
Lecture 4

Hidden Markov Models

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen}@us.ibm.com

01 October 2012

Administrivia

Feedback (2+ votes):
Pace good; examples + graphs good.
Less math (3).
More on how to implement formulas in programs (2).

Muddiest topics: EM (9); multivariate GMM (1); algebra (1).
Many people said “maybe” to non-reading project (∼10).

2 / 130

Administrivia

Hardcopies of slides not most recent version.
Do you have your username and password?
Xiao-Ming’s office hours: 2-4pm Monday, 7LE3 Schapiro
(CEPSR).
Late policy: three free late days; -0.5 per day after that.
Lab 1 is due Wednesday at 6pm!

Use Courseworks for questions!
Lab 2 posted on web site by Wednesday.
We found pictures.

3 / 130

Recap: Probabilistic Modeling for ASR

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′
test, A′

w)

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′
test|w)

P(A′|w) is (relative) frequency with which w . . .
Is realized as feature vector A′.

The more “accurate” P(A′|w) is . . .
The more accurate classification is.

4 / 130

Recap: Gaussian Mixture Models

Probability distribution over . . .
Individual (e.g., 40d) feature vectors.

P(x) =
∑

j

pj
1

(2π)d/2|Σj |1/2 e−
1
2 (x−µj)

T Σ−1
j (x−µj)

Can model arbitrary (non-Gaussian) data pretty well.
Can use EM algorithm to do ML estimation.

Finds local optimum in likelihood, iteratively.

5 / 130

Example: Modeling Acoustic Data With GMM

6 / 130

What We Have And What We Want

What we have: P(x).
GMM is distribution over indiv feature vectors x.

What we want: P(A′ = x1, . . . , xT).
Distribution over sequences of feature vectors.
Build separate model P(A′|w) for each word w .
There you go.

w∗ = arg max
w∈vocab

P(A′
test|w)

7 / 130

Sequence Modeling

Today’s lecture: using Hidden Markov Models . . .
To model sequences of feature vectors.
i.e., how feature vectors evolve over time.
Probabilistic counterpart to DTW.

How things fit together.
GMM’s: for each sound, what are likely feature vectors?
e.g., why the sound “b” is different from “d”.
HMM’s: what “sounds” are likely to follow each other?
e.g., why bad is different from dab.

8 / 130

Simplification: Discrete Sequences

Goal: continuous data.
e.g., P(x1, . . . , xT) for x ∈ R40.

Most of today: discrete data.
P(x1, . . . , xT) for x ∈ finite alphabet.

Discrete HMM’s vs. continuous HMM’s.

9 / 130

Vector Quantization

Before continuous HMM’s and GMM’s (∼1990) . . .
People used discrete HMM’s and VQ (1980’s).

Convert multidimensional feature vector . . .
To discrete symbol {1, . . . , V} using codebook.

Each symbol has representative feature vector µj .
Convert each feature vector . . .

To symbol j with nearest µj .

10 / 130

The Basic Idea

How to pick the µj?

µ1
µ2

µ3

µ4

µ5

11 / 130

The Basic Idea

µ1
µ2

µ3

µ4

µ5

x1

x2

x3

x4

x5

x6

x1, x2, x3, x4, x5, x6 . . .⇒ 4, 2, 2, 5, 5, 5, . . .

12 / 130

Recap

Need probabilistic sequence modeling for ASR.
Let’s start with discrete sequences.

Simpler than continuous.
What was used first in ASR.

Let’s go!

13 / 130

Part I

Nonhidden Sequence Models

14 / 130

Case Study: Coin Flipping

Let’s flip (unfair) coin 10 times: x1, . . . x10 ∈ {T, H}, e.g.,
T, T, H, H, H, H, T, H, H, H

Design P(x1, . . . xT) matching actual frequencies . . .
Of sequences (x1, . . . xT).

What should form of distribution be?
How to estimate its parameters?

15 / 130

Where Are We?

1 Models Without State

2 Models With State

16 / 130

Independence

Coin flips are independent !
Outcome of previous flips doesn’t influence . . .
Outcome of future flips (given parameters).

P(x1, . . . x10) =
10∏

i=1

P(xi)

System has no memory or state.
Example of dependence: draws from deck of cards.

e.g., if last card was A♠, next card isn’t.
State: all cards seen.

17 / 130

Modeling a Single Coin Flip P(xi)

Multinomial distribution.
One parameter for each outcome: pH , pT ≥ 0 . . .

Modeling frequency of that outcome, i.e., P(x) = px .
Parameters must sum to 1: pH + pT = 1.
Where have we seen this before?

18 / 130

Computing the Likelihood of Data

Some parameters: pH = 0.6, pT = 0.4.
Some data:

T, T, H, H, H, H, T, H, H, H
The likelihood:

P(x1, . . . x10) =
10∏

i=1

P(xi) =
10∏

i=1

pxi

= pT × pT × pH × pH × pH × · · ·
= 0.67 × 0.43 = 0.00179

19 / 130

Computing the Likelihood of Data

More generally:

P(x1, . . . xN) =
N∏

i=1

pxi

=
∏

x

pc(x)
x

log P(x1, . . . xN) =
∑

x

c(x) log p(x)

where c(x) is count of outcome x .
Likelihood only depends on counts of outcomes . . .

Not on order of outcomes.

20 / 130

Estimating Parameters

Choose parameters that maximize likelihood of data . . .
Because ML estimation is awesome!

If H heads and T tails in N = H + T flips, log likelihood is:

L(xN
1) = log(pH)H(pT)T = H log pH + T log(1− pH)

Taking derivative w.r.t. pH and setting to 0.

H
pH
− T

1− pH
= 0 pH =

H
H + T

=
H
N

H − H × pH = T × pH pT = 1− pH =
T
N

21 / 130

Maximum Likelihood Estimation

MLE of multinomial parameters is intuitive estimate!
Just relative frequencies: pH = H

N , pT = T
N .

Count and normalize, baby!

0 H
N 1

P
(x

N 1
)

pH

22 / 130

Example: Maximum Likelihood Estimation

Training data: 50 samples.

T, T, H, H, H, H, T, H, H, H, T, H, H, T, H, H, T, T, T, T, H,
T, T, H, H, H, H, H, T, T, H, T, H, T, H, H, T, H, T, H, H, H,
T, H, H, T, H, H, H, T

Counts: 30 heads, 20 tails.

pMLE
H =

30
50

= 0.6 pMLE
T =

20
50

= 0.4

Sample from MLE distribution:

H, H, T, T, H, H, H, T, T, T, H, H, H, H, T, H, T, H, T, H, T,
T, H, T, H, H, T, H, T, T, H, T, H, T, H, H, T, H, H, H, H, T,
H, T, H, T, T, H, H, H

23 / 130

Recap: Multinomials, No State

Log likelihood just depends on counts.

L(xN
1) =

∑
x

c(x) log px

MLE: count and normalize.

pMLE
x =

c(x)

N

Easy peasy.

24 / 130

Where Are We?

1 Models Without State

2 Models With State

25 / 130

Case Study: Austin Weather

From National Climate Data Center.
R = rainy = precipitation > 0.00 in.
W = windy = not rainy; avg. wind ≥ 10 mph.
C = calm = not rainy and not windy.

Some data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Does system have state/memory?
Does yesterday’s outcome influence today’s?

26 / 130

State and the Markov Property

How much state to remember?
How much past information to encode in state?

Independent events/no memory: remember nothing.

P(x1, . . . , xN)
?
=

N∏
i=1

P(xi)

General case: remember everything (always holds).

P(x1, . . . , xN) =
N∏

i=1

P(xi |x1, . . . , xi−1)

Something in between?

27 / 130

The Markov Property, Order n

Holds if:

P(x1, . . . , xN) =
N∏

i=1

P(xi |x1, . . . , xi−1)

=
N∏

i=1

P(xi |xi−n, xi−n+1, · · · , xi−1)

e.g., if know weather for past n days . . .
Knowing more doesn’t help predict future weather.

i.e., if data satisfies this property . . .
No loss from just remembering past n items!

28 / 130

A Non-Hidden Markov Model, Order 1

Let’s assume: knowing yesterday’s weather is enough.

P(x1, . . . , xN) =
N∏

i=1

P(xi |xi−1)

Before (no state): single multinomial P(xi).
After (with state): separate multinomial P(xi |xi−1) . . .

For each xi−1 ∈ {rainy, windy, calm}.
Model P(xi |xi−1) with parameter pxi−1,xi .

What about P(x1|x0)?
Assume x0 = start, a special value.
One more multinomial: P(xi |start).

Constraint:
∑

xi
pxi−1,xi = 1 for all xi−1.

29 / 130

A Picture

After observe x , go to state labeled x .
Is state non-hidden?

R W

Cstart

W/pR;W

R/pW;R

C
/p
R
;C

R/pC;R
W
/
p
C
;W

C/pW;C

C/pstart;C

R/pstart;R

C/pC;C

W/pW;WR/pR;R

W/pstart;W

30 / 130

Computing the Likelihood of Data

Some data: x = W, W, C, C, W, W, C, R, C, R.

R W

Cstart

W/0.5

R/0.6

C
/0
.4

R/0.7

W
/0.2

C/0.1

C/0.5

R/0.2

C/0.1

W/0.3R/0.1

W/0.3

The likelihood:

P(x1, . . . , x10) =
N∏

i=1

P(xi |xi−1) =
N∏

i=1

pxi−1,xi

= pstart,W × pW,W × pW,C × . . .

= 0.3× 0.3× 0.1× 0.1× . . . = 1.06× 10−6
31 / 130

Computing the Likelihood of Data

More generally:

P(x1, . . . , xN) =
N∏

i=1

P(xi |xi−1) =
N∏

i=1

pxi−1,xi

=
∏

xi−1,xi

pc(xi−1,xi)
xi−1,xi

log P(x1, . . . xN) =
∑

xi−1,xi

c(xi−1, xi) log pxi−1,xi

x0 = start.
c(xi−1, xi) is count of xi following xi−1.

Likelihood only depends on counts of pairs (bigrams).

32 / 130

Maximum Likelihood Estimation

Choose pxi−1,xi to optimize log likelihood:

L(xN
1) =

∑
xi−1,xi

c(xi−1, xi) log pxi−1,xi

=
∑

xi

c(start, xi) log pstart,xi +
∑

xi

c(R, xi) log pR,xi +∑
xi

c(W, xi) log pW,xi +
∑

xi

c(C, xi) log pC,xi

Each sum is log likelihood of multinomial.
Each multinomial has nonoverlapping parameter set.

Can optimize each sum independently!

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)

33 / 130

Example: Maximum Likelihood Estimation

Some raw data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Counts and ML estimates:

c(·, ·) R W C sum
start 0 1 0 1

R 16 1 5 22
W 0 2 4 6
C 6 2 18 26

pMLE R W C
start 0.000 1.000 0.000

R 0.727 0.045 0.227
W 0.000 0.333 0.667
C 0.231 0.077 0.692

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)

pMLE
R,C =

5
16 + 1 + 5

= 0.227

34 / 130

Example: Maximum Likelihood Estimation

22 6

261

W/1

R/0

C
/5

R/6

W
/2

C/4

C/0

R/0

C/18

W/2R/16

W/1

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000

35 / 130

Example: Maximum Likelihood Estimation

Some raw data:

W, W, C, C, W, W, C, R, C, R, W, C, C, C, R, R, R, R, C,
C, R, R, R, R, R, R, R, R, C, C, C, C, C, R, R, R, R, R,
R, R, C, C, C, W, C, C, C, C, C, C, R, C, C, C, C

Data sampled from MLE Markov model, order 1:

W, W, C, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R,
C, C, C, C, C, C, W, W, C, C, C, R, R, R, C, C, W, C, C,
C, C, C, R, R, R, R, R, C, R, R, C, R, R, R, R, R

Data sampled from MLE Markov model, order 0:

C, R, C, R, R, R, R, C, R, R, C, C, R, C, C, R, R, R, R, C,
C, C, R, C, R, W, R, C, C, C, W, C, R, C, C, W, C, C, C,
C, R, R, C, C, C, R, C, R, R, C, R, C, R, W, R

36 / 130

Recap: Non-Hidden Markov Models

Use states to encode limited amount of information . . .
About the past.

Current state is known given observations.
Log likelihood just depends on pair counts.

L(xN
1) =

∑
xi−1,xi

c(xi−1, xi) log pxi−1,xi

MLE: count and normalize.

pMLE
xi−1,xi

=
c(xi−1, xi)∑
x c(xi−1, x)

Easy beezy.

37 / 130

Part II

Discrete Hidden Markov Models

38 / 130

Case Study: Austin Weather 2.0

Ignore rain; one sample every two weeks:

C, W, C, C, C, C, W, C, C, C, C, C, C, W, W, C, W, C, W,
W, C, W, C, W, C, C, C, C, C, C, C, C, C, C, C, C, C, C,
W, C, C, C, W, W, C, C, W, W, C, W, C, W, C, C, C, C, C,
C, C, C, C, C, C, C, C, W, C, W, C, C, W, W, C, W, W, W,
C, W, C, C, C, C, C, C, C, C, C, C, W, C, W, W, W, C, C,
C, C, C, W, C, C, W, C, C, C, C, C, C, C, C, C, C, C, W

Does system have state/memory?

39 / 130

Another View

C W C C C C W C C C C C C W W C W C W W C W C W C C
C C C C C C C C C C C C W C C C W W C C W W C W C W
C C C C C C C C C C C C C W C W C C W W C W W W C W
C C C C C C C C C C W C W W W C C C C C W C C W C C
C C C C C C C C C W C C W W C W C C C W C W C W C C
C C C C C C W C C C C C W C C C W C W C W C C W C W
C C C C C C C C C C C C C W C C C W W C C C W C W C

Does system have memory?
How many states?

40 / 130

A Hidden Markov Model

For simplicity, no separate start state.
Always start in calm state c.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Why is state “hidden”?
What are conditions for state to be non-hidden?

41 / 130

Contrast: Non-Hidden Markov Models

C/0.4W/0.6

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000

42 / 130

Why Hidden State?

No “simple” way to determine state given observed.
If see “W ”, doesn’t mean windy season started.

Speech recognition: one HMM per word.
Each state represents different sound in word.
How to tell from observed when state switches?

Hidden models can model same stuff as non-hidden . . .
Using much fewer states.

Pop quiz: name a hidden model with no memory.

43 / 130

The Problem With Hidden State

For observed x = x1, . . . , xN , what is hidden state h?
Corresponding state sequence h = h1, . . . , hN+1.

In non-hidden model, how many h possible given x?
In hidden model, what h are possible given x?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

This makes everything difficult.

44 / 130

Three Key Tasks for HMM’s

1 Find single best path in HMM given observed x.
e.g., when did windy season begin?
e.g., when did each sound in word begin?

2 Find total likelihood P(x) of observed.
e.g., to pick which word assigns highest likelihood.

3 Find ML estimates for parameters of HMM.
i.e., estimate arc probabilities to match training data.

45 / 130

Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion

46 / 130

What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find state sequence h∗ with highest likelihood.

h∗ = arg max
h

P(h, x)

Why is this easy for non-hidden model?
Given state sequence h, how to compute P(h, x)?

Same as for non-hidden model.
Multiply all arc probabilities along path.

47 / 130

Likelihood of Single State Sequence

Some data: x = W, C, C.
A state sequence: h = c, c, c, w .

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Likelihood of path:

P(h, x) = 0.2× 0.6× 0.1 = 0.012

48 / 130

What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find state sequence h∗ with highest likelihood.

h∗ = arg max
h

P(h, x)

Let’s start with simpler problem:
Find likelihood of best state sequence Pbest(x).
Worry about identity of best sequence later.

Pbest(x) = max
h

P(h, x)

49 / 130

What’s the Problem?

Pbest(x) = max
h

P(h, x)

For observation sequence of length N . . .
How many different possible state sequences h?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

How in blazes can we do max . . .
Over exponential number of state sequences?

50 / 130

Dynamic Programming

Let S0 be start state; e.g., the calm season c.
Let P(S, t) be set of paths of length t . . .

Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Any path p ∈ P(S, t) must be composed of . . .
Path of length t − 1 to predecessor state S′ → S . . .
Followed by arc from S′ to S labeled with xt .
This decomposition is unique.

P(S, t) =
⋃

S′ xt→S

P(S′, t − 1) · (S′ xt→ S)

51 / 130

Dynamic Programming

P(S, t) =
⋃

S′ xt→S

P(S′, t − 1) · (S′ xt→ S)

Let α̂(S, t) = likelihood of best path of length t . . .
Starting at start state S0 and ending at S.
P(p) = prob of path p = product of arc probs.

α̂(S, t) = max
p∈P(S,t)

P(p)

= max
p′∈P(S′,t−1),S′ xt→S

P(p′ · (S′ xt→ S))

= max
S′ xt→S

P(S′ xt→ S) max
p′∈P(S′,t−1)

P(p′)

= max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

52 / 130

What Were We Computing Again?

Assume observed x of length T .
Want likelihood of best path of length T . . .
Starting at start state S0 and ending anywhere.

Pbest(x) = max
h

P(h, x) = max
S

α̂(S, T)

If can compute α̂(S, T), we are done.
If know α̂(S, t − 1) for all S, easy to compute α̂(S, t):

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

This looks promising . . .

53 / 130

The Viterbi Algorithm

α̂(S, 0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . , T :

For each state S:

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

The end.

Pbest(x) = max
h

P(h, x) = max
S

α̂(S, T)

54 / 130

Viterbi and Shortest Path

Equivalent to shortest path problem.

1 2
3

4

19

1

3

3

10

1
1

One “state” for each state/time pair (S, t).
Iterate through “states” in topological order:

All arcs go forward in time.
If order “states” by time, valid ordering.

d(S) = min
S′→S
{d(S′) + distance(S′, S)}

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

55 / 130

Identifying the Best Path

Wait! We can calc likelihood of best path:

Pbest(x) = max
h

P(h, x)

What we really wanted: identity of best path.
i.e., the best state sequence h.

Basic idea: for each S, t . . .
Record identity Sprev(S, t) of previous state S′ . . .
In best path of length t ending at state S.

Find best final state.
Backtrace best previous states until reach start state.

56 / 130

The Viterbi Algorithm With Backtrace

α̂(S, 0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . , T :

For each state S:

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

Sprev(S, t) = arg max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

The end.

Pbest(x) = max
S

α̂(S, T)

Sfinal(x) = arg max
S

α̂(S, T)

57 / 130

The Backtrace

Scur ← Sfinal(x)

for t in T , . . . , 1:
Scur ← Sprev(Scur, t)

The best state sequence is . . .
List of states traversed in reverse order.

58 / 130

Example

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α̂ 0 1 2 3 4
c 1.000 0.600 0.360 0.072 0.014
w 0.000 0.100 0.060 0.036 0.022

α̂(c, 2) = max{P(c C→ c)× α̂(c, 1), P(w C→ c)× α̂(w , 1)}
= max{0.6× 0.6, 0.1× 0.1} = 0.36

59 / 130

Example: The Backtrace

Sprev 0 1 2 3 4
c c c c c
w c c c w

h∗ = arg max
h

P(h, x) = (c, c, c, w , w)

The data: C, C, W, W.
Calm season switching to windy season.

60 / 130

Recap: The Viterbi Algorithm

Given observed x, . . .
Exponential number of hidden sequences h.

Can find likelihood and identity of best path . . .
Efficiently using dynamic programming.

What is time complexity?

61 / 130

Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion

62 / 130

What We Want to Compute

Given observed, e.g., x = C, W, C, C, W, . . .
Find total likelihood P(x).

Need to sum likelihood over all hidden sequences:

P(x) =
∑

h

P(h, x)

Given state sequence h, how to compute P(h, x)?
Multiply all arc probabilities along path.

Why is this sum easy for non-hidden model?

63 / 130

What’s the Problem?

P(x) =
∑

h

P(h, x)

For observation sequence of length N . . .
How many different possible state sequences h?

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

How in blazes can we do sum . . .
Over exponential number of state sequences?

64 / 130

Dynamic Programming

Let P(S, t) be set of paths of length t . . .
Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Any path p ∈ P(S, t) must be composed of . . .
Path of length t − 1 to predecessor state S′ → S . . .
Followed by arc from S′ to S labeled with xt .

P(S, t) =
⋃

S′ xt→S

P(S′, t − 1) · (S′ xt→ S)

65 / 130

Dynamic Programming

P(S, t) =
⋃

S′ xt→S

P(S′, t − 1) · (S′ xt→ S)

Let α(S, t) = sum of likelihoods of paths of length t . . .
Starting at start state S0 and ending at S.

α(S, t) =
∑

p∈P(S,t)

P(p)

=
∑

p′∈P(S′,t−1),S′ xt→S

P(p′ · (S′ xt→ S))

=
∑

S′ xt→S

P(S′ xt→ S)
∑

p′∈P(S′,t−1)

P(p′)

=
∑

S′ xt→S

P(S′ xt→ S)× α(S′, t − 1)

66 / 130

What Were We Computing Again?

Assume observed x of length T .
Want sum of likelihoods of paths of length T . . .
Starting at start state S0 and ending anywhere.

P(x) =
∑

h

P(h, x) =
∑

S

α(S, T)

If can compute α(S, T), we are done.
If know α(S, t − 1) for all S, easy to compute α(S, t):

α(S, t) =
∑

S′ xt→S

P(S′ xt→ S)× α(S′, t − 1)

This looks promising . . .

67 / 130

The Forward Algorithm

α(S, 0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . , T :

For each state S:

α(S, t) =
∑

S′ xt→S

P(S′ xt→ S)× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h, x) =
∑

S

α(S, T)

68 / 130

Viterbi vs. Forward

The goal:

Pbest(x) = max
h

P(h, x) = max
S

α̂(S, T)

P(x) =
∑

h

P(h, x) =
∑

S

α(S, T)

The invariant.

α̂(S, t) = max
S′ xt→S

P(S′ xt→ S)× α̂(S′, t − 1)

α(S, t) =
∑

S′ xt→S

P(S′ xt→ S)× α(S′, t − 1)

Just replace all max’s with sums (any semiring will do).
69 / 130

Example

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059

α(c, 2) = P(c C→ c)× α(c, 1) + P(w C→ c)× α(w , 1)

= 0.6× 0.6 + 0.1× 0.1 = 0.37
70 / 130

Recap: The Forward Algorithm

Can find total likelihood P(x) of observed . . .
Using very similar algorithm to Viterbi algorithm.

Just replace max’s with sums.
Same time complexity.

71 / 130

Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion

72 / 130

Training the Parameters of an HMM

Given training data x . . .
Estimate parameters of model . . .

To maximize likelihood of training data.

P(x) =
∑

h

P(h, x)

73 / 130

What Are The Parameters?

One parameter for each arc:

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

Identify arc by source S, destination S′, and label x : pS x→S′.
Probs of arcs leaving same state must sum to 1:∑

x ,S′

pS x→S′ = 1 for all S

74 / 130

What Did We Do For Non-Hidden Again?

Likelihood of single path: product of arc probabilities.
Log likelihood can be written as:

L(xN
1) =

∑
S x→S′

c(S x→ S′) log pS x→S′

Just depends on counts c(S x→ S′) of each arc.
Each source state corresponds to multinomial . . .

With nonoverlapping parameters.
ML estimation for multinomials: count and normalize!

pMLE
S x→S′ =

c(S x→ S′)∑
x ,S′ c(S x→ S′)

75 / 130

Example: Non-Hidden Estimation

22 6

261

W/1

R/0

C
/5

R/6

W
/2

C/4

C/0

R/0

C/18

W/2R/16

W/1

R W

Cstart

W/0.045

R/0.000

C
/0
.2
27

R/0.231

W
/0.077

C/0.667

C/0.000

R/0.000

C/0.692

W/0.333R/0.727

W/1.000

76 / 130

How Do We Train Hidden Models?

Hmmm, I know this one . . .

77 / 130

Review: The EM Algorithm

General way to train parameters in hidden models . . .
To optimize likelihood.

Guaranteed to improve likelihood in each iteration.
Only finds local optimum.
Seeding matters.

78 / 130

The EM Algorithm

Initialize parameter values somehow.
For each iteration . . .
Expectation step: compute posterior (count) of each h.

P̃(h|x) =
P(h, x)∑
h P(h, x)

Maximization step: update parameters.
Instead of data x with unknown h, pretend . . .
Non-hidden data where . . .
(Fractional) count of each (h, x) is P̃(h|x).

79 / 130

Applying EM to HMM’s: The E Step

Compute posterior (count) of each h.

P̃(h|x) =
P(h, x)∑
h P(h, x)

How to compute prob of single path P(h, x)?
Multiply arc probabilities along path.

How to compute denominator?
This is just total likelihood of observed P(x).

P(x) =
∑

h

P(h, x)

This looks vaguely familiar.

80 / 130

Applying EM to HMM’s: The M Step

Non-hidden case: single path h with count 1.
Total count of arc is count of arc in h:

c(S x→ S′) = ch(S
x→ S′)

Normalize.

pMLE
S x→S′ =

c(S x→ S′)∑
x ,S′ c(S x→ S′)

Hidden case: every path h has count P̃(h|x).
Total count of arc is weighted sum . . .
Of count of arc in each h.

c(S x→ S′) =
∑

h

P̃(h|x)ch(S
x→ S′)

Normalize as before.
81 / 130

What’s the Problem?

Need to sum over exponential number of h:

c(S x→ S′) =
∑

h

P̃(h|x)ch(S
x→ S′)

If only we had an algorithm for doing this type of thing.

82 / 130

The Game Plan

Decompose sum by time (i.e., position in x).
Find count of each arc at each “time” t .

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t) =
T∑

t=1

∑
h∈P(S x→S′,t)

P̃(h|x)

P(S x→ S′, t) are paths where arc at time t is S x→ S′.

P(S x→ S′, t) is empty if x 6= xt .
Otherwise, use dynamic programming to compute

c(S xt→ S′, t) ≡
∑

h∈P(S
xt→S′,t)

P̃(h|x)

83 / 130

Let’s Rearrange Some

Recall we can compute P(x) using Forward algorithm:

P̃(h|x) =
P(h, x)

P(x)

Some paraphrasing:

c(S xt→ S′, t) =
∑

h∈P(S
xt→S′,t)

P̃(h|x)

=
1

P(x)

∑
h∈P(S

xt→S′,t)

P(h, x)

=
1

P(x)

∑
p∈P(S

xt→S′,t)

P(p)

84 / 130

What We Need

Goal: sum over all paths p ∈ P(S xt→ S′, t).

Arc at time t is S xt→ S′.
Let Pi(S, t) be set of (initial) paths of length t . . .

Starting at start state S0 and ending at S . . .
Consistent with observed x1, . . . , xt .

Let Pf (S, t) be set of (final) paths of length T − t . . .
Starting at state S and ending at any state . . .
Consistent with observed xt+1, . . . , xT .

Then:

P(S xt→ S′, t) = Pi(S, t − 1) · (S xt→ S′) · Pf (S′, t)

85 / 130

Translating Path Sets to Probabilities

P(S xt→ S′, t) = Pi(S, t − 1) · (S xt→ S′) · Pf (S′, t)

Let α(S, t) = sum of likelihoods of paths of length t . . .
Starting at start state S0 and ending at S.

Let β(S, t) = sum of likelihoods of paths of length T − t . . .
Starting at state S and ending at any state.

c(S xt→ S′, t) =
1

P(x)

∑
p∈P(S

xt→S′,t)

P(p)

=
1

P(x)

∑
pi∈Pi (S,t−1),pf∈Pf (S′,t)

P(pi · (S
xt→ S′) · pf)

=
1

P(x)
× p

S
xt→S′

∑
pi∈Pi (S,t−1)

P(pi)
∑

pf∈Pf (S′,t)

P(pf)

=
1

P(x)
× p

S
xt→S′ × α(S, t − 1)× β(S′, t)

86 / 130

Mini-Recap

To do ML estimation in M step . . .
Need count of each arc: c(S x→ S′).

Decompose count of arc by time:

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t)

Can compute count at time efficiently . . .
If have forward probabilities α(S, t) . . .
And backward probabilities β(S, T).

c(S xt→ S′, t) =
1

P(x)
× p

S
xt→S′ × α(S, t − 1)× β(S′, t)

87 / 130

The Forward-Backward Algorithm (1 iter)

Apply Forward algorithm to compute α(S, t), P(x).
Apply Backward algorithm to compute β(S, t).
For each arc S xt→ S′ and time t . . .

Compute posterior count of arc at time t if x = xt .

c(S xt→ S′, t) =
1

P(x)
× p

S
xt→S′ × α(S, t − 1)× β(S′, t)

Sum to get total counts for each arc.

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t)

For each arc, find ML estimate of parameter:

pMLE
S x→S′ =

c(S x→ S′)∑
x ,S′ c(S x→ S′)

88 / 130

The Forward Algorithm

α(S, 0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . , T :

For each state S:

α(S, t) =
∑

S′ xt→S

p
S′ xt→S

× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h, x) =
∑

S

α(S, T)

89 / 130

The Backward Algorithm

β(S, T) = 1 for all S.
For t = T − 1, . . . , 0:

For each state S:

β(S, t) =
∑

S
xt+1→ S′

p
S

xt+1→ S′
× β(S′, t + 1)

Pop quiz: how to compute P(x) from β’s?

90 / 130

Example: The Forward Pass

Some data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

α 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059

α(c, 2) = p
c C→c
× α(c, 1) + p

w C→c
× α(w , 1)

= 0.6× 0.6 + 0.1× 0.1 = 0.37
91 / 130

The Backward Pass

The data: C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

β 0 1 2 3 4
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

β(c, 2) = p
c W→c
× β(c, 3) + p

c W→w
× β(w , 3)

= 0.2× 0.3 + 0.1× 0.7 = 0.13
92 / 130

Computing Arc Posteriors

α, β 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

c(S x→ S′, t) p
S x→S′ 1 2 3 4

c C→ c 0.6 0.878 0.556 0.000 0.000

c W→ c 0.2 0.000 0.000 0.264 0.195

c C→ w 0.1 0.122 0.321 0.000 0.000

c W→ w 0.1 0.000 0.000 0.308 0.098

w C→ w 0.2 0.000 0.107 0.000 0.000

w W→ w 0.6 0.000 0.000 0.400 0.606

w C→ c 0.1 0.000 0.015 0.000 0.000

w W→ c 0.1 0.000 0.000 0.029 0.101
93 / 130

Computing Arc Posteriors

α, β 0 1 2 3 4
c 1.000 0.600 0.370 0.082 0.025
w 0.000 0.100 0.080 0.085 0.059
c 0.084 0.123 0.130 0.300 1.000
w 0.033 0.103 0.450 0.700 1.000

c(S x→ S′, t) p
S x→S′ 1 2 3 4

c C→ c 0.6 0.878 0.556 0.000 0.000

c W→ c 0.2 0.000 0.000 0.264 0.195
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

c(c C→ c, 2) =
1

P(x)
× p

c C→c
× α(c, 1)× β(c, 2)

=
1

0.084
× 0.6× 0.600× 0.130 = 0.0556

94 / 130

Summing Arc Counts and Reestimation

1 2 3 4 c(S x→ S′) pMLE
S x→S′

c C→ c 0.878 0.556 0.000 0.000 1.434 0.523

c W→ c 0.000 0.000 0.264 0.195 0.459 0.167

c C→ w 0.122 0.321 0.000 0.000 0.444 0.162

c W→ w 0.000 0.000 0.308 0.098 0.405 0.148

w C→ w 0.000 0.107 0.000 0.000 0.107 0.085

w W→ w 0.000 0.000 0.400 0.606 1.006 0.800

w C→ c 0.000 0.015 0.000 0.000 0.015 0.012

w W→ c 0.000 0.000 0.029 0.101 0.130 0.103

∑
x ,S′

c(c x→ S′) = 2.742
∑
x ,S′

c(w x→ S′) = 1.258

95 / 130

Summing Arc Counts and Reestimation
1 2 3 4 c(S x→ S′) pMLE

S x→S′

c C→ c 0.878 0.556 0.000 0.000 1.434 0.523

c W→ c 0.000 0.000 0.264 0.195 0.459 0.167
· ·
· ·∑
x ,S′

c(c x→ S′) = 2.742
∑
x ,S′

c(w x→ S′) = 1.258

c(c C→ c) =
T∑

t=1

c(c C→ c, t)

= 0.878 + 0.556 + 0.000 + 0.000 = 1.434

pMLE
c C→c

=
c(c C→ c)∑

x ,S′ c(c x→ S′)
=

1.434
2.742

= 0.523

96 / 130

Slide for Quiet Contemplation

97 / 130

Another Example

Same initial HMM.
Training data: instead of one sequence, many.

Each sequence is 26 samples⇔ 1 year.

C W C C C C W C C C C C C W W C W C W W C W C W C C
C C C C C C C C C C C C W C C C W W C C W W C W C W
C C C C C C C C C C C C C W C W C C W W C W W W C W
C C C C C C C C C C W C W W W C C C C C W C C W C C
C C C C C C C C C W C C W W C W C C C W C W C W C C
C C C C C C W C C C C C W C C C W C W C W C C W C W
C C C C C C C C C C C C C W C C C W W C C C W C W C

98 / 130

Before and After

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

c w

C/0.13

W/0.00

C/0.00

W/0.00

C/0.86

W/0.01

C/0.62

W/0.38
99 / 130

Another Starting Point

c w

C/0.44

W/0.46

C/0.42

W/0.48

C/0.03

W/0.07

C/0.04

W/0.06

c w

C/0.91

W/0.00

C/0.44

W/0.30

C/0.09

W/0.00

C/0.07

W/0.20
100 / 130

Recap: The Forward-Backward Algorithm

Also called Baum-Welch algorithm.
Instance of EM algorithm.

Uses dynamic programming to efficiently sum over . . .
Exponential number of hidden state sequences.
Don’t explicitly compute posterior of every h.
Compute posteriors of counts needed in M step.

What is time complexity?
Finds local optimum for parameters in likelihood.

Ending point depends on starting point.

101 / 130

Where Are We?

1 Computing the Best Path

2 Computing the Likelihood of Observations

3 Estimating Model Parameters

4 Discussion

102 / 130

HMM’s and ASR

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′
test, A′

w)

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′
test|w)

Vector quantization: A′
test ⇒ xtest.

Convert from sequence of 40d feature vectors . . .
To sequence of values from discrete alphabet.

103 / 130

The Basic Idea

For each word w , build HMM modeling P(x|w) = Pw(x).
Training phase.

For each w , pick HMM topology, initial parameters.
Take all instances of w in training data.
Run Forward-Backward on data to update parameters.

Testing: the Forward algorithm.

w∗ = arg max
w∈vocab

Pw(xtest)

Alignment: the Viterbi algorithm.
When each sound begins and ends.

104 / 130

Recap: Discrete HMM’s

HMM’s are powerful tool for making probabilistic models . . .
Of discrete sequences.

Three key algorithms for HMM’s:
The Viterbi algorithm.
The Forward algorithm.
The Forward-Backward algorithm.

Each algorithm has important role in ASR.
Can do ASR within probabilistic paradigm . . .

Using just discrete HMM’s and vector quantization.

105 / 130

Part III

Continuous Hidden Markov Models

106 / 130

Going from Discrete to Continuous Outputs

What we have: a way to assign likelihoods . . .
To discrete sequences, e.g., C, W, R, C, . . .

What we want: a way to assign likelihoods . . .
To sequences of 40d (or so) feature vectors.

107 / 130

Variants of Discrete HMM’s

Our convention: single output on each arc.

W/0.3

C/0.7 W/1.0

Another convention: output distribution on each arc.

 0:2

0:8

/0.3

 0:7

0:3

/0.7
 0:4

0:6

/1.0

(Another convention: output distribution on each state.)

 0:2

0:8

 0:7

0:3

0.3

0.7 1.0

108 / 130

Moving to Continuous Outputs

Idea: replace discrete output distribution . . .
With continuous output distribution.

What’s our favorite continuous distribution?
Gaussian mixture models.

109 / 130

Where Are We?

1 The Basics

2 Discussion

110 / 130

Moving to Continuous Outputs

Discrete HMM’s.
Finite vocabulary of outputs.
Each arc labeled with single output x .

W/0.3

C/0.7 W/1.0

Continuous HMM’s.
Finite number of GMM’s: g = 1, . . . , G.
Each arc labeled with single GMM identity g.

2/0.3

1/0.7 3/1.0

111 / 130

What Are The Parameters?

Assume single start state as before.
Old: one parameter for each arc: p

S
g→S′.

Identify arc by source S, destination S′, and GMM g.
Probs of arcs leaving same state must sum to 1:∑

g,S′

p
S

g→S′ = 1 for all S

New: GMM parameters for g = 1, . . . , G:
pg,j , µg,j , Σg,j .

Pg(x) =
∑

j

pg,j
1

(2π)d/2|Σg,j |1/2 e−
1
2 (x−µg,j)

T Σ−1
g,j (x−µg,j)

112 / 130

Computing the Likelihood of a Path

Multiply arc and output probabilities along path.
Discrete HMM:

Arc probabilities: pS x→S′.
Output probability 1 if output of arc matches . . .
And 0 otherwise (i.e., path is disallowed).

e.g., consider x = C, C, W, W.

c w

C/0.1

W/0.1

C/0.1

W/0.1

C/0.6

W/0.2

C/0.2

W/0.6

113 / 130

Computing the Likelihood of a Path

Multiply arc and output probabilities along path.
Continuous HMM:

Arc probabilities: p
S

g→S′.
Every arc matches any output.
Output probability is GMM probability.

Pg(x) =
∑

j

pg,j
1

(2π)d/2|Σg,j |1/2 e−
1
2 (x−µg,j)

T Σ−1
g,j (x−µg,j)

114 / 130

Example: Computing Path Likelihood

Single 1d GMM w/ single component: µ1,1 = 0, σ2
1,1 = 1.

1 2
1/0.3

1/0.7 1/1.0

Observed: x = 0.3,−0.1; state sequence: h = 1, 1, 2.

P(x) = p
1 1→1
× 1√

2πσ1,1
e
−

(0.3−µ1,1)2

2σ2
1,1 ×

p
1 1→2
× 1√

2πσ1,1
e
−

(−0.1−µ1,1)2

2σ2
1,1

= 0.7× 0.381× 0.3× 0.397 = 0.0318

115 / 130

The Three Key Algorithms

The main change:
Whenever see arc probability pS x→S′ . . .
Replace with arc probability times output probability:

p
S

g→S′ × Pg(x)

The other change: Forward-Backward.
Need to also reestimate GMM parameters.

116 / 130

Example: The Forward Algorithm

α(S, 0) = 1 for S = S0, 0 otherwise.
For t = 1, . . . , T :

For each state S:

α(S, t) =
∑

S′ g→S

p
S′ g→S

× Pg(xt)× α(S′, t − 1)

The end.
P(x) =

∑
h

P(h, x) =
∑

S

α(S, T)

117 / 130

The Forward-Backward Algorithm

Compute posterior count of each arc at time t as before.

c(S
g→ S′, t) =

1
P(x)

× p
S

g→S′ ×Pg(xt)× α(S, t − 1)× β(S′, t)

Use to get total counts of each arc as before . . .

c(S x→ S′) =
T∑

t=1

c(S x→ S′, t) pMLE
S x→S′ =

c(S x→ S′)∑
x ,S′ c(S x→ S′)

But also use to estimate GMM parameters.
Send c(S

g→ S′, t) counts for point xt . . .
To estimate GMM g.

118 / 130

An Example, Please?

No more examples for you!

119 / 130

Where Are We?

1 The Basics

2 Discussion

120 / 130

An HMM/GMM Recognizer

For each word w , build HMM modeling P(x|w) = Pw(x).
Training phase.

For each w , pick HMM topology, initial parameters, . . .
Number of components in each GMM.
Take all instances of w in training data.
Run Forward-Backward on data to update parameters.

Testing: the Forward algorithm.

w∗ = arg max
w∈vocab

Pw(xtest)

121 / 130

What HMM Topology, Initial Parameters?

A standard topology (three states per phoneme):

1/0.5 2/0.5 3/0.5 4/0.5 5/0.5 6/0.5

1/0.5 2/0.5 3/0.5 4/0.5 5/0.5 6/0.5

How many Gaussians per mixture?
Set all means to 0; variances to 1 (flat start).
That’s everything!

122 / 130

HMM/GMM vs. DTW

Old paradigm: DTW.

w∗ = arg min
w∈vocab

distance(A′
test, A′

w)

New paradigm: Probabilities.

w∗ = arg max
w∈vocab

P(A′
test|w)

In fact, can design HMM such that

distance(A′
test, A′

w) ≈ − log P(A′
test|w)

See Holmes, Sec. 9.13, p. 155.

123 / 130

The More Things Change . . .

DTW HMM
template HMM

frame in template state in HMM
DTW alignment HMM path
local path cost transition (log)prob
frame distance output (log)prob
DTW search Viterbi algorithm

124 / 130

What Have We Gained?

Principles!
Probability theory; maximum likelihood estimation.
Can choose path scores and parameter values . . .
In non-arbitrary manner.
Less ways to screw up!

Scalability.
Can extend HMM/GMM framework to . . .
Lots of data; continuous speech; large vocab; etc.

Generalization.
HMM can assign high prob to sample . . .
Even if sample not close to any one training example.

125 / 130

The Markov Assumption

Everything need to know about past . . .
Is encoded in identity of state.
i.e., conditional independence of future and past.

What information do we encode in state?
What information don’t we encode in state?
Issue: the more states, the more parameters.
e.g., the weather.

Solutions.
More states.
Condition on more stuff, e.g., graphical models.

126 / 130

Recap: HMM’s

Together with GMM’s, good way to model likelihood . . .
Of sequences of 40d acoustic feature vectors.

Use state to capture information about past.
Lets you model how data evolves over time.

Not nearly as ad hoc as dynamic time warping.
Need three basic algorithms for ASR.

Viterbi, Forward, Forward-Backward.
All three are efficient: dynamic programming.

Know enough to build basic GMM/HMM recognizer.

127 / 130

Part IV

Epilogue

128 / 130

What’s Next

Lab 2: Build simple HMM/GMM system.
Training and decoding.

Lecture 5: Language modeling.
Moving from isolated to continuous word ASR.

Lecture 6: Pronunciation modeling.
Moving from small to large vocabulary ASR.

129 / 130

Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?

130 / 130

	Nonhidden Sequence Models
	Models Without State
	Models With State

	Discrete Hidden Markov Models
	Computing the Best Path
	Computing the Likelihood of Observations
	Estimating Model Parameters
	Discussion

	Continuous Hidden Markov Models
	The Basics
	Discussion

	Epilogue

