Lecture 5 @ Clear (10); mostly clear (7); unclear (6).
e Please ask questions!
The Big Picture/Language Modeling @ Pace: fast (9); OK (6); slow (1).

@ Feedback (2+ votes):
e More/better examples (4).

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen o Talk louder/clearer/slower (4).
e End earlier (2).

e Too many slides (2).
IBM T.J. Watson Research Center

Yorktown Heights, New York, USA @ Muddiest: Forward-Backward (3), continuous HMM’s (2),
{picheny,bhuvana, stanchen}@us.ibm.com HMM’S in general (2)’ .
08 October 2012
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Recap: The Probabilistic Paradigm for ASR

@ Lab 1 @ Notation:
e Not graded yet; will be graded by next lecture. e X — observed data, e.g., MFCC feature vectors.
e Awards ceremony for evaluation next week. e w — word (or word sequence).
o Grading: what's up with the optional exercises? @ Training: For each word w, build model P,(x) ...

@ Lab2 e Over sequences of 40d feature vectors X.
o Due nine days from now (Wednesday, Oct. 17) at 6pm. @ Testing: Pick word that assigns highest likelihood ...
e Start early! Avail yourself of Courseworks. o To test data Xieq:.

@ Optional non-reading projects.

o Will post soon; submit proposal in two weeks. w" = arg max £, (Xest)

wevocab

@ Which probabilistic model?
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Part |

The HMM/GMM Framework
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The Basic Idea

@ Use separate HMM to model each word.
@ Word is composed of sequence of “sounds”.

e e.g., BIT is composed of sounds “B”, “IH”, “T".
@ Use HMM to model which sounds follow each other.

e e.g., first, expect features for “B” sound, ...
e Then features for “/H” sound, etc.

@ For each sound, use GMM’s to model likely feature vectors.
e e.g., what feature vectors are likely for “B” sound.
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Where Are We?

ﬁ Review
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What is an HMM?

@ Has states S and arcs/transitions a.

@ Has start state Sy (or start distribution).

@ Has transition probabilities ps.

@ Has output probabilities P(x|a) on arcs (or states).

e Discrete: multinomial or single output.
e Continuous: GMM or other.

0

o

6./0.5 /0. 3/0. /0. 5/0.

8 91/0.5 R 9>/0.5 R 93/0.5 R 04/0.5 R 95/0.5
/ / N /

(&)
Q
o
[
(&)
Q
o
8
<

o

96/0.5 @

8/121



What Does an HMM Do? HMM’s and ASR

@ Assigns probabilities P(x) to observation sequences: @ One HMM per word.
S S @ A standard topology.
X = X1’ T 7XT 91/0.5 92/0.5 93/0.5 94/0.5 95/0.5 96/0.5
@ Each x can be output by many paths through HMM. 8 9/0° 8 /0% 8 /05 8 9/0% 8 /05 8 %/05 @
o Path consists of sec:!uence of arcslA - &, ar. @ Use diagonal covariance GMM’s for output distributions.
@ Compute P(x) by summing over path likelihoods.
_ X‘a) ZpajHNXd /J“ajd70-ajd)
o Z P(X’A) comp j dim d
paths A

@ Compute path likelihood by ...
e Multiplying transition and output probs along path.

(X, A) = [ [ pa x P(Xla)
t=1
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The Full Model The Viterbi and Forward Algorithms

@ The Forward algorithm.

= > P(x A)
paths A P(X) = Z P(X A)
T paths A
= > [lpax P(%lar) o _
paths A t=1 @ The Viterbi algorithm.
T
= Z Hpar Z Payj H N(Xt,d§/ia¢,j,d7agt,j,d) bestpath(x) = a[)gt:]??x P(x, A)

paths A t=1 comp j dim d
@ Can handle exponential number of paths A ...
@ p, — transition probability for arc a. o In time linear in number of states, number of frames.*
@ p,; — mixture weight, jth component of GMM on arc a.
° Ma/ ¢ — mean, dth dim, jth component, GMM on arc a.

@ o5, 4 — variance, dth dim, jth component, GMM on arc a.

*Assuming fixed number of arcs per state.
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The Forward-Backward Algorithm

@ Given trained HMM for each word w. @ For each HMM, train parameters (pa, Paj, ftaj.d; ag,j,d)
@ Use Forward algorithm to compute P, (Xst) for each w. e Using instances of that word in training set.
@ Pick word that assigns highest likelihood. @ Given initial parameter values, ...
. e lteratively finds local optimum in likelihood.
W= a:gvgc‘ix P, (Xtest) e Dynamic programming version of EM algorithm.

@ Each iteration linear in number of states, number of frames.
e May need to do up to tens of iterations.
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Example: Speech Data

@ First two dimensions using Lab 1 front end; the word TWO. 9/05 %/ /0. /0. /0.

8 /0.5 R 9:/0.5 R :/0.5 R /0.5 R 95/0.5
N _/ / _/

T o1
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The Viterbi Path

@ HMM/GMM framework can model arbitrary distributions ...
e Over sequences of continuous vectors.

@ Can train and decode efficiently.
'—‘—- e Forward, Viterbi, Forward-Backward algorithms.
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Where Are We? The Smallest Number in the World

@ Demo.

e Technical Details
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Probabilities and Log Probabilities Viterbi Algorithm and Max is Easy

.
PO) =Y [[pa D Paj [ NXoitajo 050) a(S,t) = max P(S' % S) x a(S,t — 1)
paths A t=1  compj dim d ss
@ 1secofdata= T = 100 = Multiply 4,000 likelihoods. log &(S, t) = max [log P(S' % S) +loga(S', t - 1)]
sts

o Easy to generate values below 107397,
e Cannot store in C/C++ 64-bit double.

@ Solution: store log probs instead of probs.

e e.g., in Forward algorithm, instead of storing o(S, f), ...
e Store values log a(S, t)
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Forward Algorithm and Sum is Tricky Decisions, Decisions ...

oS, )= P(S' % S)xa(S, t—1) @ HMM topology.
sts @ Size of HMM's.
@ Size of GMM’s.
log a(S, t) = log Z exp [Iog P(S' % S)+loga(S, t— 1)] @ Initial parameter values.
gXs @ That's it!?
— log 3 exp [Iog P(S' % S) +loga(S,t—1)— c} x €°
sXs
= C+log > exp [Iog P(S' %% S) +loga(S,t—1) - c]
sits

@ How to pick C?
@ See Holmes, p. 153-154.
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Which HMM Topology? How Many States?

@ A standard topology. @ Rule of thumb: three states per phoneme.
e Must say sounds of word in order. @ Example: TwWO is composed of phonemes T Uw.
o Can stay at each sound indefinitely. o Two phonemes = six HMM states.

e Different output distribution for each sound.

9:1/0.5 92/0.5 93/0.5 94/0.5 9s/0.5 96/0.5

/0.5 9:/05 :/0.5 9:/0.5 95/0.5 /0.5 ) /q ) Q ) R ) Q ) R )
91/0.5 /0.5 g3/0.5 94/0.5 g5/0.5 9s/0.5
8 e e e S = e O D O e O e O e O e D @)
\_/ N \_/ \_/ \_/

@ No guarantee which sound each state models.
e States are hidden!

@ Can we skip sounds, e.g., fifth?
e Use skip arcs < arcs with no output.
e Need to modify Forward, Viterbi, etc.

§1/0.4 92/0.4 93/0.4 91/0.4 9s/0.4 96/0.4

q./0.4 /Q 9./04 /Q 95/0.4 R 94/0.4 /Q g5/0.4 R g5/0.4 Q
Cemlemlfenfen Bon S

€/0.2 €/0.2 €/0.2 €/0.2 €/0.2

25/121 26/121

How Many GMM Components? Initial Parameter Values: Flat Start

@ Use theory, e.g., Bayesian Information Criterion (lecture 3). @ Transition probabilites p, — uniform.
@ Just try different values. @ Mixture weights p,; — uniform.

e Maybe 20-40, depending on how much data you have. @ Means pgjq— 0.
@ Empirical performance trumps theory any day of week. @ Variances ag,,,d —1.

@ Start with single component GMM.

e Run FB; split each Gaussian every few iters ...
e Until reach target number of components per GMM.

@ This actually works! (More on this in future lecture.)
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Where Are We?

@ Simple decisions with flat start works!
@ Can tune hyperparameters to optimize performance.

e e.g., skip arcs, number of GMM compnents.
e Redo this every so often for new domains, forever.

@ What happens if too many parameters?
@ What happens if too few parameters?

e Continuous Word Recognition
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Decoding Secrets Revealed The One Big HMM Paradigm: Before

@ What we said: 9./05 gz//ﬁ g;/qos W/ﬁ) g/s/qoS /0.5
e Use Forward algorithm to compute P, (Xiest) - . - 8 9./05 5/05 5/05 5/05 9/05 56/05
g b o (Xeest) ) ) ) ) W), O

e Separately for each word HMM.
e Pick word that assigns highest likelihood.

B 0880808088080,
w* = argmax P,,(Xiest) 5088088808,
wevocab &&M&@@
@ Reality: ERERER RSN RN RN R
o Merge HMM for all words into “one big HMM”. B08888888888.,
o Use Viterbi algorithm to find best path given Xes:. go00008000,
e In backtrace, collect word label on path. 300000000
ERERERRER RN
TN NN

G888 888,
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The One Big HMM Paradigm: After What Have We Gained?

@ Pruning (future lecture).

e e.g., Viterbi algorithm: don’t compute every a&(S, t).
@ Graph optimization (future lecture).

e Can share common prefixes, suffixes between words.
@ Easy to extend to continuous word recognition.

HMMone
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From Isolated To Continuous ASR From Isolated To Continuous ASR

@ Train HMM for each word using isolated word data. @ Just change topology of decoding HMM ...
@ HMM for decoding: single digit utterance. o To reflect word sequences to allow.
@ Use Viterbi to find best path as before.

% @ Attach word labels to each word HMM in big graph.
‘%@ e In backtrace, collect word labels along best path.

HMMone

@ What HMM to use for two-digit utterances? Three-digit?
@ What HMM to allow digit sequences of any length?
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Recovering the Word Sequence What About Training?

eNeReeNeNeNeNeK @ Old scenario: training data composed of . ..
O—0

e Single digit utterances labeled with single digits.

G o0 aeR . .
GO0 @ New scenario: training data composed of . ..

: &M&& o e Multiple digit utterances labeled with digit sequences.
&&(; SRR (OL(OL - O\ @ Much easier to col!ect Iqts of data. |
P e
SRERTRORERERTRER R RONEIN )
G.0.0.0.0.808.5.008 50 Y 'é

B.8.8.8.8.

8888888,

SRERTRORERERTRER R RONEI
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What About Training? What About Training?

@ Old scheme (one iteration of FB): @ If transcript is ONE, use HMM:
e For each utterance, take HMM associated with word.
e Compute FB counts for parameters in that HMM. FiMone
e Sum counts over data; reestimate parameters.
@ New scheme: @ If transcript is ONE TWO FOUR, use HMM:
' ' 1?
e Construct HMM for utterance in logical way!” Q E—e W— W— @

@ Old view: ten HMM’s; disjoint parameters.
@ New view: lots of HMM’s.
e Shared sub-HMM’s and parameters between HMM'’s.
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Parameter Tying Parameter Tying and Forward-Backward

@ When same parameter (e.g., Pa, Pa,, [ta).ds a§7j7d) @ E-step: Compute arc posteriors in same way.
e Used in multiple places. @ M-step: ML estimation of parameters given arc posteriors.
o In same HMM, or different HMM’s. Log likehood is function only of counts!
Doesn’t matter if counts collected across ...
Different utterances and/or different HMM locations!
ML estimate: count and normalize!

91/0.5 92/05 93/0.5 94/0.5 95/0.5 96/0.5

8 91/05 R 9/05 R 9:/05 9:/05 R 95/05 R 9/05 @
N (Y N

NN

@ Called parameter tying.

e View: different parameter in each location ...
e But tied to have same value.

@ Does EM/Forward-Backward still work?
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Recap: Continuous Word ASR What’s Missing?

@ Use “one big HMM” paradigm for decoding. @ Audio sample 1: 2-4-6-3-1
@ Modify HMM’s for decoding and training in intuitive way. @ Audio sample 2: 2-4-6-3-1
@ Everything just works! @ What's the difference?

e All algorithms same; just modify backtrace a little.
e Forward-Backward still finds good optimum!
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What To Do About Silence? Modeling Silence

@ Treat silence as just another word (~SIL).
@ Not just for modeling silence?

e Background noise; anything that isn’t speech.
@ How to design HMM for silence?

g1/0.4 /0.4 93/0.4

€/0.2 €/0.2
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Silence In Decoding Silence In Training

@ Where may silence occur? @ Usually not included in transcripts.
@ How many silences can occur in a row? @ e.g., HMM for transcript: ONE TWO
@ Rule of thumb: unnecessary freedom should be avoided.

HMMgj /N HMMpyo N HMMg) 7 HMMone /7 HMMgj @
e cf. Patriot Act. W

HMMiywo HMMone

HMM;, HMM

@ Silence also used in isolated word training/decoding.
e Is this necessary?

HMM;) U HMMihree U HMMg;
HMMone HMMone

HMM HM ] Lab 2: graphs constructed for you.
ORS00 °
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Recap: Silence Where Are We?

@ Don'’t forget about silence!
e Everyone does sometimes.

@ Silence can be modelled as just another word . . .
e That can occur anywhere.

@ Generalization: noises, music, filled pauses.

© Discussion

49/121 50/121

Ingredients for HMM/GMM CSR System Hogwarts Has Course on HMM/GMM’s . ..

@ Data. @ Because they are magical!
e Utterances with transcripts. @ Isolated = continuous recognition: the same!
@ Decisions. @ Forward-Backward can automatically induce ...
e For each word, HMM topology and size. e Where each word begins and ends in training data.
e Number of components in GMM’s. e Where silence occurs.
e Initial parameter values. e How to divide each word into “sounds”.
@ Period. @ How crazy is that?

@ State of art since invented in 1980’s.
e Almost every current production system is HMM/GMM.
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DTW and HMM/GMM’s What Have We Gained? Principles!

@ Lots of similar ideas. @ Principles make lots of decisions for you!
@ Can design HMM such that:* e Fewer ways to screw up!
@ What decisions no longer have to make?

distance”™ (Xiest, X.) ~ — log P (Xiest) o All parameter values!
e Local path costs (transition probs).
DTW HMM e Frame distances (per word, per dimension weighting).
template HMM @ More data = better performance!!!
frame in template | state in HMM o Maximum likelihood estimates improve!
DTW alignment HMM path

local path cost | transition (log)prob
frame distance output (log)prob
DTW search Viterbi algorithm

*See Holmes, Sec. 9.13, p. 155.
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What Have We Gained? Scalability! What Have We Gained? Generalization!

@ Easy, principled way to handle continuous ASR. @ DTW: Test sample x receives high score with word w . ..
@ Smaller “models”. e If x close to single training instance of w.

e DTW: Store every frame, every instance of every word. @ HMM/GMM: x receives high score with word w . ...

e HMM: Store GMM parameters for ~15 states/word. e If each sound in x matches . ..
@ Faster computation. e Corresponding state in word HMM well.

e Proportional to number of states/template frames. @ i.e., can match well if each soundin x matches ...

e Share states between words (e.g., phonetic modeling). e Any instance of w in training set.

e Reduces number of states further.
@ Scales well to lots of training data; large vocabularies.
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If HMM/GMM’s Are So Great ... The Markov Assumption

@ While HMM/GMM’s are state of art . .. @ In path, output prob conditioned only on current arc.
e ASR performance is far from perfect. ;
@ What's the problem? P(x,A) = [ pa x P(Xila)

t=1

@ Everything need to know about past ...

e Encoded in identity of state.
e i.e., conditional independence of future and past.

@ What information do we encode in state?
@ What information don’t we encode in state?
e i.e., what independence assumptions have we made?
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Keeping Richer State Information What About GMM’s?

@ Solutions. @ Don’t seem like God’s gift to probability distributions?
e Increase number of states (exponentially)? e Nothing wrong, but not awesome either?
o Higher-order Markov models? @ They've been around for so long.
o Condition on more stuff; e.g., graphical models? o A ton of machinery has been developed for them.
@ More states = more parameters. e e.g., adaptation, discriminative training, ...
o Sparse data leads to poor parameter estimates. @ Recent developments: deep neural networks.
@ EM training: finds closest local optimum to starting point. o Still use GMM'’s for bootstrapping.
o Why does this work for HMM/GMM? @ GMM’s aren’t going to disappear soon.

e How to get hidden states to model what you want?
@ Bottom line: No competitor to HMM in sight.

59/121 60/121



Part Il Wreck a Nice Beach?

@ Demo.
Language l\/lodellng THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE BEACH .

@ How does it get it right ...

e Even though acoustics for pair is same?
e (What if want other member of pair?)
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Maximum Likelihood Classification What Do We Really Want?

@ Pick word sequence w which assigns highest likelihood . . . @ What HMM/GMM’s give us: P(x|w).
e To test sample x.

w* = argmax P, (x) = arg max P(x|w) WL argmax P(x|w)

w

@ What about wi = SAMPLE, ws = SAM PULL?
o P(X|wi) =~ P(X|w2)
e Intuitively, much prefer wy to wo.

@ Something’s missing.

w* = argmax P(w|x)
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A Little Math The Fundamental Equation of ASR

@ Bayes' rule: @ Old way: maximum likelihood classification.
P(x,w) = P(w)P(X|w) = P(x)P(w|x) w* =argmax P(X|w)
P(w|x) = w @ New way: maximum a posteriori classification.
@ Substituting: w* =argmax P(w|x) =argmax P(w)P(X|w)

w* =argmax P(w|x) @ What'’s new?

P(w)P(xX|w) e Prior distribution P(w) over word sequences.
= argpax T e How frequent each word sequence w is.

= argmax P(w)P(X|w)

w
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Does This Fix Our Problem? Terminology

w* =argmax P(w)P(x|w) w* =argmax P(w)P(x|w)
w w
@ What about homophones? @ P(x|w) = acoustic model.
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD . e Models frequency of acoustic feature vectors x . . .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD e Given word sequence w.

o i.e., HMM/GMM’s.
@ P(w) = language model.

e Models frequency of each word sequence w.
e The rest of this lecture.

@ What about confusable sequences in general?

IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE BEACH .
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Language Modeling: Goals Real World Toy Example (Untuned)

@ Specific to domain!!! @ Test data: single digits.
@ Describe which word sequences are allowed. @ Language model 1: matched.

e e.g., restricted domains like digit strings. e Digit sequences of length 1 equiprobable (10 choices).
@ Describe which word sequences are likely. @ Language model 2: unmatched.

e e.g., unrestricted domains like web search. e Sequences of any length equiprobable (oo choices).

e e.g., BRITNEY SPEARS Vs. BRIT KNEE SPEARS.
@ Analogy: multiple-choice test.

e LM restricts choices given to acoustic model.
e The fewer choices, the better you do.
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Real World Toy Example (Untuned) What Type of Model?

@ Want probability distribution over sequence of symbols . ..
15 o From finite vocabulary.

P(w) = P(W1W2)

@ Is there some type of model we know can do this?
@ Hmm ...

WER

matched LM unmatched LM
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Discrete (Hidden) Markov Models Grammars for Constrained Domains

@ What is language model training data? @ If no LM data available; expensive to create/collect.

e Must match domain! e e.g., name dialer; yellow pages; navigation; moviefone.
@ Grammars — hidden Markov models. @ Hack up HMM and parameters as best you can.

e Restricted domain. e Using manual or semi-automated methods.

e Little or no training data available. e Better than using general unconstrained LM.

e e.g., airline reservation app. @ Painful, non-robust, non-scalable.
@ n-gram models — Markov models of order n — 1. @ Automatically learn HMM topology, parameters?

o Unrestricted domain. o Can do some parameter training if enough data?

o Lots of training data available. o Inducing topology of HMM is open problem.

e e.g., web search app.
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Where Are We? Introduction

@ Imagine have lots of domain training data.
e This is true for many domains; e.g., the Web.
@ Goal: how to construct Markov model (hidden or not) . ..

e That can take advantage of all this data?
e And gets better the more data you have?

Q N-Gram Models
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ldea: Hidden Markov Models

@ Like in acoustic modeling.
@ What topology?
e Is there logical topology like for word HMM?
@ Learn topology from data?
e e.g., fully interconnected topology; learn parameters?
@ Issues:

e Local minima issue, FB algorithm.
e Quadratic in number of states; e.g., 1M states?

@ Bottom line: hasn’t worked.
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|dea: (Non-Hidden) Markov Models

@ Review: Markov property order n — 1 holds if
L
P(W17"'7WL) = HP(WI"W17"'7WI'—1)
=1

L
= H P(WilWi_ny1,- -, Wi_q)
=1

@ i.e., if data satisfies this property ...
e No loss from just remembering past n — 1 items!
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Markov Model, Order 1: Bigram Model

L L
Pwi,...,w) =[] Pwiwi-1) = ] Pwism
i=1 i=1
@ Separate multinomial P(w;|w;_1) ...

@ For each word history w;_.
@ Model P(w;|w;_1) with parameter py, ., w,.
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Markov Model, Order 2: Trigram Model

L L
P(W1, ceey WL) = H P(Wi|Wi—2Wi—1) = HpWifZ,WifhWi
i=1

i=1

@ Separate multinomial P(w;|w;_ow;_1) ...
@ For each bigram history w;_ow;_1.
@ Model P(w;|w;_ow;_1) with parameter py, , w. . w;-
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Detail: Sentence Begins Detail: Sentence Ends

L L
Plw=w---w) =[] P(wi|wiawi_1) Plw=w---w) =[] P(wi|wiawi_y)

i=1 i=1

@ Pad with beginning-of-sentence token: w_{ = wp = . @ Want probabilities to normalize: >  P(w) = 1
@ Consider sum of probabilities of one-word sequences.

D Pw=w)=> Poow =1
wq wq

@ Fix: introduce end-of-sentence token w; 1 = <

L1
Plw=w--w)= H P(wi|w_ow;_+)
i=1

Infact, >, = Plw) =1forall L= 3" P(w) =o0
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Maximum Likelihood Estimation Bigram Model Example

@ Optimize likelihood of each multinomial independently. @ Training data:
e One multinomial per history. JOHN READ MOBY DICK
@ ML estimate for multinomials: count and normalize! MARY READ A DIFFERENT BOOK

@ e.g., trigram model: SHE READ A BOOK BY CHER

pMLE _ C(WiaWi W) @ What is P(JOHN READ A BOOK)?
Wi—2,Wj—1,W; ZW C(Wi—2Wi—1 W)
_ c(WiaWi_1w))
c(Wj_2Wi_1)
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Bigram Model Example Recap: N-Gram Models

@ Simple formalism.
@ Easy to train.

P(JOHN READ A BOOK)

= P(JOHN|>)P(READ|JOHN)P(A|READ)P(BOOK|A)P(<|BOOK) o Just count and normalize.
_ % <1 x g " % " % ~0.06 e Can train on vast amounts of data; just gets better.
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Does Markov Property Hold For English? Where Are We?

@ Not for small n.

P(w; | OF THE) # P(w; | KING OF THE)

@ Make nlarger? e Technical Details

FABIO, WHO WAS NEXT IN LINE, ASKED IF THE
TELLER SPOKE ...

@ For vocabulary size V =20,000...

e How many parameters (py,_, w,) in bigram model?
e In trigram model?

@ Vast majority of trigrams not present in training data!
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LM’s and Training and Decoding

@ Decoding without LM’s.

e Start with word HMM encoding allowable word
sequences.
e Replace each word with its HMM.

ONE HMMone
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One Puny Prob versus Many?

BRERIREYY .,
SRR St s
CRCRTRERERCRIRER I
BULRERBYY .,
BRERIREYY .,
BRELBRRBBERBIH.,
ERERIRIRENEMEIINIRONE 5K RIS
ERENCROTIR e
BULREREYY .,
BRERBRBBERYH.,

91/121

LM’s and Training and Decoding

@ Point: n-gram model is (hidden) Markov model.
e Can be expressed as word HMM.
e Replace each word with its HMM.
e Leave in language model probabilities.

ONE/P(ONE) HMMone/P(ONE)

@ How do LM’s impact acoustic model training?

90/121

The Language Model Weight

@ This doesn'’t look like fair fight.
@ Solution: language (or acoustic) model weight.

w* =argmax P(w)*P(x|w)

e « usually somewhere between 10 and 20.
@ Important to tune for each LM, AM.
@ Theoretically inelegant.
e Empirical performance trumps theory any day of week.
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Real World Toy Example What is This Word Error Rate Thing?

@ Test set: continuous digit strings. @ Most popular evaluation measure for ASR systems
@ Unigram language model: P(w) = [1-",' pu.- _
WER = > utts o (# errorsin u)
15 =

> utis o(# words in reference for u)

@ # errors for hypothesis unyp; reference upe:
e Min number of word substitutions, deletions, and ...
e Insertions to transform uyes iNtO Unyp.

@ Example: what is the WER?

Uet: THE DOG IS HERE NOW
Unyp: THE UH BOG IS NOW

@ Can WER be above 100%7?

WER

LM weight=1 LM weight=10
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Evaluating Language Models Perplexity and Word-Error Rate

@ Best way: plug into ASR system, see how affects WER.

e Expensive to compute (especially in old days). - - - -
e Results depend on acoustic model. 35 R o
@ |s there something cheaper that predicts WER well? A
e Perplexity (PP) of test data (needs only text). r-?n- <
o Doesn't predict performance well across LM types. r 30 I
o But does within single LM type! UEJ el
. 2 v

e Has theoretical significance. /d

25 o _"

...
s
20 1 1 1
4.5 5 5.5 6 6.5
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Perplexity Perplexity

@ Compute (geometric) average probability payg - . - @ Estimate of human performance (Shannon, 1951)
e Assigned to each word in test data. |, e Shannon game — humans guess next letter in text.
L t e PP=142 (1.3 bits/letter), uncased, unpunctuated.
Pavg = H P(wilwi-2 W"1)] @ Estimate of trigram language model (Brown et al., 1992).

_ e PP=790 (1.75 bits/letter), cased, punctuated.
@ Invertit: PP = 1

_ Pavg _ @ ASR systems (uncased, unpunctuated, closed vocab).
e Can be interpreted as average branching factor. o ~100 for complex domains (e.g., Switchboard, BN).

@ Theoretical significance: e Can be much lower for constrained domains.
e log, PP = average number of bits per word . .. e Can vary widely across languages.
e Needed to encode test data using LM.
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Where Are We?

@ LM describes allowable word sequences.
e Used to build decoding graph.
@ Need LM weight for LM to have full effect.
@ Best to evaluate LM’s using WER ...
e But perplexity is informative in some contexts.

e Smoothing
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An Experiment An Experiment

@ Take 50M words of WSJ; shuffle sentences; split in two. @ Count how often each word occurs in training; sort by count.
@ “Training” set: 25M words.

NONCOMPETITIVE TENDERS MUST BE RECEIVED BY NOON
EASTERN TIME THURSDAY AT THE TREASURY OR AT word count word count
FEDERAL RESERVE BANKS OR BRANCHES .PERIOD ,COMMA | 1156259
NOT EVERYONE AGREED WITH THAT STRATEGY .PERIOD THE 1062057 . ..
. .PERIOD 877624 2777 2
e OF 520374 AAAAAHHH 1

@ “Test” set: 25M words. TO 510508 AAB 1
NATIONAL PICTURE AMPERSAND FRAME —DASH INITIAL TWO A 455832 AACHENER 1
MILLION ,COMMA TWO HUNDRED FIFTY THOUSAND SHARES AND 417364 .

.COMMA VIA WILLIAM BLAIR .PERIOD IN 385940 .. ..
THERE WILL EVEN BE AN EIGHTEEN -HYPHEN HOLE GOLF o o ZYPLAST 1
COURSE .PERIOD L . ZYUGANOV 1
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An Experiment

@ For each word that occurs exactly once in training . . . @ What percentage of words/trigrams in test set . ..
e Count how often occurs in test set. e Had no counts in training set?
e Average this count across all such words. e 0.2%/31%.

@ What does ML estimate predict?
@ What is actual value?

@ Larger than 1.

@ Exactly 1, more or less.
© Between 0.5 and 1.

© Between 0.1 and 0.5.

@ What if do this for trigrams, not unigrams?
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Maximum Likelihood and Sparse Data Maximum Likelihood and Zero Probabilities

@ In theory, ML estimate is as good as it gets ... @ According to MLE trigram model ...

e In limit of lots of data. e What is probability of sentence w if w contains ...
@ In practice, sucks when data is sparse. o Trigram with no training counts?

e Can be off by large factor. @ How common are unseen trigrams?

e (Brown et al., 1992): 350M word training set
e In test set, what percentage of trigrams unseen?

@ How does this affect WER? Perplexity?
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Smoothing The Basic Idea, Bigram Model

@ How to adjust ML estimates to better match test data? @ For each history word w;_ ...
@ How to avoid zero probabilities? o Estimate conditional distribution P(w;|w;_+).
@ Also called regularization. @ Maximum likelihood estimates.
c(wi_1w;
plie,, = S

c(wi_+)
@ Give prob to zero counts by discounting nonzero counts.

c(wi—1w;) — d(w_1w;)
c(wi_+)

SM _
pWi71 Wi T

@ How much to discount?
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The Good-Turing Estimate The Basic Idea, Bigram Model (cont'd)

@ How often word with k counts in training data . .. @ Give prob to zero counts by discounting nonzero counts.
e Occurs in test set of equal size? e Can use GT estimate to determine discounts
d(wi_1w;).

(# words w/ k + 1 counts) x (k + 1)
(# words w/ k counts) P\ =

c(wi—1w;) — d(wi_1w;)
C(W,'_1)

(avg. count) ~

o
® How accurate is this* @ Total prob freed up for zero counts:

k | GT estimate actual 3 d( )
. Wi_1W;
11 ods0as PT(unseen|w; ;) = S T
- - -
3 2.24 2.24
: o 393 @ How to divvy up between words unseen after w;_4?
5 4.22 4.21
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Backoff Putting It All Together: Katz Smoothing

@ Task: divide up some probability mass ... @ Katz (1987)
e Among words not occurring after some history w;_;.

e Idea: uniformly? Puce(wilwir) if c(wi_w;) = k
' u YV . . s Praz(Wi|Wi—1) = Por(wilwi_1) if 0 < c(wi_1w;) < Kk
@ Better idea: according to unigram distribution. o Pran(w)) otherwise

e e.g., give more mass to THE than FUGUE.
c(w) e If count high, no discounting (GT estimate unreliable).

S, c(w) e If count low, use GT estimate.
v e If no count, use scaled backoff probability.

@ Choose ay,_, s0 ), Prat(Wi|wi—1) = 1.
@ Most popular smoothing technique for about a decade.

P(w) =

@ Backoff: use lower-order distribution ...
e To fill in probabilities for unseen words.
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Recap: Smoothing

@ No smoothing (MLE estimate): performance will suck. @ Good smoothing removes performance penalty ...
e Zero probabilities will kill you. e For overly large models!
@ Key aspects of smoothing algorithms. @ e.g., with lots of data (100MW+) ...
e How to discount counts of seen words. e Significant gain for 5-gram model over trigram model.
e Estimating mass of unseen words. e Limiting resource: disk/memory.
e Backoff to get information from lower-order models. @ Count cutoffs or entropy-based pruning . ..
@ Lots and lots of smoothing algorithms developed. e Can be used to reduce size of LM.
o Will talk about newer algorithms in Lecture 11. @ Rule of thumb: if ML estimate is working OK . . .

e Gain: ~1% absolute in WER over Katz.
@ No downside to good smoothing (except implementing).

e Model is way too small.
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Where Are We? N-Gram Models

@ Workhorse of language modeling for ASR for 30 years.
e Used in great majority of deployed systems.

@ Almost no linguistic knowledge.
o Totally data-driven.

@ Easy to build.
e Fast and scalable.

@ Discussion
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The Fundamental Equation of ASR Where Else Are Language Models Used?

w* =argmax P(w|x) =argmax P(w)P(X|w) w* =argmax P(w|Xx) =argmax P(w)P(X|w)
@ Source-channel model. @ Handwriting recognition.
e Source model P(w) [language model]. @ Optical character recognition.

e Recover w despite corruption from noisy channel.
@ Many other applications follow same framework.

@ Machine translation.

@ Natural language generation.

@ Information retrieval.

@ Any problem involving sequences?
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Part What’s Next

. @ Language modeling: on the road to LVCSR.
Epilogue @ Lecture 6: Pronunciation modeling.
e Acoustic modeling for LVCSR.

@ Lectures 7, 8: Training, finite-state transducers, search.
e Efficient training and decoding for LVCSR.
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Course Feedback

@ Was this lecture mostly clear or unclear? What was the
muddiest topic?

@ Comments on difficulty of Lab 1?
© Other feedback (pace, content, atmosphere)?
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