Lecture 7

LVCSR Training and Decoding (Part A)

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen}@us.ibm.com

22 October 2012

Administrivia

- Lost most of feedback cards?
- Clear (3); mostly clear (3).
- Pace: OK (2).
- Muddiest: terminology (1); math in 1st half (1); n-grams (1); smoothing (1).
- Feedback:
 - More visual aids always good (1).
 - Explain concepts in more depth (1).
 - Don't see why baseforms hard to find automatically (1).
 - Lab 2 too difficult (1).

2/85

Administrivia

- Lab 2
 - Not graded yet; handed back next lecture.
- Lab 3
 - Due nine days from now (Wednesday, Oct. 31) at 6pm.
- Non-reading project proposals (1 page) due Wednesday.
 - For reading projects, nothing to do yet.
 - Reading: paper or presentation (lottery); non-reading: both.
 - Non-reading: up to 3 people.
 - Length of paper/presentation grows with team size.
 - Reading: 20% of grade; non-reading: 20% or 40%.
 - Multiple teams can't do same exact project.

The Big Picture

- Weeks 1–4: Signal Processing, Small vocabulary ASR.
- Weeks 5–8: Large vocabulary ASR.
 - Week 5: Language modeling (for large vocabularies).
 - Week 6: Pronunciation modeling acoustic modeling for large vocabularies.
 - Week 7, 8: Training, decoding for large vocabularies.
- Weeks 9–13: Advanced topics.

3/85 4/85

Outline

- Part I: The LVCSR acoustic model.
- Part II: Acoustic model training for LVCSR.
- Part III: Decoding for LVCSR (inefficient).
 - Part IV: Introduction to finite-state transducers.
- Part V: Search (Lecture 8).
 - Making decoding for LVCSR efficient.

Part I

The LVCSR Acoustic Model

5/85

7/85

6/85

8/85

What is LVCSR?

- Large vocabulary Continuous Speech Recognition.
 - Phone-based modeling vs. word-based modeling.
- Continuous.
 - No pauses between words.

The Fundamental Equation of ASR

$$class(\mathbf{x}) = \underset{\omega}{\operatorname{arg\,max}} P(\omega|\mathbf{x})$$
 (1)

$$= \arg\max_{\omega} \frac{P(\omega)P(\mathbf{x}|\omega)}{P(\mathbf{x})}$$
 (2)

$$= \arg\max_{\omega} P(\omega) P(\mathbf{x}|\omega) \tag{3}$$

- $P(\mathbf{x}|\omega)$ acoustic model.
- $P(\omega)$ language model.

The Acoustic Model: Small Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
 (4)

$$=\approx \max_{\mathbf{A}} P_{\omega}(\mathbf{A}) \times P_{\omega}(\mathbf{x}|\mathbf{A}) \tag{5}$$

$$= \max_{A} \prod_{t=1}^{T} P(a_t) \prod_{t=1}^{T} P(\vec{x}_t | a_t)$$
 (6)

9/85

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[\sum_{t=1}^{T} \log P(a_t) + \sum_{t=1}^{T} \log P(\vec{x}_t | a_t) \right]$$
(7)

$$P(\vec{x}_t|a_t) = \sum_{m=1}^{M} \lambda_{a_t,m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_t,m,d}, \sigma_{a_t,m,d})$$
(8)

The Acoustic Model: Large Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
 (9)

$$=\approx \max_{\mathbf{A}} P_{\omega}(\mathbf{A}) \times P_{\omega}(\mathbf{x}|\mathbf{A}) \tag{10}$$

$$= \max_{A} \prod_{t=1}^{T} P(a_t) \prod_{t=1}^{T} P(\vec{x}_t | a_t)$$
 (11)

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[\sum_{t=1}^{T} \log P(a_t) + \sum_{t=1}^{T} \log P(\vec{x}_t | a_t) \right]$$
(12)

$$P(\vec{x}_t|a_t) = \sum_{m=1}^{M} \lambda_{a_t,m} \prod_{\dim A}^{D} \mathcal{N}(x_{t,d}; \mu_{a_t,m,d}, \sigma_{a_t,m,d})$$
(13)

10/85

What Has Changed?

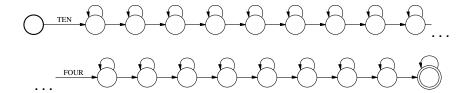
- The HMM.
 - Each alignment A describes a path through an HMM.
- Its parameterization.
 - In $P(\vec{x}_t|a_t)$, how many GMM's to use? (Share between HMM's?)

Describing the Underlying HMM

- Fundamental concept: how to map a word (or baseform) sequence to its HMM.
 - In training, map reference transcript to its HMM.
 - In decoding, glue together HMM's for all allowable word sequences.

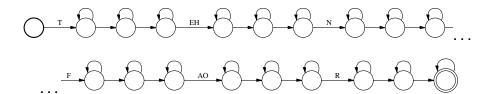
11/85 12/85

The HMM: Small Vocabulary



- One HMM per word.
- Glue together HMM for each word in word sequence.

The HMM: Large Vocabulary



- One HMM per phone.
- Glue together HMM for each phone in phone sequence.
 - Map word sequence to phone sequence using baseform dictionary.
 - The rain in Spain falls ...
 - DH AX | R EY N | IX N | S P EY N | F AA L Z | ...

13/85

14/85

I Still Don't See What's Changed

- HMM topology typically doesn't change.
- HMM parameterization changes.

Parameterization

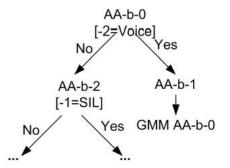
- Small vocabulary.
 - One GMM per state (three states per phone).
 - No sharing between phones in different words.
- Large vocabulary, context-independent (CI).
 - One GMM per state.
 - Tying between phones in different words.
- Large vocabulary, context-dependent (CD).
 - Many GMM's per state; GMM to use depends on phonetic context.
 - Tying between phones in different words.

15/85

Context-Dependent Parameterization

- Each phone HMM state has its own decision tree.
 - Decision tree asks questions about phonetic context. (Why?)
 - One GMM per leaf in the tree. (Up to 200+ leaves/tree.)
- How will tree for first state of a phone tend to differ ...
 - From tree for last state of a phone?
- Terminology.
 - *triphone* model ± 1 phones of context.
 - quinphone model ± 2 phones of context.

Sample Tree

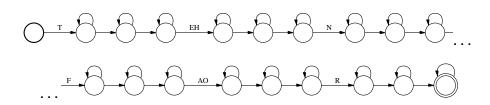


17/85

Pop Quiz

- System description:
 - 1000 words in lexicon; average word length = 5 phones.
 - There are 50 phones; each phone HMM has three states.
 - Each decision tree contains 100 leaves on average.
- How many GMM's are there in:
 - A small vocabulary system (word models)?
 - A CI large vocabulary system?
 - A CD large vocabulary system?

Any Questions?



18/85

- Given a word sequence, you should understand how to . . .
 - Layout the corresponding HMM topology.
 - Determine which GMM to use at each state, for CI and CD models.

19/85 20/85

Context-Dependent Phone Models

Typical model sizes:

		GMM's/		
type	HMM	state	GMM's	Gaussians
word	per word	1	10-500	100–10k
CI phone	per phone	1	∼150	1k–3k
CD phone	per phone	1–200	1k–10k	10k–300k

- 39-dimensional feature vectors $\Rightarrow \sim 80$ parameters/Gaussian.
- Big models can have tens of millions of parameters.

What About Transition Probabilities?

- This slide only included for completeness.
- Small vocabulary.
 - One set of transition probabilities per state.
 - No sharing between phones in different words.
- Large vocabulary.
 - One set of transition probabilities per state.
 - Sharing between phones in different words.
- What about context-dependent transition modeling?

21/85 22/85

Recap

- Main difference between small vocabulary and large vocabulary:
 - Allocation of GMM's.
 - Sharing GMM's between words: needs less GMM's.
 - Modeling context-dependence: needs more GMM's.
 - Hybrid allocation is possible.
- Training and decoding for LVCSR.
 - In theory, any reason why small vocabulary techniques won't work?
 - In practice, yikes!

Points to Ponder

- Why deterministic mapping?
 - DID YOU \Rightarrow D IH D JH UW
 - The area of pronunciation modeling.
- Why decision trees?
 - Unsupervised clustering.

23/85 24/85

Part II

Acoustic Model Training for LVCSR

Small Vocabulary Training — Lab 2

- Phase 1: Collect underpants.
 - Initialize all Gaussian means to 0, variances to 1.
- Phase 2: Iterate over training data.
 - For each word, train associated word HMM ...
 - On all samples of that word in the training data . . .
 - Using the Forward-Backward algorithm.
- Phase 3: Profit!

25/85 26/85

Large Vocabulary Training

- What's changed going to LVCSR?
 - Same HMM topology; just more Gaussians and GMM's.
- Can we just use the same training algorithm as before?

Where Are We?

- 1 The Local Minima Problem
- 2 Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- 5 The Final Recipe

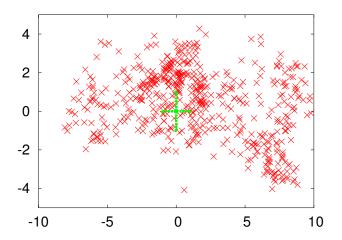
27/85 28/85

Flat or Random Start

- Why does this work for small models?
 - We believe there's a huge global minimum ...
 - In the "middle" of the parameter search space.
 - With a neutral starting point, we're apt to fall into it.
 - (Who knows if this is actually true.)
- Why doesn't this work for large models?

Training a Mixture of Two 2-D Gaussians

- Flat start?
 - Initialize mean of each Gaussian to 0, variance to 1.

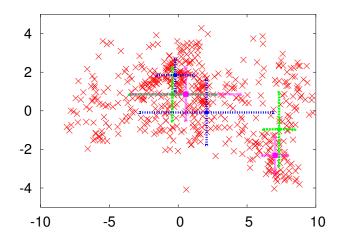


30/85

29/85

Training a Mixture of Two 2-D Gaussians

- Random seeding?
 - Picked 8 random starting points ⇒ 3 different optima.



Training Hidden Models

- (MLE) training of models with hidden variables has local minima.
- What are the hidden variables in ASR?
 - i.e., what variables are in our model ...
 - That are not observed.

31/85 32/88

How To Spot Hidden Variables

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (14)$$

$$- \approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \quad (15)$$

$$= \approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A) \tag{15}$$

$$= \max_{A} \prod_{t=1}^{T} P(a_t) \prod_{t=1}^{T} P(\vec{x}_t | a_t)$$
 (16)

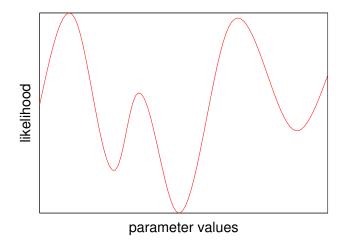
$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[\sum_{t=1}^{T} \log P(a_t) + \sum_{t=1}^{T} \log P(\vec{x}_t | a_t) \right]$$
(17)

$$P(\vec{x}_t|a_t) = \sum_{m=1}^{M} \lambda_{a_t,m} \prod_{d \text{ im } d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_t,m,d}, \sigma_{a_t,m,d}) \quad (18)$$

33/85

Gradient Descent and Local Minima

- EM training does hill-climbing/gradient descent.
 - Finds "nearest" optimum to where you started.



34/85

What To Do?

- Insight: If we know the "correct" hidden values for a model:
 - e.g., which arc and which Gaussian for each frame . . .
 - Training is easy! (No local minima.)
 - Remember Viterbi training given fixed alignment in Lab
 2.
- Is there a way to guess the correct hidden values for a large model?

Bootstrapping Alignments

- Recall that all of our acoustic models, from simple to complex:
 - Generally use the same HMM topology!
 - (All that differs is how we assign GMM's to each arc.)
- Given an alignment (from arc/phone states to frames) for simple model . . .
 - It is straightforward to compute analogous alignment for complex model!

35/85 36/85

Bootstrapping Big Models From Small

- Recipe:
 - Start with model simple enough that flat start works.
 - Iteratively build more and more complex models . . .
 - By using last model to seed hidden values for next.
- Need to come up with sequence of successively more complex models . . .
 - With related hidden structure.

How To Seed Next Model From Last

- Directly via hidden values, e.g., alignment.
 - e.g., single-pass retraining.
 - Can be used between very different models.
- Via parameters.
 - Seed parameters in complex model so that . . .
 - Initially, will yield same/similar alignment as in simple model.
 - e.g., moving from CI to CD GMM's.

37/85 38/85

Bootstrapping Big Models From Small

- Recurring motif in acoustic model training.
- The reason why state-of-the-art systems ...
 - Require many, many training passes, as you will see.
- Recipes handed down through the generations.
 - Discovered via sweat and tears.
 - Art, not science.
 - But no one believes these find global optima . . .
 - Even for small problems.

Overview of Training Process

- Build CI single Gaussian model from flat start.
- Use CI single Gaussian model to seed CI GMM model.
- Build phonetic decision tree (using CI GMM model to help).
- Use CI GMM model to seed CD GMM model.

39/85 40/85

Where Are We?

- The Local Minima Problem
- Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- 5 The Final Recipe

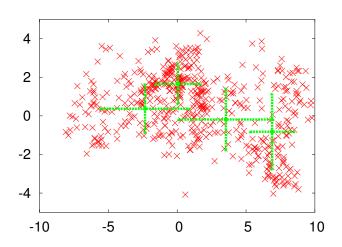
Case Study: Training a GMM

- Recursive mixture splitting.
 - A sequence of successively more complex models.
 - Perturb means in opposite directions; same variance; Train.
 - (Discard Gaussians with insufficient counts.)
- k-means clustering.
 - Seed means in one shot.

41/85

Mixture Splitting Example

• Split each Gaussian in two $(\pm 0.2 \times \vec{\sigma})$



Applying Mixture Splitting in ASR

- Recipe:
 - Start with model with 1-component GMM's (à la Lab 2).

42/85

- Split Gaussians in each output distribution simultaneously.
- Do many iterations of FB.
- Repeat.
- Real-life numbers:
 - Five splits spread within 30 iterations of FB.

43/85 44/85

Another Way: Automatic Clustering

- Use unsupervised clustering algorithm to find clusters (k-Means Clustering)
- Given clusters . . .
 - Use cluster centers to seed Gaussian means.
 - FB training.
 - (Discard Gaussians with insufficient counts.)

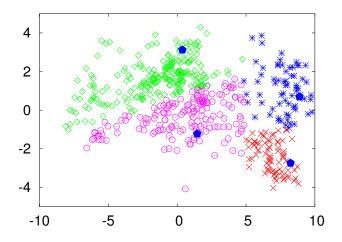
k-Means Clustering

- Select desired number of clusters k.
- Choose *k* data points randomly.
 - Use these as initial cluster centers.
- "Assign" each data point to nearest cluster center.
- Recompute each cluster center as ...
 - Mean of data points "assigned" to it.
- Repeat until convergence.

45/85

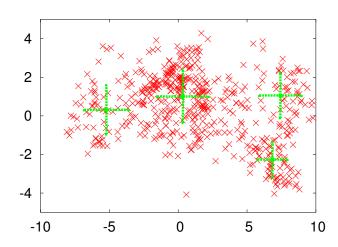
k-Means Example

 Pick random cluster centers; assign points to nearest center.



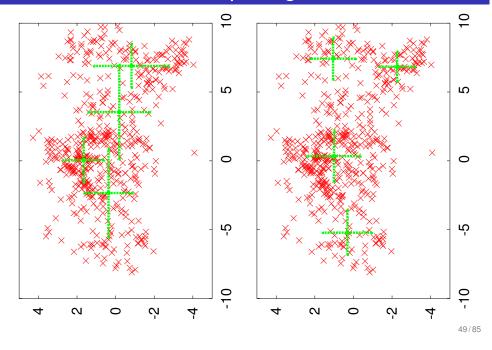
k-Means Example

• Use centers as means of Gaussians; train, yep.



47/85 48/

The Final Mixtures, Splitting vs. k-Means



Technical Aside: k-Means Clustering

- When using Euclidean distance ...
- k-means clustering is equivalent to ...
 - Seeding Gaussian means with the k initial centers.
 - Doing Viterbi EM update, keeping variances constant.

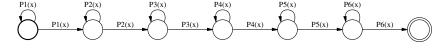
50/85

Applying k-Means Clustering in ASR

- To train each GMM, use k-means clustering . . .
 - On what data? Which frames?
- Huh?
 - How to decide which frames align to each GMM?
- This issue is evaded for mixture splitting.
 - Can we avoid it here?

Forced Alignment

- Viterbi algorithm.
 - Finds most likely alignment of HMM to data.



frame	0	1	2	3	4	5	6	7	8	9	10	11	12
arc	P_1	P_1	P_1	P_2	P_3	P_4	P_4	P_5	P_5	P_5	<i>P</i> ₅	P_6	P_6

Need existing model to create alignment. (Which?)

51/85 52/88

Recap

- You can use single Gaussian models to seed GMM models.
 - Mixture splitting: use c-component GMM to seed 2c-component GMM.
 - *k*-means: use single Gaussian model to find alignment.
- Both of these techniques work about the same.
 - Nowadays, we primarily use mixture splitting.

Where Are We?

1 The Local Minima Problem

Building Phonetic Decision Trees

4 Details

5 The Final Recipe

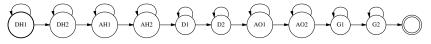
53/85

What Do We Need?

- For each tree/phone state . . .
 - List of frames/feature vectors associated with that tree.
 - (This is the data we are optimizing the likelihood of.)
 - For each frame, the phonetic context.
- A list of candidate questions about the phonetic context.
 - Ask about phonetic concepts; e.g., vowel or consonant?
 - Expressed as list of phones in set.
 - Allow same questions to be asked about each phone position.
 - Handed down through the generations.

Training Data for Decision Trees

- Forced alignment/Viterbi decoding!
- Where do we get the model to align with?
 - Use CI phone model or other pre-existing model.



54/85

frame	0	1	2	3	4	5	6	7	8	9	• • • •
arc	DH ₁	DH ₂	AH ₁	AH ₂	D 1	D 1	D ₂	D ₂	D ₂	A01	• • •

55/85 56/85

Building the Tree

- A set of events $\{(\vec{x}_i, p_L, p_R)\}$ (possibly subsampled).
- Given current tree:
 - Choose question of the form ...
 - "Does the phone in position j belong to the set q?" . . .
 - That optimizes $\prod_i P(\vec{x}_i | \text{leaf}(p_L, p_R)) \dots$
 - Where we model each leaf using a single Gaussian.
- Can efficiently build whole level of tree in single pass.
- See Lecture 6 slides and readings for the gory details.

Seeding the Context-Dependent GMM's

- Context-independent GMM's: one GMM per phone state.
- Context-dependent GMM's: / GMM's per phone state.
- How to seed context-dependent GMM's?
 - e.g., so that initial alignment matches CI alignment?

57/85 58/85

Where Are We?

- The Local Minima Problem
- Training GMM's
- Building Phonetic Decision Trees
- Details
- The Final Recipe

Where Are We?

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training
- Graph Building

59/85 60/85

The Original Story, Small Vocabulary

- One HMM for each word; flat start.
- Collect all examples of each word.
 - Run FB on those examples to do maximum likelihood training of that HMM.

The New Story

- One HMM for each word sequence!?
 - But tie parameters across HMM's!
- Do complex multi-phase training.
- Are we still doing anything resembling maximum likelihood training?

61/85

Maximum Likelihood Training?

- Regular training iterations (FB, Viterbi EM).
 - Increase (Viterbi) likelihood of data.
- Seeding last model from next model.
 - Mixture splitting.
 - $CI \Rightarrow CD$ models.
- (Decision-tree building.)

Maximum Likelihood Training?

- Just as LM's need to be smoothed or regularized.
 - So do acoustic models.
 - Prevent extreme likelihood values (e.g., 0 or ∞).
- ML training maximizes training data likelihood.
 - We actually want to optimize test data likelihood.
 - Let's call the difference the *overfitting penalty*.
- The overfitting penalty tends to increase as ...
 - The number of parameters increase and/or . . .
 - Parameter magnitudes increase.

63/85 64/85

Regularization/Capacity Control

- Limit size of model.
 - Will training likelihood continue to increase as model grows?
 - Limit components per GMM.
 - Limit number of leaves in decision tree, i.e., number of GMM's.
- Variance flooring.
 - Don't let variances go to 0 ⇒ infinite likelihood.

Where Are We?

Details

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training
- Graph Building

65/85

Two Types of Updates

- "Full" EM.
 - Compute true posterior of each hidden configuration.
- Viterbi EM.
 - Use Viterbi algorithm to find most likely hidden configuration.
 - Assign posterior of 1 to this configuration.
- Both are valid updates; instances of generalized EM.

Examples

- Training GMM's.
 - Mixture splitting vs. k-means clustering.
- Training HMM's.
 - Forward-backward vs. Viterbi EM (Lab 2).
- Everywhere you do a forced alignment.
 - Refining the reference transcript.
 - What is non-Viterbi version of decision-tree building?

67/85 68/85

When To Use One or the Other?

- Which version is more expensive computationally?
 - Optimization: need not realign every iteration.
- Which version finds better minima?
- If posteriors are very sharp, they do almost the same thing.
 - Remember example posteriors in Lab 2?
- Rule of thumb:
 - When you're first training a "new" model, use full EM.
 - Once you're "locked in" to an optimum, Viterbi is fine.

Where Are We?

Details

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training
- Graph Building

69/85 70/85

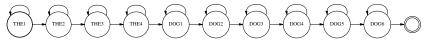
Building HMM's For Training

- When doing Forward-Backward on an utterance . . .
 - We need the HMM corresponding to the reference transcript.
- Can we use the same techniques as for small vocabularies?

Word Models

Reference transcript

Replace each word with its HMM

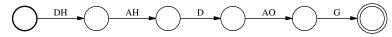


71/85 72/85

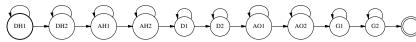
Context-Independent Phone Models

Reference transcript

- Pronunciation dictionary.
 - Maps each word to a sequence of phonemes.

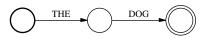


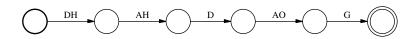
Replace each phone with its HMM



73/85

Context-Dependent Phone Models





74/85

The Pronunciation Dictionary

- Need pronunciation of every word in training data.
 - Including pronunciation variants

- Listen to data?
- Use automatic spelling-to-sound models?
- Why not consider multiple baseforms/word for word models?

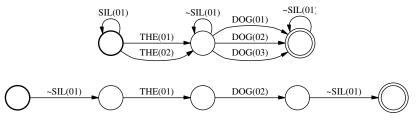
But Wait, It's More Complicated Than That!

- Reference transcripts are created by humans . . .
 - Who, by their nature, are *human* (*i.e.*, fallible)
- Typical transcripts don't contain everything an ASR system wants.
 - Where silence occurred; noises like coughs, door slams, etc.
 - Pronunciation information, e.g., was THE pronounced as DH UH or DH IY?

75/85 76/85

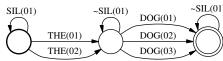
Pronunciation Variants, Silence, and Stuff

- How can we produce a more "complete" reference transcript?
- Viterbi decoding!
 - Build HMM accepting all word (HMM) sequences consistent with reference transcript.
 - Compute best path/word HMM sequence.
 - Where does this initial acoustic model come from?



Another Way

• Just use the whole expanded graph during training.



78/85

- The problem: how to do context-dependent phone expansion?
 - Use same techniques as in building graphs for decoding.

77/85

Where Are We?

- The Local Minima Problem
- Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- The Final Recipe

Prerequisites

- Audio data with reference transcripts.
- What two other things?

79/85 80/85

The Training Recipe

- Find/make baseforms for all words in reference transcripts.
- Train single Gaussian models (flat start; many iters of FB).
- Do mixture splitting, say.
 - Split each Gaussian in two; do many iterations of FB.
 - Repeat until desired number of Gaussians per mixture.
- (Use initial system to refine reference transcripts.)
 - Select pronunciation variants, where silence occurs.
 - Do more FB training given refined transcripts.
- Build phonetic decision tree.
 - Use CI model to align training data.
- Seed CD model from CI; train using FB or Viterbi EM.
 - Possibly doing more mixture splitting.

How Long Does Training Take?

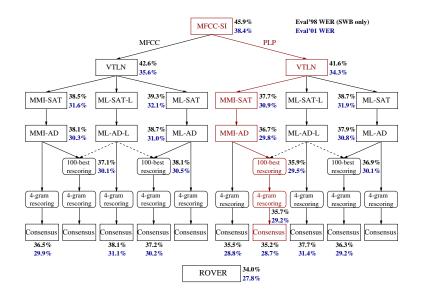
- It's a secret.
- We think in terms of real-time factor.
 - How many hours does it take to process one hour of speech?

81/85

Whew, That Was Pretty Complicated!

- Adaptation (VTLN, fMLLR, mMLLR)
- Discriminative training (LDA, MMI, MPE, fMPE)
- Model combination (cross adaptation, ROVER)
- Iteration.
 - Repeat steps using better model for seeding.
 - Alignment is only as good as model that created it.

Things Can Get Pretty Hairy



83/85 84/85

Recap: Acoustic Model Training for LVCSR

- Take-home messages.
 - Hidden model training is fraught with local minima.
 - Seeding more complex models with simpler models helps avoid terrible local minima.
 - People have developed many recipes/heuristics to try to improve the minimum you end up in.
 - Training is insanely complicated for state-of-the-art research models.
- The good news ...
 - I just saved a bunch on money on my car insurance by switching to GEICO.

85/85