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Introduction
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What Is Speech Recognition?

Converting speech to text (STT).
a.k.a. automatic speech recognition (ASR).

What it’s not.
Natural language understanding — e.g., Siri.
Speech synthesis — converting text to speech (TTS),
e.g., Watson.
Speaker recognition — identifying who is speaking.
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Why Is Speech Recognition Important?

Demo.

4 / 96



Because It’s Fast

modality method rate (words/min)
sound speech 150–200
sight sign language; gestures 100–150
touch typing; mousing 60
taste covering self in food <1
smell not showering <1
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Other Reasons

Requires no specialized training to do fast.
Hands-free.
Speech-enabled devices are everywhere.

Phones, smart or dumb.
Access to phone > access to internet.

Text is easier to process than audio.
Storage/compression; indexing; human consumption.
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Key Applications

Transcription: archiving/indexing audio.
Legal; medical; television and movies.
Call centers.

Whenever you interact with a computer . . .
Without sitting in front of one.
e.g., smart or dumb phone; car; home entertainment.

Accessibility.
People who can’t type, or type slowly.
The hard of hearing.
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Why Study Speech Recognition?

Real-world problem.
Potential market: ginormous.

Hasn’t been solved yet.
Not too easy; not too hard (e.g., vision).

Lots of data.
One of first learning problems of this scale.

Connections to other problems with sequence data.
Machine translation, bioinformatics, OCR, etc.
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Where Are We?

1 Course Overview

2 A Brief History of Speech Recognition

3 Building a Speech Recognizer: The Basic Idea

4 Speech Production and Perception
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Who Are We?

Michael Picheny: Sr. Manager, Speech and Language.
Bhuvana Ramabhadran: Manager, Acoustic Modeling.
Stanley F. Chen: Regular guy.
IBM T.J. Watson Research Center, Yorktown Heights, NY.
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Why Three Professors?

Too much knowledge to fit in one brain.
Signal processing.
Probability and statistics.
Phonetics; linguistics.
Natural language processing.
Machine learning; artificial intelligence.
Automata theory.
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How To Contact Us

In E-mail, prefix subject line with “EECS E6870:”!!!.
Michael Picheny — picheny@us.ibm.com.
Bhuvana Ramabhadran — bhuvana@us.ibm.com.
Stanley F. Chen — stanchen@us.ibm.com.

Office hours: right after class.
Before class by appointment.

TA: Xiao-Ming Wu — xw2223@columbia.edu.
Courseworks.

For posting questions about labs.
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Course Outline

week topic assigned due
1 Introduction
2 Signal processing; DTW lab 1
3 Gaussian mixture models
4 Hidden Markov models lab 2 lab 1
5 Language modeling
6 Pronunciation modeling lab 3 lab 2
7 Finite-state transducers
8 Search lab 4 lab 3
9 Robustness; adaptation
10 Discrim. training; ROVER project lab 4
11 Advanced language modeling
12 Neural networks; DBN’s.
13 Project presentations project
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Programming Assignments

80% of grade (
√
−,
√

,
√

+ grading).
Some short written questions.
Write key parts of basic large vocabulary continuous
speech recognition system.

Only the “fun” parts.
C++ code infrastructure provided by us.
Also accessible from Java (via SWIG).

Get account on ILAB computer cluster (x86 Linux PC’s).
Complete the survey.

Labs due at Wednesday 6pm.
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Final Project

20% of grade.
Option 1: Reading project (individual).

Pick paper(s) from provided list, or propose your own.
Give 10-minute presentation summarizing paper(s).

Option 2: Programming/experimental project (group).
Pick project from provided list, or propose your own.
Give 10-minute presentation summarizing project.
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Readings

PDF versions of readings will be available on the web site.
Recommended text:

Speech Synthesis and Recognition, Holmes, 2nd
edition (paperback, 256 pp., 2001) [Holmes].

Reference texts:
Theory and Applications of Digital Signal Processing,
Rabiner, Schafer (hardcover, 1056 pp., 2010) [R+S].
Speech and Language Processing, Jurafsky, Martin
(2nd edition, hardcover, 1024 pp., 2000) [J+M].
Statistical Methods for Speech Recognition, Jelinek
(hardcover, 305 pp., 1998) [Jelinek].
Spoken Language Processing, Huang, Acero, Hon
(paperback, 1008 pp., 2001) [HAH].
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Web Site

www.ee.columbia.edu/~stanchen/fall12/e6870/

Syllabus.
Slides from lectures (PDF).

Online by 8pm the night before each lecture.
Hardcopy of slides distributed at each lecture?

Lab assignments (PDF).
Reading assignments (PDF).

Online by lecture they are assigned.
Username: speech, password: pythonrules.
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Prerequisites

Basic knowledge of probability and statistics.
Fluency in C++ or Java.
Basic knowledge of Unix or Linux.
Knowledge of digital signal processing optional.

Helpful for understanding signal processing lectures.
Not needed for labs.
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Help Us Help You

Feedback questionnaire after each lecture (2 questions).
Feedback welcome any time.

You, the student, are partially responsible . . .
For the quality of the course.

Please ask questions anytime!
EE’s may find CS parts challenging, and vice versa.
Together, we can get through this.
Let’s go!
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Where Are We?

1 Course Overview

2 A Brief History of Speech Recognition

3 Building a Speech Recognizer: The Basic Idea

4 Speech Production and Perception
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The Early Years: 1950–1960’s

Ad hoc methods.
Many key ideas introduced; not used all together.
e.g., spectral analysis; statistical training; language
modeling.

Small vocabulary.
Digits; yes/no; vowels.

Not tested with many speakers (usually <10).
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Whither Speech Recognition?

Speech recognition has glamour. Funds have been
available. Results have been less glamorous . . .

. . . General-purpose speech recognition seems far
away. Special-purpose speech recognition is severely
limited. It would seem appropriate for people to ask
themselves why they are working in the field and what
they can expect to accomplish . . .

. . . These considerations lead us to believe that a
general phonetic typewriter is simply impossible unless
the typewriter has an intelligence and a knowledge of
language comparable to those of a native speaker of
English . . .

—John Pierce, Bell Labs, 1969
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Whither Speech Recognition?

Killed ASR research at Bell Labs for many years.
Partially served as impetus for first (D)ARPA program
(1971–1976) funding ASR research.

Goal: integrate speech knowledge, linguistics, and AI
to make a breakthrough in ASR.
Large vocabulary: 1000 words.
Speed: a few times real time.
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Knowledge-Driven or Data-Driven?

Knowledge-driven.
People know stuff about speech, language,
e.g., linguistics, (acoustic) phonetics, semantics.
Hand-derived rules.
Use expert systems, AI to integrate knowledge.

Data-driven.
Ignore what we think we know.
Build dumb systems that work well if fed lots of data.
Train parameters statistically.
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The ARPA Speech Understanding Project
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The Birth of Modern ASR: 1970–1980’s

Every time I fire a linguist, the performance of the
speech recognizer goes up.

—Fred Jelinek, IBM, 1985(?)

Ignore (almost) everything we know about phonetics,
linguistics.
View speech recognition as . . . .

Finding most probable word sequence given audio.
Train probabilities automatically w/ transcribed speech.
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The Birth of Modern ASR: 1970–1980’s

Many key algorithms developed/refined.
Expectation-maximization algorithm; n-gram models;
Gaussian mixtures; Hidden Markov models; Viterbi
decoding; etc.

Computing power still catching up to algorithms.
First real-time dictation system built in 1984 (IBM).
Specialized hardware ≈ 60 MHz Pentium.
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The Golden Years: 1990’s–now

1984 now
CPU speed 60 MHz 3 GHz
training data <10h 10000h+

output distributions GMM∗ GMM
sequence modeling HMM HMM
language models n-gram n-gram

Basic algorithms have remained the same.
Bulk of performance gain due to more data, faster CPU’s.
Significant advances in adaptation, discriminative training.
New technologies (e.g., Deep Belief Networks) on the cusp
of adoption.

∗Actually, 1989.
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Not All Recognizers Are Created Equal

Speaker-dependent vs. speaker-independent.
Need enrollment or not.

Small vs. large vocabulary.
e.g., recognize digit string vs. city name.

Isolated vs. continuous.
Pause between each word or speak naturally.

Domain.
e.g., air travel reservation system vs. E-mail dictation.
e.g., read vs. spontaneous speech.
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Research Systems

Driven by government-funded evaluations (DARPA, NIST).
Different sites compete on a common test set.

Harder and harder problems over time.
Read speech: TIMIT; resource management (1kw
vocab); Wall Street Journal (20kw vocab); Broadcast
News (partially spontaneous, background music).
Spontaneous speech: air travel domain (ATIS);
Switchboard (telephone); Call Home (accented).
Meeting speech.
Many, many languages: GALE (Mandarin, Arabic).
Noisy speech: RATS (Arabic).
Spoken term detection: Babel (Cantonese, Turkish,
Pashto, Tagalog).
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Research Systems
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Man vs. Machine (Lippmann, 1997)

task machine human ratio
Connected Digits1 0.72% 0.009% 80×
Letters2 5.0% 1.6% 3×
Resource Management 3.6% 0.1% 36×
WSJ 7.2% 0.9% 8×
Switchboard 43% 4.0% 11×

For humans, one system fits all; for machine, not.
Today: Switchboard WER < 20%.

1String error rates.
2Isolated letters presented to humans; continuous for machine.
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Commercial Speech Recognition

Desktop.
1995 — Dragon, IBM release speaker-dependent
isolated-word large-vocabulary dictation systems.
Today — Dragon NaturallySpeaking: continuous-word;
no enrollment required; “up to 99% accuracy”.

Server-based; over the phone.
Late 1990’s — speaker-independent continuous-word
small-vocabulary ASR.
Today — Google Voice Search, Dragon Dictate (demo):
large-vocabulary; word error rate: top secret.
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The Bad News

Demo.
Still a long way to go.
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Where Are We?

1 Course Overview

2 A Brief History of Speech Recognition

3 Building a Speech Recognizer: The Basic Idea

4 Speech Production and Perception
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The Data-Driven Approach

Pretend we know nothing about phonetics, linguistics, . . . .
Treat ASR as just another machine learning problem.

e.g., yes/no recognition.
Person either says word yes or no.

Training data.
One or more examples of each class.

Testing.
Given new example, decide which class it is.
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What is Speech?
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e.g., turn on microphone for exactly one second.
Microphone turns instantaneous air pressure into number.
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What is (Digitized) Speech?

Discretize in time.
Sampling rate, e.g., 16000 samples/sec (Hz).

Discretize magnitude (A/D conversion).
e.g., 16-bit A/D ⇒ value ∈ [−32768, +32767].

One second audio signal A ∈ R16000.
e.g., [. . . , -0.510, -0.241, -0.007, 0.079, 0.071, . . . ].
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How Much Information Is Enough?

Regenerate audio from digital signal.
If human can still understand, enough information?

Demo.
16k samples/sec; 16-bits per sample.
2k samples/sec; 16-bits per sample.
16k samples/sec; 1-bit per sample.
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Example Training and Test Data
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A Very Simple Speech Recognizer

Audio examples Ano, Ayes, Atest ∈ R16000.
Pick class c∗ ∈ {yes, no} = vocabulary :

c∗ = arg min
c∈vocab

distance(Atest, Ac)

Which distance measure? Euclidean?

distance(Atest, Ac) =

√√√√16000∑
i=1

(Ai − Ac,i)2
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What’s the Problem?

Test set: 10 examples each of yes, no.
Error rate: 50%.

This sucks.
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The Challenge (Isolated Word ASR)

c∗ = arg min
c∈vocab

distance(Atest, Ac)

Find good representation of audio A ⇒ A′ . . .
So simple distance measure works.

Also, find good distance measure.
This turns out to be remarkably difficult!
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Why Is Speech Recognition So Hard?

There is enormous range of ways a word can be realized.
Source variation.

Volume; rate; pitch; accent; dialect; voice quality (e.g.,
gender, age); coarticulation; style (e.g., spontaneous,
read); . . .

Channel variation.
Microphone; position relative to microphone (angle +
distance); background noise; reverberation; . . .

Screwing with any of these can make accuracy go to hell.
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A Thousand Times No!
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The First Two Lectures

c∗ = arg min
c∈vocab

distance(Atest, Ac)

signal processing — Extract features from audio A ⇒ A′ . . .
That discriminate between different words.
Normalize for volume, pitch, voice quality, noise, . . . .

dynamic time warping — Handling time/rate variation in the
distance measure.
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Where Are We?

1 Course Overview

2 A Brief History of Speech Recognition

3 Building a Speech Recognizer: The Basic Idea

4 Speech Production and Perception
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Data-Driven vs. Knowledge-Driven

Don’t ignore everything we know about speech, language.

?

dumb smart

Knowledge/concepts that have proved useful.
Words; phonemes.
A little bit of human production/perception.

Knowledge/concepts that haven’t proved useful (yet).
Nouns; vowels; syllables; voice onset time; . . .
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Finding Good Features

Extract features from audio . . .
That help determine word identity.

What are good types of features?
Instantaneous air pressure at time t?
Loudness at time t?
Energy or phase for frequency ω at time t?
Estimated position of speaker’s lips at time t?

Look at human production and perception for insight.
Also, introduce some basic speech terminology.

Diagrams from [R+J], [HAH].
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Speech Production

Air comes out of lungs.
Vocal cords tensed (vibrate ⇒ voicing) or relaxed
(unvoiced).
Modulated by vocal tract (glottis → lips); resonates.

Articulators: jaw, tongue, velum, lips, mouth.
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Speech Consists Of a Few Primitive Sounds?

Phonemes.
40 to 50 for English.
Speaker/dialect differences.
e.g., do MARY, MARRY, and MERRY rhyme?
Phone: acoustic realization of a phoneme.

May be realized differently based on context.
allophones: different ways a phoneme can be realized.
e.g., P in SPIN, PIN are two different allophones of P.

spelling phonemes
SPIN S P IH N
PIN P IH N

e.g., T in BAT, BATTER; A in BAT, BAD.
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Classes of Speech Sounds

Can categorize phonemes by how they are produced.
Voicing.

e.g., F (unvoiced), V (voiced).
All vowels are voiced.

Stops/plosives.
Oral cavity blocked (e.g., lips, velum); then opened.
e.g., P, B (lips).
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Classes of Speech Sounds

Spectogram shows energy at each frequency over time.
Voiced sounds have pitch (F0); formants (F1, F2, F3).
Trained humans can do recognition on spectrograms with
high accuracy (e.g., Victor Zue).
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Classes of Speech Sounds

What can the machine do? Here is a sample on TIMIT:
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Classes of Speech Sounds

Vowels — EE, AH, etc.
Differ in locations of formants.
Dipthongs — transition between two vowels (e.g., COY,
COW).

Consonants.
Fricatives — F, V, S, Z, SH, J.
Stops/plosives — P, T, B, D, G, K.
Nasals — N, M, NG.
Semivowels (liquids, glides) — W, L, R, Y.
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Coarticulation

Realization of a phoneme can differ very much depending
on context (allophones).
Where articulators were for last phone affect how they
transition to next.

56 / 96



Speech Production and ASR

Directly use features from acoustic phonetics?
e.g., (inferred) location of articulators; voicing; formant
frequencies.
In practice, doesn’t help.

Still, influences how signal processing is done.
Source-filter model.
Separate excitation from modulation from vocal tract.
e.g., frequency of excitation can be ignored (English).
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Speech Perception and ASR

As it turns out, the features that work well . . . .
Motivated more by speech perception than production.

e.g., Mel Frequency Cepstral Coefficients (MFCC).
Motivated by human perception of pitch.
Similarly for perceptual linear prediction (PLP).
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Speech Perception — Physiology

Sound enters ear; converted to vibrations in cochlear fluid.
In fluid is basilar membrane, with ∼30,000 little hairs.

Sensitive to different frequencies (band-pass filters).
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Speech Perception — Physiology

Human physiology used as justification for frequency
analysis ubiquitous in speech processing.
Limited knowledge of higher-level processing.

Can glean insight from psychophysical experiments.
Look at relationship between physical stimuli and
psychological effects.
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Speech Perception — Psychophysics

Threshold of hearing as a function of frequency.
0 dB sound pressure level (SPL) ⇔ threshold of hearing.

+20 decibels (dB) ⇔ 10× increase in loudness.
Tells us what range of frequencies people can detect.
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Speech Perception — Psychophysics

Sensitivity of humans to different frequencies.
Equal loudness contours.

Subjects adjust volume of tone to match volume of
another tone at different pitch.

Tells us what range of frequencies may be good to focus on.
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Speech Perception — Psychophysics

Human perception of distance between frequencies.
Adjust pitch of one tone until twice/half pitch of other tone.
Mel scale — frequencies equally spaced in Mel scale are
equally spaced according to human perception.

Mel freq = 2595 log10(1 + freq/700)
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Speech Perception — Psychoacoustics

Use controlled stimuli to see what features humans use to
distinguish sounds.
Haskins Laboratories (1940’s); Pattern Playback machine.

Synthesize sound from hand-painted spectrograms.
Demonstrated importance of formants, formant transitions,
trajectories in human perception.

e.g., varying second formant alone can distinguish
between B, D, G.

www.haskins.yale.edu/featured/bdg.html
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Speech Perception — Machine

Just as human physiology has its quirks . . .
So does machine “physiology”.

Sources of distortion.
Microphone — different response based on direction
and frequency of sound.
Sampling frequency — e.g., 8 kHz sampling for
landlines throws away all frequencies above 4 kHz.
Analog/digital conversion — need to convert to digital
with sufficient precision (8–16 bits).
Lossy compression — e.g., cellular telephones, VOIP.
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Speech Perception — Machine

Input distortion can still be a significant problem.
Mismatched conditions between train/test.
Low bandwidth — telephone, cellular.
Cheap equipment — e.g., mikes in handheld devices.

Enough said.
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Segue

Now that we see what humans do.
Let’s discuss what signal processing has been found to
work well empirically.

Has been tuned over decades.
Start with some mathematical background.
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Part II

Signal Processing Basics
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Overview

Background material: how to mathematically model/analyze
human speech production and perception.

Introduction to signals and systems.
Basic properties of linear systems.
Introduction to Fourier analysis.

Next week: discussion of actual features used in ASR.
Recommended readings: [HAH] pg. 201-223, 242-245.
[R+J] pg. 69-91. All figures taken from these texts.
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Signals and Systems

Signal: a function x(t) over time (continuous or discrete).
e.g., output of A/D converter is a digital signal x [n].

0 0.5 1 1.5 2 2.5

x 104

−1

−0.5

0

0.5

A digital system (or filter ) H takes an input signal x [n] and
produces a signal y [n]:

y [n] = H(x [n])
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Speech Production
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The Source-Filter Model

Vocal tract is modeled as sequence of filters.

G(z) — glottis (low-frequency emphasis).
V (z) — vocal tract; linear filter w/ time-varying resonances.
ZL(z) — radiation from lips; high-frequency pre-emphasis.
Interspeaker variation: glottal waveform; vocal-tract length.
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Linear Time-Invariant Systems

Calculating output of H for input signal x becomes very
simple if digital system H satisfies two basic properties.
H is linear if

H(a1x1[n] + a2x2[n]) = a1H(x1[n]) + a2H(x2[n])

H is time-invariant if

y [n − n0] = H(x [n − n0])

i.e., a shift in the time axis of x produces the same output,
except for a time shift.
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Linear Time-Invariant Systems

Let h[n] be the response of an LTI system H to an impulse
δ[n] (a signal which is 1 at n = 0 and 0 otherwise).
Then, response of system to arbitrary signal x [n] will be
weighted superposition of impulse responses:

y [n] =
∞∑

k=−∞

x [k ]h[n − k ] =
∞∑

k=−∞

x [n − k ]h[k ]

The above is also known as convolution and is written as

y [n] = x [n] ∗ h[n]

i.e., an LTI system H can be characterized completely by its
impulse reponse h[n].
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Fourier Analysis

Moving towards more meaningful features.
Time domain: x [n] ∼ air pressure at time n.
Frequency domain: X (ω) ∼ energy at frequency ω.
This is what cochlear hair cells measure?

Can express (almost) any signal x [n] as sum of sinusoids.
Coefficient for sinusoid w/ frequency ω is X (ω).

Given x [n], can compute X (ω) efficiently, and vice versa.
Time and frequency domain representations are
equivalent.

Fourier transform converts between representations.
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Review: Complex Exponentials

Math is simpler using complex exponentials.
Euler’s formula.

ejω = cos ω + j sin ω

Sinusoid with frequency ω, phase φ.

cos(ωn + φ) = Re(ej(ωn+φ))
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The Fourier Transform

The discrete-time Fourier transform (DTFT) is defined as

X (ω) =
∞∑

n=−∞

x [n]e−jωn

Note: this is a complex quantity.
The inverse Fourier transform is defined as

x [n] =
1

2π

∫ π

−π

X (ω)ejωndω

Exists and is invertible as long as
∑∞

−∞ |x [n]| < ∞.
Can apply DTFT to system/filter as well: h[n] ⇒ H(ω).
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The Z-Transform

One can generalize the discrete-time Fourier Transform to

X (z) =
∞∑

n=−∞

x(n)z−n

where z is any complex variable. The Fourier Transform is
just the z-transform evaluated at z = e−jω.
The z-transform concept allows us to analyze a large range
of signals, even those whose integrals are unbounded. We
will primarily just use it as a notational convenience, though.
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The Convolution Theorem

Apply system H to signal x to get signal y : y [n] = x [n]∗h[n].

Y (z) =
∞∑

n=−∞

y [n]z−n =
∞∑

n=−∞

(
∞∑

k=−∞

x [k ]h[n − k ]

)
z−n

=
∞∑

k=−∞

x [k ]

(
∞∑

n=−∞

h[n − k ]z−n

)

=
∞∑

k=−∞

x [k ]

(
∞∑

n=−∞

h[n]z−(n+k)

)

=
∞∑

k=−∞

x [k ]z−kH(z) = X (z) · H(z)
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The Convolution Theorem (cont’d)

Duality between time and frequency domains.

DTFT(x [n] ∗ y [n]) = DTFT(x) · DTFT(y)

DTFT(x [n] · y [n]) = DTFT(x) ∗ DTFT(y)

i.e., convolution in time domain is same as multiplication in
frequency domain, and vice versa.

80 / 96



Another Perspective

If feed complex sinusoid x [n] = ejωn with frequency ω into
LTI system H, then

y [n] =
∞∑

k=−∞

ejω(n−k)h[k ] = ejωn
∞∑

k=−∞

e−jωkh[k ] = H(ω)ejωn

Hence, if the input is a complex sinusoid, the output is a
complex sinusoid with the same frequency, scaled (and
phase-adjusted) by H(ω). In other words, H acts on each
frequency independently.
If x [n] =

∫
X (ω)e−jωndω is a combination of complex

sinusoids, then by the LTI property

y [n] =

∫
H(ω)X (ω)e−jωndω

This is another way to show Y (ω) = H(ω) · X (ω).
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Some Useful Quantities

The autocorrelation of x [n] with lag j is defined as

Rxx [j ] =
∞∑

n=−∞

x [n + j ]x∗[n] = x [j ] ∗ x∗[−j ]

where x∗ is the complex conjugate of x . Can be used to
help find pitch/F0.
The Fourier transform of Rxx [j ], denoted as Sxx(ω), is called
the power spectrum and is equal to |X (ω)|2

The energy of a discrete-time signal can be computed as:

∞∑
n=−∞

|x [n]|2 =
1

2π

∫ π

−π

|X (ω)|2
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The Discrete Fourier Transform (DFT)

Preceding analysis assumes infinite signals:
n = −∞, . . . , +∞.
In reality, can assume signals x [n] are finite and of length N
(n = 0, . . . , N − 1). Then, we can define the DFT as

X [k ] =
N−1∑
n=0

x [n]e−jωn =
N−1∑
n=0

x [n]e−j 2πkn
N

where we have replaced ω with 2πk
N

The DFT is equivalent to a Fourier series expansion of a
periodic version of x [n].
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The Discrete Fourier Transform (cont’d)

The inverse of the DFT is

1
N

N−1∑
k=0

X [k ]ej 2πkn
N =

1
N

N−1∑
k=0

[
N−1∑
m=0

x [m]e−j 2πkm
N

]
ej 2πkn

N

=
1
N

N−1∑
m=0

x [m]
N−1∑
n=0

ej 2πk(n−m)
N

The last sum on the right is N for m = n and 0 otherwise, so
the entire right side is just x [n].
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The Fast Fourier Transform
Note that the computation of

X [k ] =
N−1∑
n=0

x [n]e−j 2πkn
N ≡

N−1∑
n=0

x [n]W nk
N

for k = 0, . . . , N − 1 requires O(N2) operations.
Let f [n] = x [2n] and g[n] = x [2n + 1]. Then, we have

X [k ] =

N/2−1∑
n=0

f [n]W nk
N/2 + W k

N

N/2−1∑
n=0

g[n]W nk
N/2

= F [k ] + W k
NG[k ]

when F [k ] and G[k ] are the N/2 point DFT’s of f [n] and
g[n]. To produce values for X [k ] for N > k ≥ N/2, note that
F [k + N/2] = F [k ] and G[k + N/2] = G[k ].
The above process can be iterated to compute the DFT
using only O(N log N) operations.
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The Discrete Cosine Transform

Instead of decomposing a signal into a sum of complex
sinusoids, it can also be useful to decompose a signal into a
sum of real sinusoids.
The Discrete Cosine Transform (DCT) (a.k.a. DCT-II) is
defined as

C[k ] =
N−1∑
n=0

x [n] cos(
π

N
(n +

1
2

)k) k = 0, . . . , N − 1
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The Discrete Cosine Transform (cont’d)

We can relate the DCT and DFT as follows. If we create a
signal

y [n] = x [n] n = 0, . . . , N − 1
y [n] = x [2N − 1− n] n = N, . . . , 2N − 1

then Y [k ], the DFT of y [n], is

Y [k ] = 2ej πk
2N C[k ] k = 0, . . . , N − 1

Y [2N − k ] = 2e−j πk
2N C[k ] k = 1, . . . , N − 1

By creating such a signal, the overall energy will be
concentrated at lower frequency components (because
discontinuities at the boundaries will be minimized). The
coefficients are also all real. This allows for easier
truncation during approximation and will come in handy
later when computing MFCCs.
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Long-Term vs. Short-Term Information

Have infinite (or long) signal x [n], n = −∞, . . . , +∞.
Take DTFT or DFT of whole damn thing.
Is this interesting?

Point: we want short-term information!
e.g., how much energy at frequency ω over span
n = n0, . . . , n0 + k?

Going from long-term to short-term analysis.
Windowing.
Filter banks.
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Windowing: The Basic Idea

Excise N points from signal x [n], n = n0, . . . , n0 + (N − 1)
(e.g., 0.02s or so).
Perform DFT on truncated signal; extract some features.
Shift n0 (e.g., by 0.01s or so) and repeat.
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What’s the Problem?

Excising N points from signal x ⇔ multiplying by
rectangular window y .
Convolution theorem: multiplication in time domain is same
as convolution in frequency domain.

Fourier transform of result is X (ω) ∗ Y (ω).
Imagine original signal is periodic.

Ideal: after windowing, X (ω) remains unchanged ⇔
Y (ω) is delta function.
Reality: short-term window cannot be perfect.
How close can we get to ideal?
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Rectangular Window

h[n] =

{
1 n = 0, . . . , N − 1
0 otherwise

The FFT can be written in closed form as

H(ω) =
sin ωN/2
sin ω/2

e−jω(N−1)/2

Note the high sidelobes of the window. These tend to
distort low energy components in the spectrum when there
are significant high-energy components also present.
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Hanning and Hamming Windows

Hanning: h[n] = .5− .5 cos 2πn/N
Hamming: h[n] = .54− .46 cos 2πn/N

Hanning and Hamming have slightly wider main lobes,
much lower sidelobes than rectangular window.
Hamming window has lower first sidelobe than Hanning;
sidelobes at higher frequencies do not roll off as much.
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Human Perception and the FFT

Each cochlear hair acts like band-pass filter?
Input signal: air pressure; output: hair displacement.
Each hair responds to different frequency.
Cochlea is a filter bank?

Implementing filter bank via brute force convolution.
For each output point n, computation for i th filter is on
order of Li (length of impulse response).

xi [n] = x [n] ∗ hi [n] =

Li−1∑
m=0

hi [m]x [n −m]
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Filter Terminology

A filter H acts on each input frequency ω independently.
Scales component with frequency ω by H(ω).

Low-pass filter.
“Lets through” all frequencies below cutoff frequency.
Suppresses all frequencies above.

High-pass filter; band-pass filter.
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Implementation of Filter Banks

Given low-pass filter h[n], can create band-pass filter
hi [n] = h[n]ejωi n via heterdyning.

Multiplication in time domain ⇒ convolution in
frequency domain ⇒ shift H(ω) by ωi .

xi [n] =
∑

h[m]ejωi mx [n −m]

= ejωi n
∑

x [m]h[n −m]e−jωi m

The last term on the right is just Xn(ω), the Fourier
transform of a windowed signal, where now the window is
the same as the filter. So, we can interpret the FFT as just
the instantaneous filter outputs of a uniform filter bank
whose bandwidths corresponding to each filter are the
same as the main lobe width of the window.
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Implementation of Filter Banks (cont’d)

Notice that by combining various filter bank channels we
can create non-uniform filterbanks in frequency.

96 / 96


	Introduction
	Course Overview
	A Brief History of Speech Recognition
	Building a Speech Recognizer: The Basic Idea
	Speech Production and Perception

	Signal Processing Basics

