Lecture 3

Gaussian Mixture Models and Introduction to HMM's

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny, bhuvana, stanchen}@us.ibm.com

24 September 2012

Administrivia

- Feedback (2+ votes):
 - Too fast (pace/content/talking): many.
 - More details/explanation of formulae: 5.
 - More examples + explanation: 4.
 - Talk more about labs: 2.
 - Earlier break or more breaks: 2
 - (Provide extra readings for people w/o DSP.)
- Will try to address most of these today.
- Muddiest topic: DTW (4), LPC (3), DSP (2), deltas (1).
- Lab 1 due Wednesday, October 3rd at 6pm.
 - Should have received username and password.
 - Courseworks discussion has been started.

2/113

Where Are We?

- Can extract features over time (LPC, MFCC, PLP) that ...
 - Characterize info in speech signal in compact form.
 - Every \sim 10 ms, process window of samples . . .
 - $\bullet\,$ To get ${\sim}40$ features.
- DTW computes distance between feature vectors
 - While accounting for nonlinear time alignment.
- Learned basic concepts (e.g., distances, shortest paths) ...
 - That will reappear throughout course.

DTW Revisited

- $w^* = \operatorname*{arg\,min}_{w \in \mathrm{vocab}} \mathrm{distance}(A'_{\mathrm{test}}, A'_w)$
- Training: collect audio A_w for each word w in vocab.
 - Generate features $\Rightarrow A'_w$ (*template* for *w*).
- Test time: given audio A_{test}, convert to A'_{test}.
 - For each *w*, compute distance(A'_{test}, A'_w) using DTW.
 - Return w with smallest distance.

What are Pros and Cons of DTW?

Pros

- Easy to implement.
- Lots of freedom can model arbitrary time warpings.

5/113

Cons: It's Ad Hoc

- Distance measures completely heuristic.
 - Why Euclidean?
 - Weight all dimensions of feature vector equally?
- Warping paths heuristic.
 - Too much freedom not good for robustness?
 - Allowable local paths hand-derived.
- No guarantees of optimality or convergence.

Cons (cont'd)

- Doesn't scale well?
 - Run DTW for each template in training data.
 - What if large vocabulary? Lots of templates per word?
- Generalization.
 - Doesn't support mix and match between templates.

Can We Do Better?

- Key insight 1: Learn as much as possible from data.
 - *e.g.*, distance measure; graph weights; graph structure?
- Key insight 2: Use probabilistic modeling.
 - Use well-described theories and models from
 - Probability, statistics, and computer science ...
 - Rather than arbitrary heuristics with ill-defined properties.

Next Two Main Topics

- Gaussian Mixture models (today) A probabilistic model of ...
 - Feature vectors associated with a speech sound.
 - Principled distance between test frame
 - And set of template frames.
- Hidden Markov models (next week) A probabilistic model of ...
 - Time evolution of feature vectors for a speech sound.
 - Principled generalization of DTW.

9/113

10/113

Part I

Gaussian Distributions

The Scenario

- Given alignment between training feats *X*, test feats *Y*.
 - Warping functions $\tau_x(t)$, $\tau_y(t)$, t = 1, ..., T.
 - *i.e.*, time $\tau_x(t)$ in X aligns with time $\tau_y(t)$ in Y.
- Total distance is sum of distance between aligned vectors.

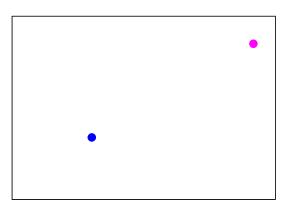
distance_{$$\tau_x, \tau_y$$}(X, Y) = $\sum_{t=1}^{T}$ framedist($x_{\tau_x(t)}, y_{\tau_y(t)}$)

The Scenario

• Computing frame distance for pair of frames is easy.

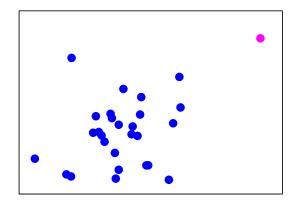
framedist($x_{\tau_x(t)}, y_{\tau_y(t)}$)

• Imagine 2d feature vectors instead of 40d for visualization.



Problem Formulation

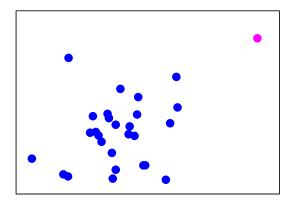
• What if instead of one training sample, have many? framedist($(x_{\tau_{x^1}(t)}^1, x_{\tau_{x^2}(t)}^2, x_{\tau_{x^3}(t)}^3, \ldots); y_{\tau_y(t)})$



14/113

Ideas

- Average training samples; compute Euclidean distance.
- Find best match over all training samples.
- Make probabilistic model of training samples.



Probabilistic Modeling

• Old paradigm:

$$w^* = \operatorname*{arg\,min}_{w \in ext{vocab}} \operatorname{distance}(A'_{ ext{test}}, A'_w)$$

• New paradigm:

 $w^* = \operatorname*{arg\,min}_{w \in ext{vocab}} - \log P(A'_{ ext{test}} | w)$

- P(A'|w) is (relative) frequency with which $w \dots$
- Is realized as feature vector A'.

Why Probabilistic Modeling?

- If can estimate P(A'|w) perfectly ...
 - Can perform classification optimally!
- e.g., two-class classification (w/ classes equally frequent)
 - Choose yes iff $P(A'_{test}|yes) > P(A'_{test}|no)$.
 - This is best you can do!

Why Probabilistic Modeling?

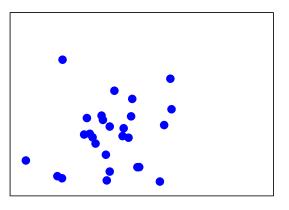
- In limit of infinite data, ...
 - Can estimate probabilities perfectly (*consistency*).
- In real world situations (*e.g.*, sparse data) ...
 - No guarantees.
 - Still, better to follow principles imperfectly ...
 - Than to not have principles at all.

17/113

- Gaussians in One Dimension
- 2 Gaussians in Multiple Dimensions
- 3 Estimating Gaussians From Data

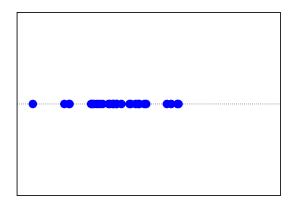
Problem Formulation, Two Dimensions

- Estimate $P(x_1, x_2)$, the "frequency" . . .
 - That training sample occurs at location (x_1, x_2) .



Let's Start With One Dimension

- Estimate P(x), the "frequency" ...
 - That training sample occurs at location *x*.



The Gaussian or Normal Distribution

$$\mathcal{P}_{\mu,\sigma^2}(x) = \mathcal{N}(\mu,\sigma^2) = rac{1}{\sqrt{2\pi}\sigma} \ e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

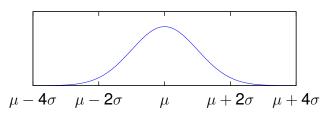
• Parametric distribution with two parameters:

- μ = mean (the center of the data).
- σ^2 = variance (how wide data is spread).

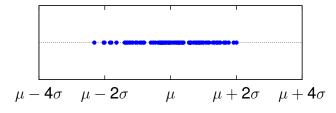
21/113

Visualization

• Density function:



• Sample from distribution:



Properties of Gaussian Distributions

Is valid distribution.

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{2\sigma^2}$$

- Central Limit Theorem: Sums of large numbers of identically distributed random variables tend to Gaussian.
 - Lots of different types of data look "bell-shaped".
- Sums and differences of Gaussian random variables ...
 - Are Gaussian.
- If X is distributed as $\mathcal{N}(\mu, \sigma^2) \dots$
 - aX + b is distributed as $\mathcal{N}(a\mu + b, (a\sigma)^2)$.
- Negative log looks like weighted Euclidean distance!

$$\ln\sqrt{2\pi}\sigma + \frac{(x-\mu)^2}{2\sigma^2}$$

Where Are We?

Gaussians in Two Dimensions

- Gaussians in Multiple Dimensions
- 3) Estimating Gaussians From Data



• If r = 0, simplifies to

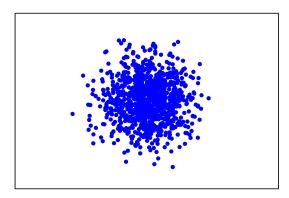
 $\frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_1-\mu_1)^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_2-\mu_2)^2}{2\sigma_2^2}} = \mathcal{N}(\mu_1,\sigma_1^2)\mathcal{N}(\mu_2,\sigma_2^2)$

• *i.e.*, like generating each dimension independently.

25/113

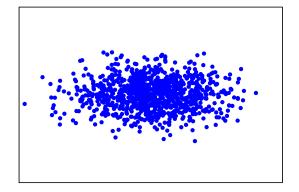
Example: r = 0, $\sigma_1 = \sigma_2$

- x₁, x₂ uncorrelated.
 - Knowing x_1 tells you nothing about x_2 .



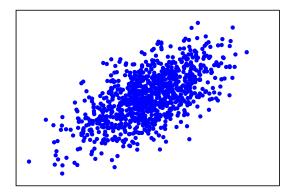
Example: $r = 0, \sigma_1 \neq \sigma_2$

• x_1 , x_2 can be uncorrelated and have unequal variance.



Example: r > 0, $\sigma_1 \neq \sigma_2$

- x_1 , x_2 correlated.
 - Knowing x_1 tells you something about x_2 .



Generalizing to More Dimensions

• If we write following matrix:

$$\Sigma = \begin{vmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{vmatrix}$$

then another way to write two-dimensional Gaussian is:

$$\mathcal{N}(oldsymbol{\mu},oldsymbol{\Sigma}) = rac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \; e^{-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^Toldsymbol{\Sigma}^{-1}(oldsymbol{x}-oldsymbol{\mu})}$$

where $\mathbf{x} = (x_1, x_2), \, \boldsymbol{\mu} = (\mu_1, \mu_2).$

- More generally, μ and Σ can have arbitrary numbers of components.
 - Multivariate Gaussians.

29/113

30/113

Diagonal and Full Covariance Gaussians

- Let's say have 40d feature vector.
 - How many parameters in covariance matrix Σ?
 - The more parameters, ...
 - The more data you need to estimate them.
- In ASR, usually assume Σ is diagonal \Rightarrow *d* params.
 - This is why like having uncorrelated features!
- (Research direction: is there something in between?)

Computing Gaussian Log Likelihoods

- Why log likelihoods?
- Full covariance:

$$\log P(\mathbf{x}) = -\frac{d}{2}\ln(2\pi) - \frac{1}{2}\ln|\boldsymbol{\Sigma}| - \frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})$$

• Diagonal covariance:

$$\log P(\mathbf{x}) = -\frac{d}{2}\ln(2\pi) - \sum_{i=1}^{d}\ln\sigma_{i} - \frac{1}{2}\sum_{i=1}^{d}(x_{i} - \mu_{i})^{2}/\sigma_{i}^{2}$$

- Again, note similarity to weighted Euclidean distance.
- Terms on left independent of **x**; precompute.
- A few multiplies/adds per dimension.

Where Are We?

1

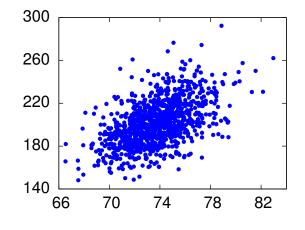
Gaussians in One Dimension

Gaussians in Multiple Dimensions

Estimating Gaussians From Data

Estimating Gaussians

- Give training data, how to choose parameters μ, Σ?
- Find parameters so that resulting distribution
 - "Matches" data as well as possible.
- Sample data: height, weight of baseball players.



Maximum-Likelihood Estimation (Univariate)

- One criterion: data "matches" distribution well ...
 - If distribution assigns high likelihood to data.
- Likelihood of string of observations x_1, x_2, \ldots, x_N is ...
 - Product of individual likelihoods.

$$\mathcal{L}(\boldsymbol{x}_1^N|\boldsymbol{\mu},\sigma) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma} \ \boldsymbol{e}^{-\frac{(\boldsymbol{x}_i-\boldsymbol{\mu})^2}{2\sigma^2}}$$

- Maximum likelihood estimation: choose μ , σ ...
 - That maximizes likelihood of training data.

$$(\mu,\sigma)_{\mathsf{MLE}} = rgmax_{\mu,\sigma} \mathcal{L}(\pmb{x}_1^{\mathcal{N}}|\mu,\sigma)$$

Why Maximum-Likelihood Estimation?

- Assume we have "correct" model form.
- Then, in presence of infinite training samples ...
 - ML estimates approach "true" parameter values.
 - For most models, MLE is asymptotically consistent, unbiased, and efficient.
- ML estimation is easy for many types of models.
 - Count and normalize!

What is ML Estimate for Gaussians?

• Much easier to work with log likelihood $L = \ln \mathcal{L}$:

$$L(x_1^N|\mu,\sigma) = -\frac{N}{2}\ln 2\pi\sigma^2 - \frac{1}{2}\sum_{i=1}^N \frac{(x_i - \mu)^2}{\sigma^2}$$

• Take partial derivatives w.r.t. μ , σ :

$$\frac{\partial L(\mathbf{x}_1^N | \mu, \sigma)}{\partial \mu} = \sum_{i=1}^N \frac{(\mathbf{x}_i - \mu)}{\sigma^2}$$
$$\frac{\partial L(\mathbf{x}_1^N | \mu, \sigma)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \sum_{i=1}^N \frac{(\mathbf{x}_i - \mu)^2}{\sigma^4}$$

• Set equal to zero; solve for μ , σ^2 .

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

37/113

What is ML Estimate for Gaussians?

Multivariate case.

$$egin{aligned} \mu &= rac{1}{N}\sum_{i=1}^N \mathbf{x}_i \ \mathbf{\Sigma} &= rac{1}{N}\sum_{i=1}^N (\mathbf{x}_i - \mu)^T (\mathbf{x}_i - \mu) \end{aligned}$$

- What if diagonal covariance?
 - Estimate params for each dimension independently.

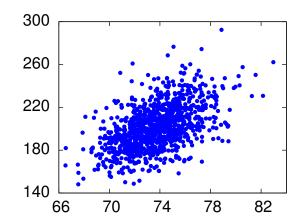
38/113

Example: ML Estimation

- Heights (in.) and weights (lb.) of 1033 pro baseball players.
 - Noise added to hide discretization effects.
- ~stanchen/e6870/data/mlb_data.dat

height	weight		
74.34	181.29		
73.92	213.79		
72.01	209.52		
72.28	209.02		
72.98	188.42		
69.41	176.02		
68.78	210.28		

Example: ML Estimation



$$\mu_{1} = \frac{1}{1033} (74.34 + 73.92 + 72.01 + \cdots) = 73.71$$

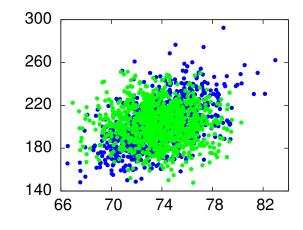
$$\mu_{2} = \frac{1}{1033} (181.29 + 213.79 + 209.52 + \cdots) = 201.69$$

$$\sigma_{1}^{2} = \frac{1}{1033} [(74.34 - 73.71)^{2} + (73.92 - 73.71)^{2} + \cdots)]$$

$$= 5.43$$

$$\sigma_{2}^{2} = \frac{1}{1033} [(181.29 - 201.69)^{2} + (213.79 - 201.69)^{2} + \cdots)]$$

$$= 440.62$$



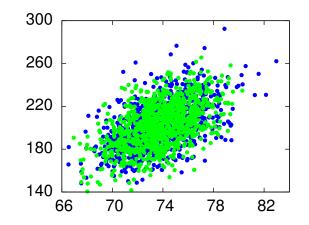
42/113

Example: Full Covariance

• Mean; diagonal elements of covariance matrix the same.

$$\begin{split} \pmb{\Sigma}_{12} &= \pmb{\Sigma}_{21} \\ &= \frac{1}{1033} [(74.34 - 73.71) \times (181.29 - 201.69) + \\ &\quad (73.92 - 73.71) \times (213.79 - 201.69) + \cdots)] \\ &= 25.43 \end{split}$$

Example: Full Covariance



Recap: Gaussians

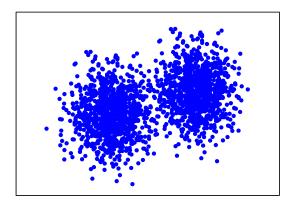
Part II

- Lots of data "looks" Gaussian.
 - Central limit theorem.
- ML estimation of Gaussians is easy.
 - Count and normalize.
- In ASR, mostly use diagonal covariance Gaussians.
 - Full covariance matrices have too many parameters.

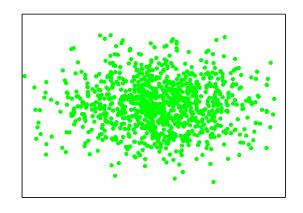
Gaussian Mixture Models

45/113

Problems with Gaussian Assumption

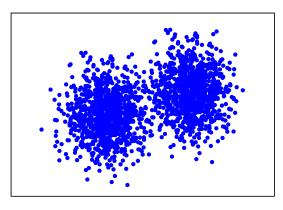


Problems with Gaussian Assumption



- Sample from MLE Gaussian trained on data on last slide.
- Not all data is Gaussian!

Problems with Gaussian Assumption



• What can we do? What about two Gaussians?

$$m{P}(m{x}) = m{
ho}_1 imes \mathcal{N}(m{\mu}_1, m{\Sigma}_1) + m{
ho}_2 imes \mathcal{N}(m{\mu}_2, m{\Sigma}_2)$$

where $p_1 + p_2 = 1$.

Gaussian Mixture Models (GMM's)

• More generally, can use arbitrary number of Gaussians:

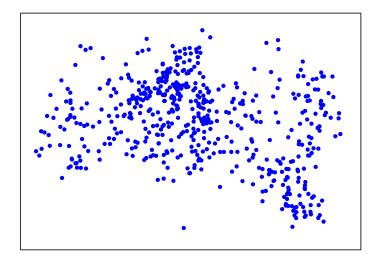
$$P(\mathbf{x}) = \sum_{j} p_{j} \frac{1}{(2\pi)^{d/2} |\Sigma_{j}|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}_{j}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{j})}$$

where $\sum_{j} p_{j} = 1$ and all $p_{j} \ge 0$.

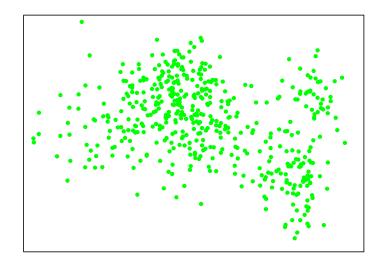
- Also called *mixture* of Gaussians.
- Can approximate any distribution of interest pretty well ...
 - If just use enough component Gaussians.

50/113

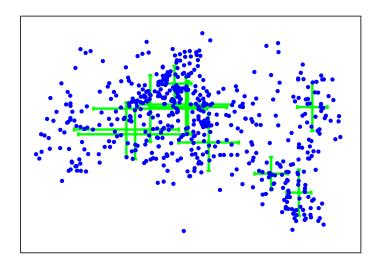
Example: Some Real Acoustic Data



Example: 10-component GMM (Sample)



Example: 10-component GMM (μ 's, σ 's)



ML Estimation For GMM's

- Given training data, how to estimate parameters ...
 - *i.e.*, the μ_i , Σ_j , and mixture weights p_j ...
 - To maximize likelihood of data?
- No closed-form solution.
 - Can't just count and normalize.
- Instead, must use an optimization technique ...
 - To find good local optimum in likelihood.
 - Gradient search
 - Newton's method
- Tool of choice: The Expectation-Maximization Algorithm.

53/113

Where Are We?

- The Expectation-Maximization Algorithm
- 2 Applying the EM Algorithm to GMM's

Wake Up!

- This is another key thing to remember from course.
- Used to train GMM's, HMM's, and lots of other things.
- Key paper in 1977 by Dempster, Laird, and Rubin [2].

What Does The EM Algorithm Do?

- Finds ML parameter estimates for models ...
 - With *hidden* variables.
- Iterative hill-climbing method.
 - Adjusts parameter estimates in each iteration
 - Such that likelihood of data ...
 - Increases (weakly) with each iteration.
- Actually, finds local optimum for parameters in likelihood.

What is a Hidden Variable?

- A random variable that isn't observed.
- Example: in GMMs, output prob depends on ...
 - The mixture component that generated the observation
 - But you can't observe it
- So, to compute prob of observed *x*, need to sum over ...
 - All possible values of hidden variable *h*:

$$P(x) = \sum_{h} P(h, x) = \sum_{h} P(h) P(x|h)$$

57/113

Mixtures and Hidden Variables

• Consider probability that is mixture of probs, *e.g.*, a GMM:

$$P(x) = \sum_{j} p_{j} \mathcal{N}(\mu_{j}, \mathbf{\Sigma}_{j})$$

- Can be viewed as hidden model.
 - $h \Leftrightarrow$ Which component generated sample.

•
$$P(h) = p_j; P(x|h) = \mathcal{N}(\mu_j, \mathbf{\Sigma}_j).$$

$$P(x) = \sum_{h} P(h) P(x|h)$$

The Basic Idea

- If nail down "hidden" value for each x_i, \ldots
 - Model is no longer hidden!
 - *e.g.*, data partitioned among GMM components.
- So for each data point *x_i*, assign single hidden value *h_i*.
 - Take $h_i = \arg \max_h P(h)P(x_i|h)$.
 - e.g., identify GMM component generating each point.
- Easy to train parameters in non-hidden models.
 - Update parameters in P(h), P(x|h).
 - *e.g.*, count and normalize to get MLE for μ_j , Σ_j , p_j .
- Repeat!

The Basic Idea

- Hard decision:
 - For each x_i , assign single $h_i = \arg \max_h P(h, x_i) \dots$
 - With count 1.
- Soft decision:
 - For each x_i , compute for every $h \dots$
 - the Posterior prob $\tilde{P}(h|x_i) = \frac{P(h,x_i)}{\sum_h P(h,x_i)}$.
 - Also called the "fractional count"
 - e.g., partition event across every GMM component.
- Rest of algorithm unchanged.

The Basic Idea

- Initialize parameter values somehow.
- For each iteration ...
- Expectation step: compute posterior (count) of *h* for each *x_i*.

$$ilde{\mathsf{P}}(h|x_i) = rac{P(h,x_i)}{\sum_h P(h,x_i)}$$

- Maximization step: update parameters.
 - Instead of data x_i with hidden h, pretend ...
 - Non-hidden data where ...
 - (Fractional) count of each (h, x_i) is $\tilde{P}(h|x_i)$.

61/113

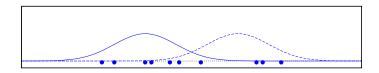
Example: Training a 2-component GMM

- Two-component univariate GMM; 10 data points.
- The data: *x*₁,...,*x*₁₀

• Initial parameter values:

p_1	μ_1	σ_1^2	<i>p</i> ₂	μ_2	σ_2^2
0.5	4	1	0.5	7	1

Training data; densities of initial Gaussians.



The E Step

Xi	$p_1 \cdot \mathcal{N}_1$	$p_2 \cdot \mathcal{N}_2$	$P(x_i)$	$\tilde{P}(1 x_i)$	$\tilde{P}(2 x_i)$
8.4	0.0000	0.0749	0.0749	0.000	1.000
7.6	0.0003	0.1666	0.1669	0.002	0.998
4.2	0.1955	0.0040	0.1995	0.980	0.020
2.6	0.0749	0.0000	0.0749	1.000	0.000
5.1	0.1089	0.0328	0.1417	0.769	0.231
4.0	0.1995	0.0022	0.2017	0.989	0.011
7.8	0.0001	0.1448	0.1450	0.001	0.999
3.0	0.1210	0.0001	0.1211	0.999	0.001
4.8	0.1448	0.0177	0.1626	0.891	0.109
5.8	0.0395	0.0971	0.1366	0.289	0.711

$$\tilde{P}(h|x_i) = \frac{P(h, x_i)}{\sum_h P(h, x_i)} = \frac{p_h \cdot \mathcal{N}_h}{P(x_i)} \qquad h \in \{1, 2\}$$

^{8.4, 7.6, 4.2, 2.6, 5.1, 4.0, 7.8, 3.0, 4.8, 5.8}

The M Step

- View: have *non-hidden* corpus for each component GMM. $\tilde{}_{n}$
 - For *h*th component, have $\tilde{P}(h|x_i)$ counts for event x_i .
- Estimating μ : fractional events.

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \quad \Rightarrow \quad \mu_h = \frac{1}{\sum_i \tilde{P}(h|x_i)} \sum_{i=1}^{N} \tilde{P}(h|x_i) x_i$$

$$\mu_1 = \frac{1}{0.000 + 0.002 + 0.980 + \cdots} \times (0.000 \times 8.4 + 0.002 \times 7.6 + 0.980 \times 4.2 + \cdots)$$

= 3.98

• Similarly, can estimate σ_h^2 with fractional events.

The M Step (cont'd)

- What about the mixture weights *p_h*?
 - To find MLE, count and normalize!

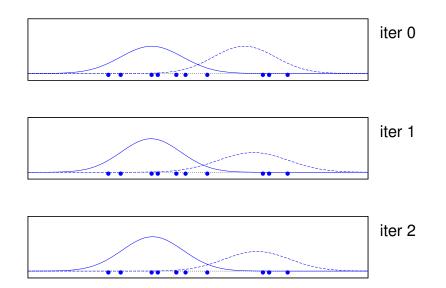
$$p_1 = \frac{0.000 + 0.002 + 0.980 + \cdots}{10} = 0.59$$

66/113

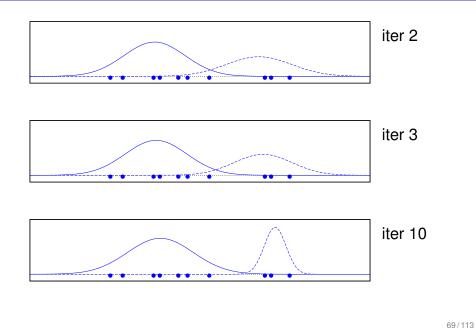
The End Result

iter	p_1	μ_1	σ_1^2	<i>p</i> ₂	μ_{2}	σ_2^2
					7.00	
1	0.59	3.98	0.92	0.41	7.29	1.29
2	0.62	4.03	0.97	0.38	7.41	1.12
3	0.64	4.08	1.00	0.36	7.54	0.88
10	0.70	4.22	1.13	0.30	7.93	0.12

First Few Iterations of EM



Later Iterations of EM



Why the EM Algorithm Works [3]

- $\mathbf{x} = (x_1, x_2, \ldots)$ = whole training set; \mathbf{h} = hidden.
- θ = parameters of model.
- Objective function for MLE: (log) likelihood.

$$L(\theta) = \log P(\mathbf{x}|\theta) = \log \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{x}|\theta)$$

- Alternate objective function
 - Will show maximizing this equivalent to above $F(\tilde{P},\theta) = L(\theta) D(\tilde{P} \parallel P_{\theta})$
 - $P_{\theta}(\mathbf{h}|\mathbf{x})$ = posterior over hidden.
 - $\tilde{P}(\mathbf{h})$ = distribution over hidden to be optimized ...
 - $D(\cdot \parallel \cdot) =$ Kullback-Leibler divergence.

70/113

Why the EM Algorithm Works

$$F(\tilde{P}, \theta) = L(\theta) - D(\tilde{P} \parallel P_{\theta})$$

- Outline of proof:
 - Show that both E step and M step improve $F(\tilde{P}, \theta)$.
 - Will follow that likelihood $L(\theta)$ improves as well.

The E Step

$$F(\tilde{P}, \theta) = L(\theta) - D(\tilde{P} \parallel P_{\theta})$$

- Properties of KL divergence.
 - Nonnegative; and zero iff $\tilde{P} = P_{\theta}$.
- What is best choice for $\tilde{P}(\mathbf{h})$?
 - Compute the current posterior $P_{\theta}(\mathbf{h}|\mathbf{x})$.
 - Set $\tilde{P}(\mathbf{h})$ equal to this posterior.
- Since $L(\theta)$ is not function of \tilde{P} ...
 - $F(\tilde{P}, \theta)$ can only improve in E step.

The M Step

• Lemma:

$$F(\tilde{P}, \theta) = E_{\tilde{P}}[\log P(\mathbf{h}, \mathbf{x}|\theta)] + H(\tilde{P})$$

• Proof:

$$\begin{split} F(\tilde{P},\theta) &= L(\theta) - D(\tilde{P} \parallel P_{\theta}) \\ &= \log P(\mathbf{x}|\theta) - \sum_{\mathbf{h}} \tilde{P}(\mathbf{h}) \log \frac{\tilde{P}(\mathbf{h})}{P(\mathbf{h}|\mathbf{x},\theta)} \\ &= \log P(\mathbf{x}|\theta) - \sum_{\mathbf{h}} \tilde{P}(\mathbf{h}) \log \frac{\tilde{P}(\mathbf{h})P(\mathbf{x}|\theta)}{P(\mathbf{h},\mathbf{x}|\theta)} \\ &= \sum_{\mathbf{h}} \tilde{P}(\mathbf{h}) \log P(\mathbf{h},\mathbf{x}|\theta) - \sum_{\mathbf{h}} \tilde{P}(\mathbf{h}) \log \tilde{P}(\mathbf{h}) \\ &= E_{\tilde{P}}[\log P(\mathbf{h},\mathbf{x}|\theta)] + H(\tilde{P}) \end{split}$$

The M Step (cont'd)

 $F(\tilde{P}, \theta) = E_{\tilde{P}}[\log P(\mathbf{h}, \mathbf{x}|\theta)] + H(\tilde{P})$

- *E_{p̃}*[···] = log likelihood of non-hidden corpus . . .
 - Where each *h* gets $\tilde{P}(\mathbf{h})$ counts.
- $H(\tilde{P}) = entropy$ of distribution $\tilde{P}(\mathbf{h})$.
- What do we do in M step?
 - Pick θ to maximize term on left
 - Note this is just MLE of non-hidden corpus
 - Since we chose an estimate for *h* from the E step.
- Since $H(\tilde{P})$ is not function of θ
 - $F(\tilde{P}, \theta)$ can only improve in M step.

74/113

Why the EM Algorithm Works

• Observation: $F(\tilde{P}, \theta) = L(\theta)$ after E step (set $\tilde{P} = P_{\theta}$).

 $F(\tilde{P}, \theta) = L(\theta) - D(\tilde{P} \parallel P_{\theta})$

- If $F(\tilde{P}, \theta)$ improves with each iteration ...
 - And $F(\tilde{P}, \theta) = L(\theta)$ after each E step ...
 - $L(\theta)$ improves after each iteration.
- There you go!

Discussion

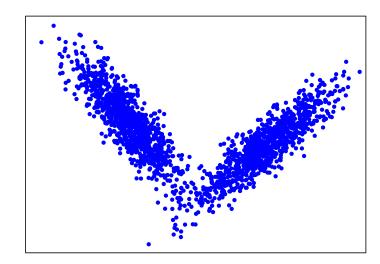
- EM algorithm is elegant and general way to ...
 - Train parameters in hidden models ...
 - To optimize likelihood.
- Only finds local optimum.
 - Seeding is of paramount importance.
- Generalized EM algorithm.
 - $F(\tilde{P}, \theta)$ just needs to improve *some* in each step.
 - *i.e.*, $\tilde{P}(h)$ in E step need not be exact posterior.
 - *i.e.*, θ in M step need not be ML estimate.
 - e.g., can optimize Viterbi likelihood.

Where Are We?

1 The Expectation-Maximization Algorithm

Applying the EM Algorithm to GMM's

Another Example Data Set



77/113

Question: How Many Gaussians?

- Method 1 (most common): Guess!
- Method 2: Bayesian Information Criterion (BIC)[1].
 - Penalize likelihood by number of parameters.

$$\mathsf{BIC}(C_k) = \sum_{j=1}^k \{-\frac{1}{2}n_j \log |\Sigma_j|\} - Nk(d + \frac{1}{2}d(d + 1))$$

- *k* = Gaussian components.
- *d* = dimension of feature vector.
- n_i = data points for Gaussian *j*; *N* = total data points.

The Bayesian Information Criterion

- View GMM as way of coding data for transmission.
 - Cost of transmitting model \Leftrightarrow number of params.
 - Cost of transmitting data \Leftrightarrow log likelihood of data.
- Choose number of Gaussians to minimize cost.

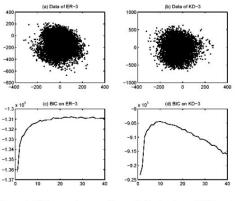


Figure 1. Different degrees of complexity in phone ER-3 and KD-3 $\,$

Question: How To Initialize Parameters?

- Set mixture weights p_j to 1/k (for k Gaussians).
- Pick N data points at random and ...
 - Use them to seed initial values of μ_j .
- Set all σ 's to arbitrary value . . .
 - Or to global variance of data.
- Extension: generate multiple starting points.
 - Pick one with highest likelihood.

Another Way: Splitting

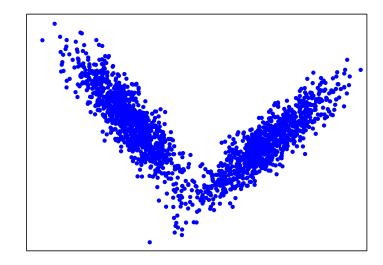
- Start with single Gaussian, MLE.
- Repeat until hit desired number of Gaussians:
 - Double number of Gaussians by perturbing means ...
 - Of existing Gaussians by $\pm\epsilon.$
 - Run several iterations of EM.

81/113

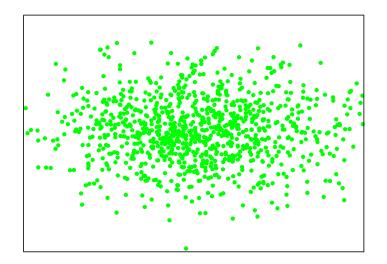
Question: How Long To Train?

- *i.e.*, how many iterations of EM?
- Guess.
- Look at performance on training data.
 - Stop when change in log likelihood per event ...
 - Is below fixed threshold.
- Look at performance on held-out data.
 - Stop when performance no longer improves.

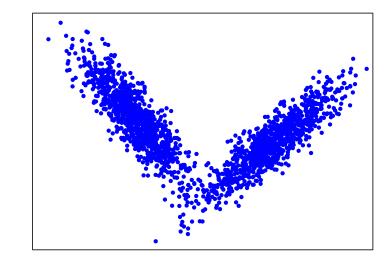
The Data Set



Sample From Best 1-Component GMM

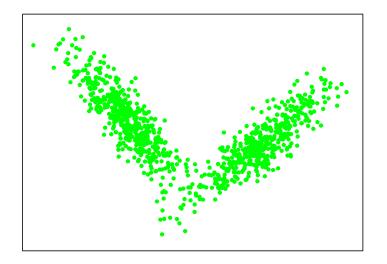


The Data Set, Again

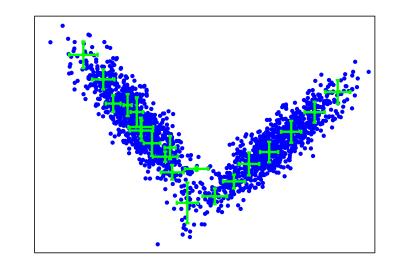


85/113

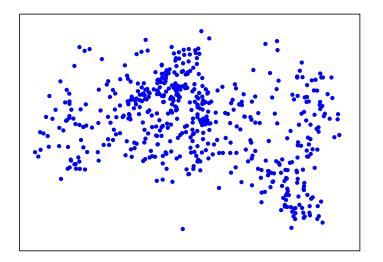
20-Component GMM Trained on Data



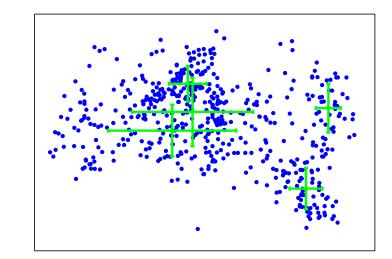
20-Component GMM μ 's, σ 's



Acoustic Feature Data Set



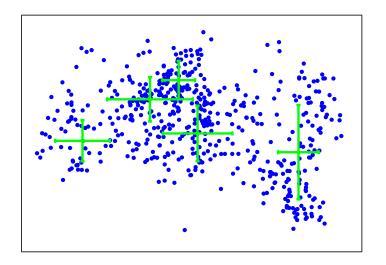
5-Component GMM; Starting Point A



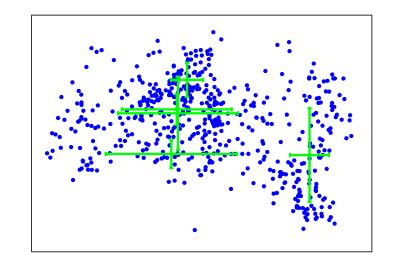
90/113

89/113

5-Component GMM; Starting Point B



5-Component GMM; Starting Point C



Solutions With Infinite Likelihood

• Consider log likelihood; two-component 1d Gaussian.

$$\sum_{i=1}^{N} \ln \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} \ e^{-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}} + p_2 \frac{1}{\sqrt{2\pi}\sigma_2} \ e^{-\frac{(x_i - \mu_2)^2}{2\sigma_2^2}} \right)$$

• If $\mu_1 = x_1$, above reduces to

$$\ln\left(\frac{1}{2\sqrt{2\pi}\sigma_{1}}+\frac{1}{2\sqrt{2\pi}\sigma_{2}}e^{\frac{1}{2}\frac{(x_{1}-\mu_{2})^{2}}{\sigma_{2}^{2}}}\right)+\sum_{i=2}^{N}..$$

which goes to ∞ as $\sigma_1 \rightarrow 0$.

- Only consider finite local maxima of likelihood function.
 - Variance flooring.
 - Throw away Gaussians with "count" below threshold.

93/113

References

- S. Chen and P.S. Gopalakrishnan, "Clustering via the Bayesian Information Criterion with Applications in Speech Recognition", ICASSP, vol. 2, pp. 645–648, 1998.
- A.P. Dempster, N.M. Laird, D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm", Journal of the Royal Stat. Society. Series B, vol. 39, no. 1, 1977.
- R. Neal, G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants", *Learning in Graphical Models*, MIT Press, pp. 355–368, 1999.

Recap

- GMM's are effective for modeling arbitrary distributions.
 - State-of-the-art in ASR for decades.
- The EM algorithm is primary tool for training GMM's.
 - Very sensitive to starting point.
 - Initializing GMM's is an art.

94/113

Where Are We: The Big Picture

• Given test sample, find nearest training sample.

 $w^* = \operatorname*{arg\,min}_{w \in ext{vocab}} \operatorname{distance}(A'_{ ext{test}}, A'_w)$

- Total distance between training and test sample ...
 - Is sum of distances between aligned frames.

distance
$$_{\tau_x,\tau_y}(X,Y) = \sum_{t=1}^{T} \text{framedist}(x_{\tau_x(t)},y_{\tau_y(t)})$$

• Goal: move from *ad hoc* distances to probabilities.

Gaussian Mixture Models

- Assume many training templates for each word.
 - Calc distance between set of training frames ...
 - And test frame.

framedist($(x_1, x_2, \ldots, x_D); y$)

• Idea: use x_1, x_2, \ldots, x_D to train GMM: P(x).

framedist($(x_1, x_2, \ldots, x_D); y) \Rightarrow -\log P(y)$!

What's Next: Hidden Markov Models

- Replace DTW with probabilistic counterpart.
- Together, GMM's and HMM's comprise
 - Unified probabilistic framework.
- Old paradigm:

$$w^* = \operatorname*{arg\,min}_{w \in ext{vocab}} \operatorname{distance}(A'_{ ext{test}}, A'_w)$$

• New paradigm:

$$w^* = \operatorname*{arg\,max}_{w \in \mathrm{vocab}} P(A'_{\mathrm{test}} | w)$$

97/113

Part III

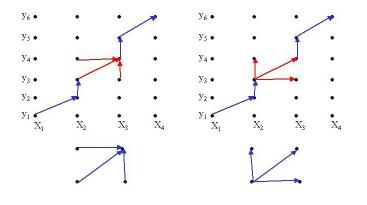
Introduction to Hidden Markov Models

Introduction to Hidden Markov Models

- The issue of weights in DTW.
- Interpretation of DTW grid as Directed Graph.
- Adding Transition and Output Probabilities to the Graph gives us an HMM!
- The three main HMM operations.

Another Issue with Dynamic Time Warping

- Weights are completely heuristic!
- Maybe we can learn weights from data?
- Take many utterances ...



101/113

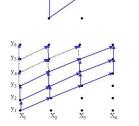
Learning Weights From Data

- For each node in DP path, count number of times move up ↑ right → and diagonally ∠.
- Normalize number of times each direction taken by total number of times node was actually visited.
- Take some constant times reciprocal as weight.
- Example: particular node visited 100 times.
 - Move \nearrow 50 times; \rightarrow 25 times; \uparrow 50 times.
 - Set weights to 2, 4, and 4, respectively (or 1, 2, and 2).
- Point: weight distribution should reflect ...
 - Which directions are taken more frequently at a node.
- Weight estimation not addressed in DTW
 - But central part of *Hidden Markov models*.

102/113

DTW and Directed Graphs

• Take following Dynamic Time Warping setup:

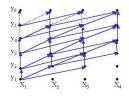


• Let's look at representation of this as directed graph:

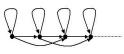
$\overline{\sqrt{\sqrt{\sqrt{2}}}}$

DTW and Directed Graphs

• Another common DTW structure:



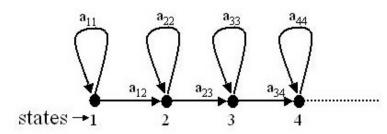
• As a directed graph:



- Can represent even more complex DTW structures ...
 - Resultant directed graphs can get quite bizarre.

Path Probabilities

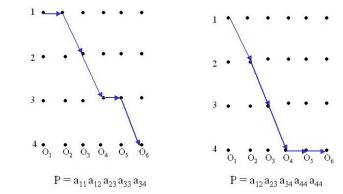
• Let's assign probabilities to transitions in directed graph:



- a_{ij} is transition probability going from state *i* to state *j*, where $\sum_{i} a_{ij} = 1$.
- Can compute probability *P* of individual path just using transition probabilities *a*_{*ij*}.

Path Probabilities

• It is common to reorient typical DTW pictures:



- Above only describes path probabilities associated with transitions.
- Also need to include likelihoods associated with *observations*.

105/113

Path Probabilities

• As in GMM discussion, let us define likelihood of producing observation *x_i* from state *j* as

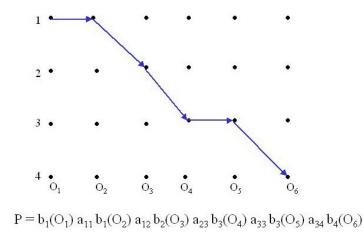
$$b_j(x_i) = \sum_m c_{jm} rac{1}{(2\pi)^{d/2} |\Sigma_{jm}|^{1/2}} \ e^{-rac{1}{2} (\mathbf{x_i} - \mu_{jm})^T \mathbf{\Sigma}_{jm}^{-1} (\mathbf{x_i} - \mu_{jm})^T}$$

where c_{jm} are mixture weights associated with state *j*.

• This state likelihood is also called the *output probability* associated with state.

Path Probabilities

• In this case, likelihood of entire path can be written as:



Hidden Markov Models

- The output and transition probabilities define a *Hidden Markov Model* or *HMM*.
 - Since probabilities of moving from state to state only depend on current and previous state, model is Markov.
 - Since only see observations and have to infer states after the fact, model is *hidden*.
- One may consider HMM to be *generative* model of speech.
 - Starting at upper left corner of trellis, generate observations according to permissible transitions and output probabilities.
- Not only can compute likelihood of single path
 - Can compute overall likelihood of observation string
 - As sum over *all* paths in trellis.

HMM: The Three Main Tasks

Sample Project List

- Compute likelihood of generating string of observations from HMM (*Forward* algorithm).
- Compute best path from HMM (*Viterbi* algorithm).
- Learn parameters (output and transition probabilities) of HMM from data (*Baum-Welch* a.k.a. *Forward-Backward* algorithm).

109/113

110/113

Part IV

Epilogue

Course Feedback

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?
- What is the chance you will do a non-reading project? If nonzero, what type of project appeals most to you right now? (Doesn't have to be on list.)