AO G

• This is easy, e.g., use sed or perl or ...

The Magic of FST's and Composition

- Let's say have (possibly infinite) list of strings . . .
 - Expressed as an FSA, as this is compact.
- How to transform all strings in FSA in one go?
- How to do one-to-many or one-to-zero transformations?
- Can we express (possibly infinite) list of output strings . . .
 - As (compact) FSA?
- Fast?

Rewriting Many Strings At Once

Rewriting Single String Many Ways

Rewriting Some Strings Zero Ways

Computing Composition: The Basic Idea

- For every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T \dots$
 - Corresponding to being in states *s* and *t* at same time.
- Make arcs in intuitive way.

Example

• Optimization: start from initial state, build outward.

Computing Composition: More Formally

- For now, pretend no ϵ -labels.
- For every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T$.
- Create arc from (s_1, t_1) to (s_2, t_2) with label o iff ...
 - There is arc from s_1 to s_2 in A with label i and ...
 - There is arc from t_1 to t_2 in T with label i : o.
- (s, t) is initial iff s and t are initial; similarly for final states.
- (Remove arcs and states that are "unreachable".)
- What is time complexity?

Another Example

Composition and ϵ -Transitions

- Basic idea: can take ϵ -transition in one FSM . . .
 - Without moving in other FSM.
- Tricky to do exactly right.
 - Do readings if you care: (Pereira, Riley, 1997)

Recap

- FST's can express wide range of string transformations.
- Composition lets us efficiently . . .
 - Apply FST to all strings in FSA in one go!

FSM Toolkits

- AT&T FSM toolkit ⇒ OpenFST; lots of others.
 - Implements composition, lots of finite-state operations.
- A syntax for specifying FSA's and FST's, e.g.,

1	2	С
2	3	A
3	4	В
4		

