
Lecture 5

The Big Picture/Language Modeling

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen}@us.ibm.com

08 October 2012

Administrivia

Clear (10); mostly clear (7); unclear (6).
Please ask questions!

Pace: fast (9); OK (6); slow (1).
Feedback (2+ votes):

More/better examples (4).
Talk louder/clearer/slower (4).
End earlier (2).
Too many slides (2).

Muddiest: Forward-Backward (3); continuous HMM’s (2);
HMM’s in general (2); . . .

2 / 121

Administrivia

Lab 1
Not graded yet; will be graded by next lecture.
Awards ceremony for evaluation next week.
Grading: what’s up with the optional exercises?

Lab 2
Due nine days from now (Wednesday, Oct. 17) at 6pm.
Start early! Avail yourself of Courseworks.

Optional non-reading projects.
Will post soon; submit proposal in two weeks.

3 / 121

Recap: The Probabilistic Paradigm for ASR

Notation:
x — observed data, e.g., MFCC feature vectors.
ω — word (or word sequence).

Training: For each word ω, build model Pω(x) . . .
Over sequences of 40d feature vectors x.

Testing: Pick word that assigns highest likelihood . . .
To test data xtest.

ω∗ = arg max
ω∈vocab

Pω(xtest)

Which probabilistic model?

4 / 121

Part I

The HMM/GMM Framework

5 / 121

Where Are We?

1 Review

2 Technical Details

3 Continuous Word Recognition

4 Discussion

6 / 121

The Basic Idea

Use separate HMM to model each word.
Word is composed of sequence of “sounds”.

e.g., BIT is composed of sounds “B”, “IH”, “T ”.
Use HMM to model which sounds follow each other.

e.g., first, expect features for “B” sound, . . .
Then features for “IH” sound, etc.

For each sound, use GMM’s to model likely feature vectors.
e.g., what feature vectors are likely for “B” sound.

7 / 121

What is an HMM?

Has states S and arcs/transitions a.
Has start state S0 (or start distribution).
Has transition probabilities pa.
Has output probabilities P(~x |a) on arcs (or states).

Discrete: multinomial or single output.
Continuous: GMM or other.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

8 / 121

What Does an HMM Do?

Assigns probabilities P(x) to observation sequences:

x = ~x1, . . . , ~xT

Each x can be output by many paths through HMM.
Path consists of sequence of arcs A = a1, . . . , aT .

Compute P(x) by summing over path likelihoods.

P(x) =
∑

paths A

P(x, A)

Compute path likelihood by . . .
Multiplying transition and output probs along path.

P(x, A) =
T∏

t=1

pat × P(~xt |at)

9 / 121

HMM’s and ASR

One HMM per word.
A standard topology.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

Use diagonal covariance GMM’s for output distributions.

P(~x |a) =
∑

comp j

pa,j

∏
dim d

N (xd ; µa,j,d , σa,j,d)

10 / 121

The Full Model

P(x) =
∑

paths A

P(x, A)

=
∑

paths A

T∏
t=1

pat × P(~xt |at)

=
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ; µat ,j,d , σ2
at ,j,d)

pa — transition probability for arc a.
pa,j — mixture weight, j th component of GMM on arc a.
µa,j,d — mean, d th dim, j th component, GMM on arc a.
σ2

a,j,d — variance, d th dim, j th component, GMM on arc a.

11 / 121

The Viterbi and Forward Algorithms

The Forward algorithm.

P(x) =
∑

paths A

P(x, A)

The Viterbi algorithm.

bestpath(x) = arg max
paths A

P(x, A)

Can handle exponential number of paths A . . .
In time linear in number of states, number of frames.∗

∗Assuming fixed number of arcs per state.
12 / 121

Decoding

Given trained HMM for each word ω.
Use Forward algorithm to compute Pω(xtest) for each ω.
Pick word that assigns highest likelihood.

ω∗ = arg max
ω∈vocab

Pω(xtest)

13 / 121

The Forward-Backward Algorithm

For each HMM, train parameters (pa, pa,j , µa,j,d , σ2
a,j,d) . . .

Using instances of that word in training set.
Given initial parameter values, . . .

Iteratively finds local optimum in likelihood.
Dynamic programming version of EM algorithm.

Each iteration linear in number of states, number of frames.
May need to do up to tens of iterations.

14 / 121

Example: Speech Data

First two dimensions using Lab 1 front end; the word TWO.

15 / 121

Training

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

16 / 121

The Viterbi Path

17 / 121

Recap

HMM/GMM framework can model arbitrary distributions . . .
Over sequences of continuous vectors.

Can train and decode efficiently.
Forward, Viterbi, Forward-Backward algorithms.

18 / 121

Where Are We?

1 Review

2 Technical Details

3 Continuous Word Recognition

4 Discussion

19 / 121

The Smallest Number in the World

Demo.

20 / 121

Probabilities and Log Probabilities

P(x) =
∑

paths A

T∏
t=1

pat

∑
comp j

pat ,j

∏
dim d

N (xt ,d ; µat ,j,d , σ2
at ,j,d)

1 sec of data ⇒ T = 100 ⇒ Multiply 4,000 likelihoods.
Easy to generate values below 10−307.
Cannot store in C/C++ 64-bit double.

Solution: store log probs instead of probs.
e.g., in Forward algorithm, instead of storing α(S, t), . . .
Store values log α(S, t)

21 / 121

Viterbi Algorithm and Max is Easy

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

log α̂(S, t) = max
S′ xt→S

[
log P(S′ xt→ S) + log α̂(S′, t − 1)

]

22 / 121

Forward Algorithm and Sum is Tricky

α(S, t) =
∑

S′ xt→S

P(S′ xt→ S)× α(S′, t − 1)

log α(S, t) = log
∑

S′ xt→S

exp
[
log P(S′ xt→ S) + log α(S′, t − 1)

]
= log

∑
S′ xt→S

exp
[
log P(S′ xt→ S) + log α(S′, t − 1)− C

]
× eC

= C + log
∑

S′ xt→S

exp
[
log P(S′ xt→ S) + log α(S′, t − 1)− C

]

How to pick C?
See Holmes, p. 153–154.

23 / 121

Decisions, Decisions . . .

HMM topology.
Size of HMM’s.
Size of GMM’s.
Initial parameter values.
That’s it!?

24 / 121

Which HMM Topology?

A standard topology.
Must say sounds of word in order.
Can stay at each sound indefinitely.
Different output distribution for each sound.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

Can we skip sounds, e.g., fifth?
Use skip arcs ⇔ arcs with no output.
Need to modify Forward, Viterbi, etc.

g1/0.4 g2/0.4 g3/0.4 g4/0.4 g5/0.4 g6/0.4

g1/0.4 g2/0.4 g3/0.4 g4/0.4 g5/0.4 g6/0.4

�/0.2 �/0.2 �/0.2 �/0.2 �/0.2

25 / 121

How Many States?

Rule of thumb: three states per phoneme.
Example: TWO is composed of phonemes T UW.

Two phonemes ⇒ six HMM states.

T1 T2 T3 UW1 UW2 UW3

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

No guarantee which sound each state models.
States are hidden!

26 / 121

How Many GMM Components?

Use theory, e.g., Bayesian Information Criterion (lecture 3).
Just try different values.

Maybe 20–40, depending on how much data you have.
Empirical performance trumps theory any day of week.

27 / 121

Initial Parameter Values: Flat Start

Transition probabilites pa — uniform.
Mixture weights pa,j — uniform.
Means µa,j,d — 0.
Variances σ2

a,j,d — 1.
Start with single component GMM.

Run FB; split each Gaussian every few iters . . .
Until reach target number of components per GMM.

This actually works! (More on this in future lecture.)

28 / 121

Recap

Simple decisions with flat start works!
Can tune hyperparameters to optimize performance.

e.g., skip arcs, number of GMM compnents.
Redo this every so often for new domains, forever.

What happens if too many parameters?
What happens if too few parameters?

29 / 121

Where Are We?

1 Review

2 Technical Details

3 Continuous Word Recognition

4 Discussion

30 / 121

Decoding Secrets Revealed

What we said:
Use Forward algorithm to compute Pω(xtest) . . .
Separately for each word HMM.
Pick word that assigns highest likelihood.

ω∗ = arg max
ω∈vocab

Pω(xtest)

Reality:
Merge HMM for all words into “one big HMM”.
Use Viterbi algorithm to find best path given xtest.
In backtrace, collect word label on path.

31 / 121

The One Big HMM Paradigm: Before

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

32 / 121

The One Big HMM Paradigm: After

one

two

three

four

�ve

six

seven
eight

nine

zero

33 / 121

What Have We Gained?

Pruning (future lecture).
e.g., Viterbi algorithm: don’t compute every α̂(S, t).

Graph optimization (future lecture).
Can share common prefixes, suffixes between words.

Easy to extend to continuous word recognition.

HMMone

HMMtwo

HMMthree

.

34 / 121

From Isolated To Continuous ASR

Train HMM for each word using isolated word data.
HMM for decoding: single digit utterance.

HMMone

HMMtwo

HMMthree

.

What HMM to use for two-digit utterances? Three-digit?
What HMM to allow digit sequences of any length?

35 / 121

From Isolated To Continuous ASR

Just change topology of decoding HMM . . .
To reflect word sequences to allow.

Use Viterbi to find best path as before.
Attach word labels to each word HMM in big graph.

In backtrace, collect word labels along best path.

36 / 121

Recovering the Word Sequence

one

two

three

four

�ve

six

seven
eight

nine

zero

37 / 121

What About Training?

Old scenario: training data composed of . . .
Single digit utterances labeled with single digits.

New scenario: training data composed of . . .
Multiple digit utterances labeled with digit sequences.

Much easier to collect lots of data.
Data reflects coarticulation between consecutive words.
Not told where each digit begins and ends!?

38 / 121

What About Training?

Old scheme (one iteration of FB):
For each utterance, take HMM associated with word.
Compute FB counts for parameters in that HMM.
Sum counts over data; reestimate parameters.

New scheme:
Construct HMM for utterance in logical way!?

39 / 121

What About Training?

If transcript is ONE, use HMM:

HMMone

If transcript is ONE TWO FOUR, use HMM:

HMMone HMMtwo HMMfour

Old view: ten HMM’s; disjoint parameters.
New view: lots of HMM’s.

Shared sub-HMM’s and parameters between HMM’s.

40 / 121

Parameter Tying

When same parameter (e.g., pa, pa,j , µa,j,d , σ2
a,j,d) . . .

Used in multiple places.
In same HMM, or different HMM’s.

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

g1/0.5 g2/0.5 g3/0.5 g4/0.5 g5/0.5 g6/0.5

Called parameter tying.
View: different parameter in each location . . .
But tied to have same value.

Does EM/Forward-Backward still work?

41 / 121

Parameter Tying and Forward-Backward

E-step: Compute arc posteriors in same way.
M-step: ML estimation of parameters given arc posteriors.

Log likehood is function only of counts!
Doesn’t matter if counts collected across . . .
Different utterances and/or different HMM locations!
ML estimate: count and normalize!

42 / 121

Recap: Continuous Word ASR

Use “one big HMM” paradigm for decoding.
Modify HMM’s for decoding and training in intuitive way.
Everything just works!

All algorithms same; just modify backtrace a little.
Forward-Backward still finds good optimum!

43 / 121

What’s Missing?

Audio sample 1: 2-4-6-3-1
Audio sample 2: 2-4-6-3-1
What’s the difference?

44 / 121

What To Do About Silence?

45 / 121

Modeling Silence

Treat silence as just another word (∼SIL).
Not just for modeling silence?

Background noise; anything that isn’t speech.
How to design HMM for silence?

g1/0.4 g2/0.4 g3/0.4

g1/0.4 g2/0.4 g3/0.4

�/0.2 �/0.2

46 / 121

Silence In Decoding

Where may silence occur?
How many silences can occur in a row?
Rule of thumb: unnecessary freedom should be avoided.

cf. Patriot Act.

HMMsil HMMsil
HMMsil

HMMone

HMMtwo

HMMthree

.

HMMone

HMMtwo

HMMthree

.

HMMsil

�

HMMsil

�

HMMsil

�

HMMone

HMMtwo

HMMthree

.

HMMone

HMMtwo

HMMthree

.

47 / 121

Silence In Training

Usually not included in transcripts.
e.g., HMM for transcript: ONE TWO

HMMsil HMMtwo HMMsil HMMone HMMsil

HMMtwo HMMone

Silence also used in isolated word training/decoding.
Is this necessary?

HMMsil HMMthree HMMsil

Lab 2: graphs constructed for you.

48 / 121

Recap: Silence

Don’t forget about silence!
Everyone does sometimes.

Silence can be modelled as just another word . . .
That can occur anywhere.

Generalization: noises, music, filled pauses.

49 / 121

Where Are We?

1 Review

2 Technical Details

3 Continuous Word Recognition

4 Discussion

50 / 121

Ingredients for HMM/GMM CSR System

Data.
Utterances with transcripts.

Decisions.
For each word, HMM topology and size.
Number of components in GMM’s.
Initial parameter values.

Period.

51 / 121

Hogwarts Has Course on HMM/GMM’s . . .

Because they are magical!
Isolated ⇒ continuous recognition: the same!
Forward-Backward can automatically induce . . .

Where each word begins and ends in training data.
Where silence occurs.
How to divide each word into “sounds”.

How crazy is that?
State of art since invented in 1980’s.

Almost every current production system is HMM/GMM.

52 / 121

DTW and HMM/GMM’s

Lots of similar ideas.
Can design HMM such that:∗

distanceDTW(xtest, xω) ≈ − log PHMM
ω (xtest)

DTW HMM
template HMM

frame in template state in HMM
DTW alignment HMM path
local path cost transition (log)prob
frame distance output (log)prob
DTW search Viterbi algorithm

∗See Holmes, Sec. 9.13, p. 155.
53 / 121

What Have We Gained? Principles!

Principles make lots of decisions for you!
Fewer ways to screw up!

What decisions no longer have to make?
All parameter values!
Local path costs (transition probs).
Frame distances (per word, per dimension weighting).

More data ⇒ better performance!!!
Maximum likelihood estimates improve!

54 / 121

What Have We Gained? Scalability!

Easy, principled way to handle continuous ASR.
Smaller “models”.

DTW: Store every frame, every instance of every word.
HMM: Store GMM parameters for ∼15 states/word.

Faster computation.
Proportional to number of states/template frames.
Share states between words (e.g., phonetic modeling).
Reduces number of states further.

Scales well to lots of training data; large vocabularies.

55 / 121

What Have We Gained? Generalization!

DTW: Test sample x receives high score with word ω . . .
If x close to single training instance of ω.

HMM/GMM: x receives high score with word ω . . .
If each sound in x matches . . .
Corresponding state in word HMM well.

i.e., can match well if each sound in x matches . . .
Any instance of ω in training set.

56 / 121

If HMM/GMM’s Are So Great . . .

While HMM/GMM’s are state of art . . .
ASR performance is far from perfect.

What’s the problem?

57 / 121

The Markov Assumption

In path, output prob conditioned only on current arc.

P(x, A) =
T∏

t=1

pa × P(~xt |a)

Everything need to know about past . . .
Encoded in identity of state.
i.e., conditional independence of future and past.

What information do we encode in state?
What information don’t we encode in state?

i.e., what independence assumptions have we made?

58 / 121

Keeping Richer State Information

Solutions.
Increase number of states (exponentially)?
Higher-order Markov models?
Condition on more stuff; e.g., graphical models?

More states ⇒ more parameters.
Sparse data leads to poor parameter estimates.

EM training: finds closest local optimum to starting point.
Why does this work for HMM/GMM?
How to get hidden states to model what you want?

Bottom line: No competitor to HMM in sight.

59 / 121

What About GMM’s?

Don’t seem like God’s gift to probability distributions?
Nothing wrong, but not awesome either?

They’ve been around for so long.
A ton of machinery has been developed for them.
e.g., adaptation, discriminative training, . . .

Recent developments: deep neural networks.
Still use GMM’s for bootstrapping.

GMM’s aren’t going to disappear soon.

60 / 121

Part II

Language Modeling

61 / 121

Wreck a Nice Beach?

Demo.
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE BEACH .

How does it get it right . . .
Even though acoustics for pair is same?
(What if want other member of pair?)

62 / 121

Maximum Likelihood Classification

Pick word sequence ω which assigns highest likelihood . . .
To test sample x.

ω∗ = arg max
ω

Pω(x) = arg max
ω

P(x|ω)

What about ω1 = SAMPLE, ω2 = SAM PULL?
P(x|ω1) ≈ P(x|ω2)
Intuitively, much prefer ω1 to ω2.

Something’s missing.

63 / 121

What Do We Really Want?

What HMM/GMM’s give us: P(x|ω).

ω∗
?
= arg max

ω
P(x|ω)

ω∗
!
= arg max

ω
P(ω|x)

64 / 121

A Little Math

Bayes’ rule:

P(x, ω) = P(ω)P(x|ω) = P(x)P(ω|x)

P(ω|x) =
P(ω)P(x|ω)

P(x)

Substituting:

ω∗ = arg max
ω

P(ω|x)

= arg max
ω

P(ω)P(x|ω)

P(x)

= arg max
ω

P(ω)P(x|ω)

65 / 121

The Fundamental Equation of ASR

Old way: maximum likelihood classification.

ω∗ = arg max
ω

P(x|ω)

New way: maximum a posteriori classification.

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

What’s new?
Prior distribution P(ω) over word sequences.
How frequent each word sequence ω is.

66 / 121

Does This Fix Our Problem?

ω∗ = arg max
ω

P(ω)P(x|ω)

What about homophones?
THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

What about confusable sequences in general?
IT IS EASY TO RECOGNIZE SPEECH .
IT IS EASY TO WRECK A NICE BEACH .

67 / 121

Terminology

ω∗ = arg max
ω

P(ω)P(x|ω)

P(x|ω) = acoustic model.
Models frequency of acoustic feature vectors x . . .
Given word sequence ω.
i.e., HMM/GMM’s.

P(ω) = language model.
Models frequency of each word sequence ω.
The rest of this lecture.

68 / 121

Language Modeling: Goals

Specific to domain!!!
Describe which word sequences are allowed.

e.g., restricted domains like digit strings.
Describe which word sequences are likely.

e.g., unrestricted domains like web search.
e.g., BRITNEY SPEARS vs. BRIT KNEE SPEARS.

Analogy: multiple-choice test.
LM restricts choices given to acoustic model.
The fewer choices, the better you do.

69 / 121

Real World Toy Example (Untuned)

Test data: single digits.
Language model 1: matched.

Digit sequences of length 1 equiprobable (10 choices).
Language model 2: unmatched.

Sequences of any length equiprobable (∞ choices).

70 / 121

Real World Toy Example (Untuned)

0

5

10

15

matched LM unmatched LM

W
E

R

71 / 121

What Type of Model?

Want probability distribution over sequence of symbols . . .
From finite vocabulary.

P(ω) = P(w1w2 · · ·)

Is there some type of model we know can do this?
Hmm . . .

72 / 121

Discrete (Hidden) Markov Models

What is language model training data?
Must match domain!

Grammars — hidden Markov models.
Restricted domain.
Little or no training data available.
e.g., airline reservation app.

n-gram models — Markov models of order n − 1.
Unrestricted domain.
Lots of training data available.
e.g., web search app.

73 / 121

Grammars for Constrained Domains

If no LM data available; expensive to create/collect.
e.g., name dialer; yellow pages; navigation; moviefone.

Hack up HMM and parameters as best you can.
Using manual or semi-automated methods.
Better than using general unconstrained LM.

Painful, non-robust, non-scalable.
Automatically learn HMM topology, parameters?

Can do some parameter training if enough data?
Inducing topology of HMM is open problem.

74 / 121

Where Are We?

1 N-Gram Models

2 Technical Details

3 Smoothing

4 Discussion

75 / 121

Introduction

Imagine have lots of domain training data.
This is true for many domains; e.g., the Web.

Goal: how to construct Markov model (hidden or not) . . .
That can take advantage of all this data?
And gets better the more data you have?

76 / 121

Idea: Hidden Markov Models

Like in acoustic modeling.
What topology?

Is there logical topology like for word HMM?
Learn topology from data?

e.g., fully interconnected topology; learn parameters?
Issues:

Local minima issue, FB algorithm.
Quadratic in number of states; e.g., 1M states?

Bottom line: hasn’t worked.

77 / 121

Idea: (Non-Hidden) Markov Models

Review: Markov property order n − 1 holds if

P(w1, . . . , wL) =
L∏

i=1

P(wi |w1, . . . , wi−1)

=
L∏

i=1

P(wi |wi−n+1, · · · , wi−1)

i.e., if data satisfies this property . . .
No loss from just remembering past n − 1 items!

78 / 121

Markov Model, Order 1: Bigram Model

P(w1, . . . , wL) =
L∏

i=1

P(wi |wi−1) =
L∏

i=1

pwi−1,wi

Separate multinomial P(wi |wi−1) . . .
For each word history wi−1.
Model P(wi |wi−1) with parameter pwi−1,wi .

79 / 121

Markov Model, Order 2: Trigram Model

P(w1, . . . , wL) =
L∏

i=1

P(wi |wi−2wi−1) =
L∏

i=1

pwi−2,wi−1,wi

Separate multinomial P(wi |wi−2wi−1) . . .
For each bigram history wi−2wi−1.
Model P(wi |wi−2wi−1) with parameter pwi−2,wi−1,wi .

80 / 121

Detail: Sentence Begins

P(ω = w1 · · ·wL) =
L∏

i=1

P(wi |wi−2wi−1)

Pad with beginning-of-sentence token: w−1 = w0 = ..

81 / 121

Detail: Sentence Ends

P(ω = w1 · · ·wL) =
L∏

i=1

P(wi |wi−2wi−1)

Want probabilities to normalize:
∑

ω P(ω) = 1
Consider sum of probabilities of one-word sequences.∑

w1

P(ω = w1) =
∑
w1

p.,.,w1 = 1

Fix: introduce end-of-sentence token wL+1 = /

P(ω = w1 · · ·wL) =
L+1∏
i=1

P(wi |wi−2wi−1)

In fact,
∑

ω:|ω|=L P(ω) = 1 for all L ⇒
∑

ω P(ω) = ∞
82 / 121

Maximum Likelihood Estimation

Optimize likelihood of each multinomial independently.
One multinomial per history.

ML estimate for multinomials: count and normalize!
e.g., trigram model:

pMLE
wi−2,wi−1,wi

=
c(wi−2wi−1wi)∑
w c(wi−2wi−1w)

=
c(wi−2wi−1wi)

c(wi−2wi−1)

83 / 121

Bigram Model Example

Training data:
JOHN READ MOBY DICK
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

What is P(JOHN READ A BOOK)?

84 / 121

Bigram Model Example

P(JOHN READ A BOOK)

= P(JOHN|.)P(READ|JOHN)P(A|READ)P(BOOK|A)P(/|BOOK)

=
1
3
× 1× 2

3
× 1

2
× 1

2
≈ 0.06

85 / 121

Recap: N-Gram Models

Simple formalism.
Easy to train.

Just count and normalize.
Can train on vast amounts of data; just gets better.

86 / 121

Does Markov Property Hold For English?

Not for small n.

P(wi | OF THE) 6= P(wi | KING OF THE)

Make n larger?
FABIO, WHO WAS NEXT IN LINE, ASKED IF THE
TELLER SPOKE . . .

For vocabulary size V = 20, 000 . . .
How many parameters (pwi−1,wi) in bigram model?
In trigram model?

Vast majority of trigrams not present in training data!

87 / 121

Where Are We?

1 N-Gram Models

2 Technical Details

3 Smoothing

4 Discussion

88 / 121

LM’s and Training and Decoding

Decoding without LM’s.
Start with word HMM encoding allowable word
sequences.
Replace each word with its HMM.

ONE

TWO

THREE

.

HMMone

HMMtwo

HMMthree

.

89 / 121

LM’s and Training and Decoding

Point: n-gram model is (hidden) Markov model.
Can be expressed as word HMM.
Replace each word with its HMM.
Leave in language model probabilities.

ONE/P(ONE)

TWO/P(TWO)

THREE/P(THREE)

.

HMMone/P(ONE)

HMMtwo/P(TWO)

HMMthree/P(THREE)

.

How do LM’s impact acoustic model training?

90 / 121

One Puny Prob versus Many?

one

two

three

four

�ve

six

seven
eight

nine

zero

91 / 121

The Language Model Weight

This doesn’t look like fair fight.
Solution: language (or acoustic) model weight.

ω∗ = arg max
ω

P(ω)αP(x|ω)

α usually somewhere between 10 and 20.
Important to tune for each LM, AM.
Theoretically inelegant.

Empirical performance trumps theory any day of week.

92 / 121

Real World Toy Example

Test set: continuous digit strings.
Unigram language model: P(ω) =

∏L+1
i=1 pwi .

0

5

10

15

LM weight=1 LM weight=10

W
E

R

93 / 121

What is This Word Error Rate Thing?

Most popular evaluation measure for ASR systems

WER ≡
∑

utts u(# errors in u)∑
utts u(# words in reference for u)

errors for hypothesis uhyp; reference uref:
Min number of word substitutions, deletions, and . . .
Insertions to transform uref into uhyp.

Example: what is the WER?
uref: THE DOG IS HERE NOW
uhyp: THE UH BOG IS NOW

Can WER be above 100%?

94 / 121

Evaluating Language Models

Best way: plug into ASR system, see how affects WER.
Expensive to compute (especially in old days).
Results depend on acoustic model.

Is there something cheaper that predicts WER well?
Perplexity (PP) of test data (needs only text).
Doesn’t predict performance well across LM types.
But does within single LM type!
Has theoretical significance.

95 / 121

Perplexity and Word-Error Rate

20

25

30

35

4.5 5 5.5 6 6.5

W
E

R

log PP

96 / 121

Perplexity

Compute (geometric) average probability pavg . . .
Assigned to each word in test data.

pavg =

[
L∏

i=1

P(wi |wi−2wi−1)

] 1
L

Invert it: PP = 1
pavg

Can be interpreted as average branching factor.
Theoretical significance:

log2 PP = average number of bits per word . . .
Needed to encode test data using LM.

97 / 121

Perplexity

Estimate of human performance (Shannon, 1951)
Shannon game — humans guess next letter in text.
PP=142 (1.3 bits/letter), uncased, unpunctuated.

Estimate of trigram language model (Brown et al., 1992).
PP=790 (1.75 bits/letter), cased, punctuated.

ASR systems (uncased, unpunctuated, closed vocab).
∼100 for complex domains (e.g., Switchboard, BN).
Can be much lower for constrained domains.
Can vary widely across languages.

98 / 121

Recap

LM describes allowable word sequences.
Used to build decoding graph.

Need LM weight for LM to have full effect.
Best to evaluate LM’s using WER . . .

But perplexity is informative in some contexts.

99 / 121

Where Are We?

1 N-Gram Models

2 Technical Details

3 Smoothing

4 Discussion

100 / 121

An Experiment

Take 50M words of WSJ; shuffle sentences; split in two.
“Training” set: 25M words.

NONCOMPETITIVE TENDERS MUST BE RECEIVED BY NOON
EASTERN TIME THURSDAY AT THE TREASURY OR AT
FEDERAL RESERVE BANKS OR BRANCHES .PERIOD
NOT EVERYONE AGREED WITH THAT STRATEGY .PERIOD
. . .
. . .

“Test” set: 25M words.
NATIONAL PICTURE AMPERSAND FRAME –DASH INITIAL TWO
MILLION ,COMMA TWO HUNDRED FIFTY THOUSAND SHARES
,COMMA VIA WILLIAM BLAIR .PERIOD
THERE WILL EVEN BE AN EIGHTEEN -HYPHEN HOLE GOLF
COURSE .PERIOD
. . .
. . .

101 / 121

An Experiment

Count how often each word occurs in training; sort by count.

word count
,COMMA 1156259
THE 1062057
.PERIOD 877624
OF 520374
TO 510508
A 455832
AND 417364
IN 385940
.
.

word count
.
.
ZZZZ 2
AAAAAHHH 1
AAB 1
AACHENER 1
.
.
ZYPLAST 1
ZYUGANOV 1

102 / 121

An Experiment

For each word that occurs exactly once in training . . .
Count how often occurs in test set.
Average this count across all such words.

What does ML estimate predict?
What is actual value?

1 Larger than 1.
2 Exactly 1, more or less.
3 Between 0.5 and 1.
4 Between 0.1 and 0.5.

What if do this for trigrams, not unigrams?

103 / 121

Why?

What percentage of words/trigrams in test set . . .
Had no counts in training set?
0.2%/31%.

104 / 121

Maximum Likelihood and Sparse Data

In theory, ML estimate is as good as it gets . . .
In limit of lots of data.

In practice, sucks when data is sparse.
Can be off by large factor.

105 / 121

Maximum Likelihood and Zero Probabilities

According to MLE trigram model . . .
What is probability of sentence ω if ω contains . . .
Trigram with no training counts?

How common are unseen trigrams?
(Brown et al., 1992): 350M word training set
In test set, what percentage of trigrams unseen?

How does this affect WER? Perplexity?

106 / 121

Smoothing

How to adjust ML estimates to better match test data?
How to avoid zero probabilities?
Also called regularization.

107 / 121

The Basic Idea, Bigram Model

For each history word wi−1 . . .
Estimate conditional distribution P(wi |wi−1).

Maximum likelihood estimates.

pMLE
wi−1,wi

=
c(wi−1wi)

c(wi−1)

Give prob to zero counts by discounting nonzero counts.

psm
wi−1,wi

=
c(wi−1wi)− d(wi−1wi)

c(wi−1)

How much to discount?

108 / 121

The Good-Turing Estimate

How often word with k counts in training data . . .
Occurs in test set of equal size?

(avg. count) ≈ (# words w/ k + 1 counts)× (k + 1)

(# words w/ k counts)

How accurate is this?

k GT estimate actual
1 0.45 0.45
2 1.26 1.25
3 2.24 2.24
4 3.24 3.23
5 4.22 4.21

109 / 121

The Basic Idea, Bigram Model (cont’d)

Give prob to zero counts by discounting nonzero counts.
Can use GT estimate to determine discounts
d(wi−1wi).

psm
wi−1,wi

=
c(wi−1wi)− d(wi−1wi)

c(wi−1)

Total prob freed up for zero counts:

Psm(unseen|wi−1) =

∑
wi seen d(wi−1wi)

c(wi−1)

How to divvy up between words unseen after wi−1?

110 / 121

Backoff

Task: divide up some probability mass . . .
Among words not occurring after some history wi−1.

Idea: uniformly?
Better idea: according to unigram distribution.

e.g., give more mass to THE than FUGUE.

P(w) =
c(w)∑
w c(w)

Backoff : use lower-order distribution . . .
To fill in probabilities for unseen words.

111 / 121

Putting It All Together: Katz Smoothing

Katz (1987)

PKatz(wi |wi−1) =


PMLE(wi |wi−1) if c(wi−1wi) ≥ k
PGT(wi |wi−1) if 0 < c(wi−1wi) < k
αwi−1PKatz(wi) otherwise

If count high, no discounting (GT estimate unreliable).
If count low, use GT estimate.
If no count, use scaled backoff probability.

Choose αwi−1 so
∑

wi
PKatz(wi |wi−1) = 1.

Most popular smoothing technique for about a decade.

112 / 121

Recap: Smoothing

No smoothing (MLE estimate): performance will suck.
Zero probabilities will kill you.

Key aspects of smoothing algorithms.
How to discount counts of seen words.
Estimating mass of unseen words.
Backoff to get information from lower-order models.

Lots and lots of smoothing algorithms developed.
Will talk about newer algorithms in Lecture 11.
Gain: ∼1% absolute in WER over Katz.

No downside to good smoothing (except implementing).

113 / 121

Discussion

Good smoothing removes performance penalty . . .
For overly large models!

e.g., with lots of data (100MW+) . . .
Significant gain for 5-gram model over trigram model.
Limiting resource: disk/memory.

Count cutoffs or entropy-based pruning . . .
Can be used to reduce size of LM.

Rule of thumb: if ML estimate is working OK . . .
Model is way too small.

114 / 121

Where Are We?

1 N-Gram Models

2 Technical Details

3 Smoothing

4 Discussion

115 / 121

N-Gram Models

Workhorse of language modeling for ASR for 30 years.
Used in great majority of deployed systems.

Almost no linguistic knowledge.
Totally data-driven.

Easy to build.
Fast and scalable.

116 / 121

The Fundamental Equation of ASR

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

Source-channel model.
Source model P(ω) [language model].
(Noisy) channel model P(x|ω) [acoustic model].
Recover ω despite corruption from noisy channel.

Many other applications follow same framework.

117 / 121

Where Else Are Language Models Used?

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)P(x|ω)

Handwriting recognition.
Optical character recognition.
Spelling correction.
Machine translation.
Natural language generation.
Information retrieval.
Any problem involving sequences?

118 / 121

Part III

Epilogue

119 / 121

What’s Next

Language modeling: on the road to LVCSR.
Lecture 6: Pronunciation modeling.

Acoustic modeling for LVCSR.
Lectures 7, 8: Training, finite-state transducers, search.

Efficient training and decoding for LVCSR.

120 / 121

Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Comments on difficulty of Lab 1?
3 Other feedback (pace, content, atmosphere)?

121 / 121

	The HMM/GMM Framework
	Review
	Technical Details
	Continuous Word Recognition
	Discussion

	Language Modeling
	N-Gram Models
	Technical Details
	Smoothing
	Discussion

	Epilogue

