Lecture 3 @ Feedback (2+ votes):
e Too fast (pace/content/talking): many.
Gaussian Mixture Models and Introduction to HMM’s e More details/explanation of formulae: 5.

e More examples + explanation: 4.

e Talk more about labs: 2.

e Earlier break or more breaks: 2

e (Provide extra readings for people w/o DSP.)

@ Will try to address most of these today.

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Vorktown Foronts Now vork 0o o Muddiest topic: DTW (4), LPC (3), DSP (2), deltas (1).
{picheny,bhuvana, stanchen}@us. ibm.com @ Lab 1 due Wednesday, October 3rd at 6pm.
e Should have received username and password.
24 September 2012 o Courseworks discussion has been started.
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Where Are We? DTW Revisited

@ Can extract features over time (LPC, MFCC, PLP) that ...
o Characterize info in speech signal in compact form. w* = arg min distance(Ag, Ay)
e Every ~10 ms, process window of samples ... wevocab
e To get ~40 features.

@ DTW computes distance between feature vectors ... @ Training: collect audio A,, for each word w in vocab.
e While accounting for nonlinear time alignment. o Generate features = A, (femplate for w).
@ Learned basic concepts (e.g., distances, shortest paths) ... @ Test time: given audio Ast, convert to Aj.g.
e That will reappear throughout course. e For each w, compute distance(A, A,) using DTW.

o Return w with smallest distance.
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What are Pros and Cons of DTW?

@ Easy to implement.
@ Lots of freedom — can model arbitrary time warpings.
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Cons: It's Ad Hoc Cons (cont'd)

@ Distance measures completely heuristic. @ Doesn'’t scale well?

e Why Euclidean? e Run DTW for each template in training data.

e Weight all dimensions of feature vector equally? e What if large vocabulary? Lots of templates per word?
@ Warping paths heuristic. @ Generalization.

e Too much freedom not good for robustness? e Doesn’t support mix and match between templates.

e Allowable local paths hand-derived.
@ No guarantees of optimality or convergence.
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Can We Do Better? Next Two Main Topics

@ Key insight 1: Learn as much as possible from data. @ Gaussian Mixture models (today) — A probabilistic model
e e.g., distance measure; graph weights; graph of ...
structure? e Feature vectors associated with a speech sound.
@ Key insight 2: Use probabilistic modeling. e Principled distance between test frame ...
o Use well-described theories and models from ... o And set of template frames.
° Probabi"ty, statistics, and computer science . .. @ Hidden Markov models (next week) — A probabilistic model
e Rather than arbitrary heuristics with ill-defined of ...
properties. e Time evolution of feature vectors for a speech sound.

e Principled generalization of DTW.
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Part | The Scenario
_ e _ @ Given alignment between training feats X, test feats Y.
Gaussian Distributions e Warping functions 7,(t), 7,(t), t=1,..., T.

e i.e., time 7,(t) in X aligns with time 7,(t) in Y.
@ Total distance is sum of distance between aligned vectors.

.
distance-, -, (X, Y) = > _framedist(X., ), ¥+, ()

t=1
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Problem Formulation

@ Computing frame distance for pair of frames is easy. @ What if instead of one training sample, have many?
framedist(x-, 1), ¥r, (1)) framedist((X; | (1, X2 (0 Xoa(ty: - - )i Yoy ()
@ Imagine 2d feature vectors instead of 40d for visualization.
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Probabilstic Modeling

@ Average training samples; compute Euclidean distance. @ Old paradigm:
@ Find best match over all training samples. o o
@ Make probabilistic model of training samples. w* = arg min distance (Al Ay)
wevoca
@ New paradigm:
® w* = argmin — log P(Ajest| W)
® wevocab
°
®e o o P(A|w)is (relative) frequency with which w ...
°%, .° o e Is realized as feature vector A'.
&
PY [
® e ® °
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Why Probabilistic Modeling? Why Probabilistic Modeling?

@ If can estimate P(A’|w) perfectly ... @ In limit of infinite data, ...

e Can perform classification optimally! e Can estimate probabilities perfectly (consistency).
@ e.g., two-class classification (w/ classes equally frequent) @ In real world situations (e.g., sparse data) . ..

o Choose yes iff P(Alyq|yes) > P(Ai|N0). e No guarantees.

e This is best you can do! e Still, better to follow principles imperfectly ...

e Than to not have principles at all.
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Where Are We? Problem Formulation, Two Dimensions

@ Estimate P(x1, x2), the “frequency” ...
e That training sample occurs at location (X, X2).

6 Gaussians in One Dimension

2%
.~ o..o
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Let’s Start With One Dimension The Gaussian or Normal Distribution

@ Estimate P(x), the “frequency” ...

e That training sample occurs at location x.
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Visualization

@ Density function:

w—40 u—20

@ Sample from distribution:

i+ 20

i+ 4o

w—40 u—20

=

W+ 20

i+ 4o
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1
P, o(x) = N(u,02) = e 2t

210

@ Parametric distribution with two parameters:

e 1 = mean (the center of the data).
e o2 = variance (how wide data is spread).
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Properties of Gaussian Distributions

@ Is valid distribution.

o 1 _(x=w)?
/ e 22 dx=1
—00

270

@ Central Limit Theorem: Sums of large numbers of
identically distributed random variables tend to Gaussian.

e Lots of different types of data look “bell-shaped”.

@ Sums and differences of Gaussian random variables . ..
e Are Gaussian.

e If X is distributed as N'(u, 02?) ...
o aX + bis distributed as N (au + b, (ac)?).

@ Negative log looks like weighted Euclidean distance!

Inv2ro + (x = )’

202
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Where Are We? Gaussians in Two Dimensions

1 1 (x1—n1)? _ 2mq% + (xp— 1)
2(1-r2) o2 o102 o2

N (1, po, 02,08) = e
Utz 1 0) = T

e Gaussians in Multiple Dimensions

@ If r =0, simplifies to

1 7(X1*l;1 )2 1 _ (o—np)?
e 201

e =N(u, 0N (uz, 03
/_27m1 /_27r02 (11, 07N (2, 03)

e i.e., like generating each dimension independently.
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Example: r =0, o1 = o> Example: r =0, o1 # o>

@ X, Xo uncorrelated. @ X, Xo can be uncorrelated and have unequal variance.
e Knowing x; tells you nothing about xs.
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Example: r > 0, g1 # 0> Generalizing to More Dimensions

@ Xy, Xo correlated. @ If we write following matrix:
e Knowing x; tells you something about x..

0'12 roioo
roqoo 0'%

then another way to write two-dimensional Gaussian is:

. 1
N 2) = ez

e 2 (x—m) T (x-p)
where x = (X1 , Xg), H = (/M,,Ug).

@ More generally, u and X can have arbitrary numbers of
components.

e Multivariate Gaussians.
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Diagonal and Full Covariance Gaussians Computing Gaussian Log Likelihoods

@ Let’s say have 40d feature vector. @ Why /og likelihoods?
e How many parameters in covariance matrix X? @ Full covariance:
e The more parameters, ... . d ’ 1
o The more data you need to estimate them. logP(x) = —=In(27) — = In|X| — =(x — ) "= (x — p)
. 2 2 2
@ In ASR, usually assume X is diagonal = d params.
o This is why like having uncorrelated features! @ Diagonal covariance:
@ (Research direction: is there something in between?) d
IogP(x):——In (2r) — Zlna,—é — uj)?/o?

e Again, note similarity to weighted Euclidean distance.
e Terms on left independent of x; precompute.
o A few multiplies/adds per dimension.
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Where Are We? Estimating Gaussians

@ Give training data, how to choose parameters p, £?
@ Find parameters so that resulting distribution ...

e “Matches” data as well as possible.
@ Sample data: height, weight of baseball players.

300 T T T T

e Estimating Gaussians From Data

260

220

180

140

33/113 34/113

Maximum-Likelihood Estimation (Univariate) Why Maximum-Likelihood Estimation?

@ One criterion: data “matches” distribution well .. . @ Assume we have “correct” model form.
o If distribution assigns high likelihood to data. @ Then, in presence of infinite training samples . . .
@ Likelihood of string of observations xi, X, ..., Xy IS ... e ML estimates approach “true” parameter values.
e Product of individual Iikelihoods e For most models, MLE is asymptotically consistent,
(Xl_fu)z unbiased, and efficient.

202

@ ML estimation is easy for many types of models.
e Count and normalize!

X', o) H
i=1

@ Maximum likelihood estimation: choose i, o
e That maximizes likelihood of training data.

(1, 0)me = argmax L(x{'|u, o)
1,0

2o
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What is ML Estimate for Gaussians? What is ML Estimate for Gaussians?

@ Much easier to work with log likelihood L = In L: @ Multivariate case.

L(X1’V|u,0) —N|n2’/TU ——Z .
@ Take partial derivatives w.r.t. u, o -
- L T(y.
OL(x|p, o) _ EN: (X — ) =5 ;(X/ p) (x; — )
o o?

= @ What if diagonal covariance?

N o 2
oxp,o) N +y i — ) o Estimate params for each dimension independently.
o2 2072

@ Set equal to zero; solve for i, o?

N
:%;x, o = 53 06— P
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Example: ML Estimation Example: ML Estimation

@ Heights (in.) and weights (Ib.) of 1033 pro baseball players.
e Noise added to hide discretization effects. 300 . ; — ;
@ ~stanchen/e6870/data/mlb_data.dat

260 |
height | weight
74.34 | 181.29 990 |
73.92 | 213.79
72.01 | 209.52 180 |
72.28 | 209.02
72.98 | 188.42
69.41 | 176.02 140

68.78 | 210.28
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Example: Diagonal Covariance Example: Diagonal Covariance

1

i = 1533 (7434 + 7892 +72.01 +-+) = 7371
[z = 10%(181 29 +213.79 + 209.52 + - --) = 201.69
0% = 10133 [(74.34 — 73.71)% + (73.92 — 73.71)? + - - )]
— 5.43
02 = 1033 [(181.29 — 201.69) + (213.79 — 201.69)* + - - - )]

= 440.62
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Example: Full Covariance

@ Mean; diagonal elements of covariance matrix the same.
2= 2o

1
~ 1033

(73.92 — 73.71) x (213.79 — 201.69) + - - - )]

(74.34 — 73.71) x (181.29 — 201.69)+

=25.43

p=1[7371 201.69 |

543 2543

X =109543 44062
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300

260

220

180

140

Example: Full Covariance

300

260

220

180

140
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Part Il

Recap: Gaussians
@ Lots of data “looks” Gaussian. _ _
e Central limit theorem. Gaussian Mixture Models

@ ML estimation of Gaussians is easy.
e Count and normalize.
@ In ASR, mostly use diagonal covariance Gaussians.
e Full covariance matrices have too many parameters.
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Problems with Gaussian Assumption Problems with Gaussian Assumption

@ Sample from MLE Gaussian trained on data on last slide.
@ Not all data is Gaussian!
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Problems with Gaussian Assumption Gaussian Mixture Models (GMM’s)

@ More generally, can use arbitrary number of Gaussians:

1 1 Ty~
~Yp o) TE ()
J

where >, p;=1and all p; > 0.
@ Also called mixture of Gaussians.

@ Can approximate any distribution of interest pretty well ...
e If just use enough component Gaussians.

@ What can we do? What about two Gaussians?
P(x) = p1 x N(p4, E1) + p2 x N(pp, X2)
where p; + po = 1.
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Example: Some Real Acoustic Data Example: 10-component GMM (Sample)
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Example: 10-component GMM (u’s, o’s) ML Estimation For GMM’s

@ Given training data, how to estimate parameters ...
o ie.,the pu;, ¥;, and mixture weights p; ...
e To maximize likelihood of data?

@ No closed-form solution.
e Can't just count and normalize.

@ Instead, must use an optimization technique ...

e To find good local optimum in likelihood.
e Gradient search
e Newton’s method

@ Tool of choice: The Expectation-Maximization Algorithm.
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Where Are We? Wake Up!

@ This is another key thing to remember from course.
@ Used to train GMM’s, HMM’s, and lots of other things.
@ Key paper in 1977 by Dempster, Laird, and Rubin [2].

6 The Expectation-Maximization Algorithm
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What Does The EM Algorithm Do? What is a Hidden Variable?

@ Finds ML parameter estimates for models . ..
e With hidden variables.
@ lterative hill-climbing method.

e Adjusts parameter estimates in each iteration ...
e Such that likelihood of data . ..
e Increases (weakly) with each iteration.

@ Actually, finds local optimum for parameters in likelihood.
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Mixtures and Hidden Variables

@ Consider probability that is mixture of probs, e.g., a GMM:
Z p/ l'l'_p

@ Can be viewed as hidden model.
e h < Which component generated sample.

o P(h) = pj; P(x|h) = N(u,-, x)).

ZP P(x|h)
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The Basic Idea

@ A random variable that isn’t observed.
@ Example: in GMMSs, output prob depends on ...

e The mixture component that generated the observation
e But you can’t observe it

@ So, to compute prob of observed x, need to sum over ...
e All possible values of hidden variable h:

=> P(h,x) = ZP P(x|h)
h
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@ If nail down “hidden” value for each x;, ...

e Model is no longer hidden!
e e.g., data partitioned among GMM components.

@ So for each data point x;, assign single hidden value h;.

o Take h; = argmax, P(h)P(x;|h).

e e.g., identify GMM component generating each point.
@ Easy to train parameters in non-hidden models.

e Update parameters in P(h), P(x|h).

e e.g., count and normalize to get MLE for p;, Z;, pj.
@ Repeat!

60/113



The Basic Idea The Basic Idea

@ Hard decision: @ Initialize parameter values somehow.

e For each x;, assign single h; = argmax, P(h, x;) ... @ For each iteration ...

o With count 1. @ Expectation step: compute posterior (count) of h for each x;.
@ Soft decision:

. [® P(h7 X/)

o For each x;, compute for every h ... P(h|x) = ==

o the Posterior prob P(h|x;) = <5k > P(h,x)

o Also called the *fractional count” @ Maximization step: update parameters.

e e.g., partition event across every GMM component.

_ e Instead of data x; with hidden h, pretend ...
@ Rest of algorithm unchanged. o Non-hidden data where . ..
o (Fractional) count of each (h, x;) is P(h|x;).
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Example: Training a 2-component GMM The E Step

@ Two com!r)onent univariate GMM; 10 data points. X o Ni m-Nal PO) [P(x) P@x)
© The data: xi,..., 1o 8.4 0.0000 0.0749 | 0.0749 | 0.000 1.000
23'117 77'(57 11'227 22'(37 55' 1 , zl‘()7 77‘637 :3‘()’ £1‘€37 55.53 7’.65 ().()()():3 (). 1 GSESES (). 1 ES(SS) ().()():2 ().535953

4.2 | 0.1955 0.0040 | 0.1995 | 0.980 0.020

@ Initial parameter values: 2.6 | 0.0749 0.0000 | 0.0749 | 1.000 0.000
5 5 5.110.1089 0.0328 | 0.1417 | 0.769 0.231

Pr i 01| P2 H2 03 4.0 0.1995 0.0022 | 0.2017 | 0.989 0.011

05 4 1]05 7 1 7.8 0.0001 0.1448 | 0.1450 | 0.001 0.999

@ Training data; densities of initial Gaussians. 3.0 1 0.1210 0.0001 | 0.1211 | 0.999  0.001
4.8 | 0.1448 0.0177 | 0.1626 | 0.891 0.109

5.8 1 0.0395 0.0971 | 0.1366 | 0.289 0.711

e T o PULX)  pa-
PUOX) = < Bihx) = POG)
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The M Step The M Step (cont’d)

@ View: have non-hidden corpus for each component GMM. @ What about the mixture weights p,?
o For hth component, have P(h|x;) counts for event x;. o To find MLE, count and normalize!
@ Estimating p: fractional events.
0.000 + 0.002 + 0.980 + - - -
[ 1 zN:x = u L EN:IND(MX)X P = 10 =059
= i h= = i) Xi
N i—1 Zi P(h|Xi) i—1

1

1= 5.000 +0.002 + 0.980 + -
(0.000 x 8.4+ 0.002 x 7.6 +0.980 x 4.2+ ---)

=3.98

@ Similarly, can estimate o2 with fractional events.
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The End Result First Few lterations of EM

P P iter 0

iter P 14 01 P2 M2 5
0 |[0.50 4.00 1.00 | 0.50 7.00 1.00 o

1 1059 398 092|041 7.29 1.29 e we el e b a—
2 1062 403 097038 741 112
3 |064 408 1.00|0.36 7.54 0.88
10 | 0.70 422 113030 7.93 0.12 iter 1

iter 2
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Later lterations of EM Why the EM Algorithm Works [3]

@ X = (X1, X2, ...) = whole training set; h = hidden.
@ 0 = parameters of model.
e - @ Objective function for MLE: (log) likelihood.

L(0) = log P(x|8) = log > _ P(h,x|6)
h

iter 2

iter 3
@ Alternate objective function
— = o Will show maximizing this equivalent to above
F(P,6) = L(6) — D(P || Po)
iter 10

o Py(h|x) = posterior over hidden.
e P(h) = distribution over hidden to be optimized ...
e D(- | -) = Kullback-Leibler divergence.
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Why the EM Algorithm Works The E Step

F(P,8) = L(6) — D(P || Py) F(P,6) = L(6) — D(P || Py)

@ Properties of KL divergence.
@ Outline of proof: ) o Nonnegative; and zero iff P = P,.
e Show that both E Step and M Step impl’ove F(P, 0) @ What is best choice for P(h)?

o Will follow that likelihood L(@) improves as well. o Compute the current posterior Po(h|x).

o Set P(h) equal to this posterior.
@ Since L() is not function of P ...
o F(P,6) can only improve in E step.
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The M Step The M Step (cont’d)

@ Lemma: N N

N N F(P,0) = Egllog P(h,x|6)] + H(P

F(P,8) = Ez[log P(h,x|0)] + H(P) (7,6) = Epllog P, x|6)] + H(F)

@ Proof: @ E3[---] =log likelihood of non-hidden corpus ...
= > o Where each h gets P(h) counts.

F(P,0) = L(6) — D(P || Ps) . S

F"(h) @ H(P) = entropy of distribution P(h).

— log P(x|6) — Z P(h)log =——"—
(hix,6) @ What do we do in M step?
B P(h)P(x|6) e Pick 8 to maximize term on left
= log P(x|6) — ZP P(h, x|0) o Note this is just MLE of non-hidden corpus ...
e Since we chose an estimate for h from the E step.

- Z P(h)log P(h, x|6) — Z P(h)log P(h) @ Since H(P) is not function of 9 ...

_ EP[Iog P(h,x|8)] + H(P) e F(P,0) can only improve in M step.
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Why the EM Algorithm Works

@ Observation: F(P,8) = L(0) after E step (set P = Py). @ EM algorithm is elegant and general way to ...
. . e Train parameters in hidden models ...
F(P,0) = L(6) — D(P || Po) o To optimize likelihood.
e If F(P,6) improves with each iteration ... ® Only finds local optimum.
o And F(P,6) = L(6) after each E step ... e Seeding is of paramount importance.
e L(0) improves after each iteration. @ Generalized EM algorithm.

F(P, 6) just needs to improve some in each step.
i.e., P(h) in E step need not be exact posterior.
i.e., 8 in M step need not be ML estimate.

e.g., can optimize Viterbi likelihood.

@ There you go!
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Where Are We? Another Example Data Set

e Applying the EM Algorithm to GMM'’s
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Question: How Many Gaussians? The Bayesian Information Criterion

@ Method 1 (most common): Guess! @ View GMM as way of coding data for transmission.

@ Method 2: Bayesian Information Criterion (BIC)[1]. o Cost of transmitting model < number of params.

o Penalize likelihood by number of parameters. o Cost of transmitting data <> log likelihood of data.
@ Choose number of Gaussians to minimize cost.

k s
1 1 (a) Data of ER-3 (b) Data of KD-3
BIC(Ck) = Z{—En, log |%[} — Nk(d + 5d(d + 1))

j=1

e k = Gaussian components.
e d = dimension of feature vector.
e n; = data points for Gaussian j; N = total data points.

Figure 1. Different degrees of complexity in phone ER-3 and

KD-3
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Question: How To Initialize Parameters?

@ Set mixture weights p; to 1/k (for k Gaussians).
@ Pick N data points at random and ...
o Use them to seed initial values of ;.
@ Set all o’s to arbitrary value . ..
e Or to global variance of data.
@ Extension: generate multiple starting points.
e Pick one with highest likelihood.
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Question: How Long To Train?

@ i.e., how many iterations of EM?
@ Guess.
@ Look at performance on training data.

e Stop when change in log likelihood per event . ..
e Is below fixed threshold.

@ Look at performance on held-out data.
e Stop when performance no longer improves.
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Another Way: Splitting

@ Start with single Gaussian, MLE.
@ Repeat until hit desired number of Gaussians:

e Double number of Gaussians by perturbing means ...
e Of existing Gaussians by +e.
e Run several iterations of EM.
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The Data Set
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Sample From Best 1-Component GMM The Data Set, Again
N

o o Iy :\'.:.‘.O'o * 88 3
o, ° R0 '.'.::“... .o'so' . : .'"
20-Component GMM Trained on Data 20-Component GMM y’s, o’s
° ) ° v .
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Acoustic Feature Data Set 5-Component GMM; Starting Point A
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5-Component GMM; Starting Point B 5-Component GMM; Starting Point C
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Solutions With Infinite Likelinood

@ Consider log likelihood; two-component 1d Gaussian. @ GMM’s are effective for modeling arbitrary distributions.
(x,-—wz 1 . e State-of-the-art in ASR for decades.
Z In <p1 2t 4 po e‘zo§> @ The EM algorithm is primary tool for training GMM’s.
Voo 1 2mop o Very sensitive to starting point.

e Initializing GMM’s is an art.
@ If 41 = x4, above reduces to

1 L A T
n + e + -
2V 2mo1 2V 2moo ;

which goes to oo as oy — 0.
@ Only consider finite local maxima of likelihood function.

e Variance flooring.
e Throw away Gaussians with “count” below threshold.
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Where Are We: The Big Pioture

[@ S.Chen and P.S. Gopalakrishnan, “Clustering via the @ Given test sample, find nearest training sample.
Bayesian Information Criterion with Applications in Speech . oo , ,
Recognition”, ICASSP, vol. 2, pp. 645-648, 1998. w" = argmindistance(Aeq, Ay)

[§ A.P. Dempster, N.M. Laird, D.B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm”, Journal of the
Royal Stat. Society. Series B, vol. 39, no. 1, 1977.

R R. Neal, G. Hinton, “A view of the EM algorithm that justifies distance., ., (X, Y) = > _ framedist(x.,.. ¥+ (1)
incremental, sparse, and other variants”, Learning in t=1
Graphical Models, MIT Press, pp. 355-368, 1999. @ Goal: move from ad hoc distances to probabilities.

@ Total distance between training and test sample ...
e Is sum of distances between aligned frames.
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Gaussian Mixture Models What’s Next: Hidden Markov Models

@ Assume many training templates for each word. @ Replace DTW with probabilistic counterpart.
e Calc distance between set of training frames ... @ Together, GMM’s and HMM’s comprise ...
o And test frame. o Unified probabilistic framework.
framedist((x1, X2, ..., Xp); ¥) @ Old paradigm:

o | : i MM: P(x). % P
dea: use Xi, Xo,...,Xp totrain G (x) w* = arg mindistance(A.,, A, )

wevocab
framedist((xy, Xz, ..., Xp); ¥) = —log P(y) !
@ New paradigm:

/

w* = argmax P(Ai.s|W)
wevocab
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Part Il Introduction to Hidden Markov Models
. . @ The issue of weights in DTW.
Introduction to Hidden Markov Models @ Interpretation of DTW grid as Directed Graph.

@ Adding Transition and Output Probabilities to the Graph
gives us an HMM!

@ The three main HMM operations.
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Another Issue with Dynamic Time Warping Learning Weights From Data

@ Weights are completely heuristic! @ For each node in DP path, count number of times move up
@ Maybe we can learn weights from data? T right — and diagonally .
@ Take many utterances ... @ Normalize number of times each direction taken by total

number of times node was actually visited.
@ Take some constant times reciprocal as weight.
@ Example: particular node visited 100 times.

e Move 50 times; — 25 times; 1 50 times.
e Set weights to 2, 4, and 4, respectively (or 1, 2, and 2).

@ Point: weight distribution should reflect . ..

e Which directions are taken more frequently at a node.
@ Weight estimation not addressed in DTW ...

e But central part of Hidden Markov models.
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DTW and Directed Graphs DTW and Directed Graphs

@ Take following Dynamic Time Warping setup: @ Another common DTW structure:

@ As a directed graph:

AR

@ Can represent even more complex DTW structures ...
e Resultant directed graphs can get quite bizarre.
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Path Probabilities Path Probabilities

@ Let’s assign probabilities to transitions in directed graph: @ Itis common to reorient typical DTW pictures:
344 1
Q .................... .
states —1 4

-* -* -* - 4
0, 0, 0, 0, O 0O L e s

@ g; is transition probability going from state / to state j,

where Zj aj = 1. P=ajapanaz;ay P=apaaa,,a,
@ Can compute probability P of individual path just using @ Above only describes path probabilities associated with

transition probabilities a;. transitions.

@ Also need to include likelihoods associated with
observations.
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Path Probabilities Path Probabilities

@ As in GMM discussion, let us define likelihood of producing @ In this case, likelihood of entire path can be written as:

observation x; from state j as

7l(xi7 ,m)Tz;: (xif 'm)
chm d/2|z e e 2 Hml S i
where ¢, are mixture weights associated with state j.

@ This state likelihood is also called the output probability
associated with state. 3

P=10,(07) a;,b4(0;) a1, by(O3) az3b5(0y) a3 by(O5) a3y by(Oy)
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Hidden Markov Models HMM: The Three Main Tasks

@ The output and transition probabilities define a Hidden @ Compute likelihood of generating string of observations
Markov Model or HMM. from HMM (Forward algorithm).
e Since probabilities of moving from state to state only @ Compute best path from HMM ( Viterbi algorithm).
depend on current and previous state, model is Markov. @ Learn parameters (output and transition probabilities) of
e Since only see observations and have to infer states HMM from data (Baum-Welch a.k.a. Forward-Backward
after the fact, model is hidden. algorithm).

@ One may consider HMM to be generative model of speech.

e Starting at upper left corner of trellis, generate
observations according to permissible transitions and
output probabilities.

@ Not only can compute likelihood of single path . ..

e Can compute overall likelihood of observation string ...
e As sum over all paths in trellis.
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Part IV Sample Project List

Epilogue
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Course Feedback

@ Was this lecture mostly clear or unclear? What was the
muddiest topic?

@ Other feedback (pace, content, atmosphere)?

© What is the chance you will do a non-reading project? If
nonzero, what type of project appeals most to you right
now? (Doesn’t have to be on list.)
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