
Lecture 13

Deep Belief Networks

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{picheny,bhuvana,stanchen}@us.ibm.com

12 December 2012

A spectrum of Machine Learning Tasks

Typical Statistics

Low-dimensional data (e.g. less than 100 dimensions)
Lots of noise in the data
There is not much structure in the data, and what structure
there is, can be represented by a fairly simple model.
The main problem is distinguishing true structure from
noise.

2 / 58

A spectrum of Machine Learning Tasks
Cont’d

Artificial Intelligence

High-dimensional data (e.g. more than 100 dimensions)
The noise is not sufficient to obscure the structure in the
data if we process it right.
There is a huge amount of structure in the data, but the
structure is too complicated to be represented by a simple
model.
The main problem is figuring out a way to represent the
complicated structure so that it can be learned.

3 / 58

Why are Neural Networks interesting?

GMMs and HMMs to model our data
Neural networks give a way of defining a complex,
non-linear model with parameters W (weights) and biases
(b) that we can fit to our data

In past 3 years, DBNs have shown large improvements on
small tasks in image recognition and computer vision
DBNs are slow to train, limiting research for large tasks
More recently extensive use of DBNs for large vocabulary

4 / 58

Initial Neural Networks

Perceptrons (1960) used a layer of hand-coded features
and tried to recognize objects by learning how to weight
these features.
Simple learning algorithm for adjusting the weights.
Building Blocks of modern day networks

5 / 58

Perceptrons

The simplest classifiers from which neural networks are
built are perceptrons.
A perceptron is a linear classifier which takes a number of
inputs a1, ..., an, scales them using some weights w1, ..., wn,
adds them all up (together with some bias b) and feeds the
result through an activation function, σ.

6 / 58

Activation Function

Sigmoid f (z) = 1
1+exp(−z)

Hyperbolic tangent f (z) = tanh(z) = ez−e−z

ez+e−z

7 / 58

Derivatives of these activation functions

If f (z) is the sigmoid function, then its derivative is given by
f ′(z) = f (z)(1 − f (z)).
If f (z) is the tanh function, then its derivative is given by
f ′(z) = 1 − (f (z))2.
Remember this for later!

8 / 58

Neural Network

A neural network is put together by putting together many of our
simple building blocks.

9 / 58

Definitions

nl denotes the number of layers in the network;
L1 is the input layer, and layer Lnl the output layer.
Parameters (W , b) = (W (1), b(1), W (2), b(2), where

W (l)
ij is the parameter (or weight) associated with the

connection between unit j in layer l , and unit i in layer l + 1.

b(l)
i is the bias associated with unit i in layer l + 1 Note that

bias units don’t have inputs or connections going into them,
since they always output

a(l)
i denotes the ”’activation”’ (meaning output value) of unit i

in layer l .

10 / 58

Definitions

This neural network defines hW ,b(x) that outputs a real
number. Specifically, the computation that this neural
network represents is given by:

a(2)
1 = f (W (1)

11 x1 + W (1)
12 x2 + W (1)

13 x3 + b(1)
1)

a(2)
2 = f (W (1)

21 x1 + W (1)
22 x2 + W (1)

23 x3 + b(1)
2)

a(2)
3 = f (W (1)

31 x1 + W (1)
32 x2 + W (1)

33 x3 + b(1)
3)

hW ,b(x) = a(3)
1 = f (W (2)

11 a(2)
1 + W (2)

12 a(2)
2 + W (2)

13 a(2)
3 + b(2)

1)

This is called forward propogation.
Use matrix vector notation and take advantage of linear
algebra for efficient computations.

11 / 58

Another Example

Generally networks have multiple layers and predict more
than one output value.
Another example of a feed forward network

12 / 58

How do you train these networks?

Use Gradient Descent (batch)
Given a training set (x (1), y (1)), . . . , (x (m), y (m))}
Define the cost function (error function) with respect to a
single example to be:

J(W , b; x , y) =
1
2
‖hW ,b(x)− y‖2

13 / 58

Training (contd.)

For m samples, the overall cost function becomes

J(W , b) =

[
1
m

m∑
i=1

J(W , b; x (i), y (i))

]
+

λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)

ji

)2

=

[
1
m

m∑
i=1

(
1
2

∥∥hW ,b(x (i))− y (i)
∥∥2

)]
+

λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W (l)

ji

)2

The second term is a regularization term (”’weight decay”’)
that prevent overfitting.
Goal: minimize J(W , b) as a function of W and b.

14 / 58

Gradient Descent

Cost function is J(θ)
minimize

θ
J(θ)

θ are the parameters we want to vary

15 / 58

Gradient Descent

Repeat until convergence
Update θ as

θj − α ∗ ∂

∂θj
J(θ)∀j

α determines how big a step in the right direction and is
called the learning rate.
Why is taking the derivative the correct thing to do?

16 / 58

Gradient Descent

As you approach the minimum, you take smaller steps as
the gradient gets smaller

17 / 58

Returning to our network...

Goal: minimize J(W , b) as a function of W and b.

Initialize each parameter W (l)
ij and each b(l)

i to a small
random value near zero (for example, according to a
Normal distribution)
Apply an optimization algorithm such as gradient descent.
J(W , b) is a non-convex function, gradient descent is
susceptible to local optima; however, in practice gradient
descent usually works fairly well.

18 / 58

Estimating Parameters

It is important to initialize the parameters randomly, rather
than to all 0’s. If all the parameters start off at identical
values, then all the hidden layer units will end up learning
the same function of the input.
One iteration of Gradient Descent yields the following
parameter updates:

W (l)
ij = W (l)

ij − α
∂

∂W (l)
ij

J(W , b)

b(l)
i = b(l)

i − α
∂

∂b(l)
i

J(W , b)

The backpropogation algorithm is an efficient way to
computing these partial derivatives.

19 / 58

Backpropogation Algorithm

Let’s compute ∂

∂W (l)
ij

J(W , b; x , y) and ∂

∂b(l)
i

J(W , b; x , y), the

partial derivatives of the cost function J(W , b; x , y) with
respect to a single example (x , y).
Given the training sample, run a forward pass through the
network and compute all teh activations

For each node i in layer l , compute an "error term" δ
(l)
i . This

measures how much that node was "responsible" for any
errors in the output.

20 / 58

Backpropogation Algorithm

This error term will be different for the output units and the
hidden units.
Output node: Difference between the network’s activation
and the true target value defines delta(nl)

i

Hidden node: Use a weighted average of the error terms of
the nodes that uses delta(nl)

i as an input.

21 / 58

Backpropogation Algorithm

Let z(l)
i denote the total weighted sum of inputs to unit i in

layer l , including the bias term

z(2)
i =

∑n
j=1 W (1)

ij xj + b(1)
i

Perform a feedforward pass, computing the activations for
layers L2, L3, and so on up to the output layer Lnl .
For each output unit i in layer nl (the output layer), define

δ
(nl)
i =

∂

∂z(nl)
i

1
2
‖y − hW ,b(x)‖2 = −(yi − a(nl)

i) · f ′(z(nl)
i)

22 / 58

Backpropogation Algorithm Cont’d

For l = nl − 1, nl − 2, nl − 3, . . . , 2, define
For each node i in layer l , deine

δ
(l)
i =

 sl+1∑
j=1

W (l)
ji δ

(l+1)
j

 f ′(z(l)
i)

We can now compute the desired partial derivatives as:

∂

∂W (l)
ij

J(W , b; x , y) = a(l)
j δ

(l+1)
i

∂

∂b(l)
i

J(W , b; x , y) = δ
(l+1)
i

Note If f (z) is the sigmoid function, then its derivative is
given by f ′(z) = f (z)(1 − f (z)) which was computed in the
forward pass.

23 / 58

Backpropogation Algorithm Cont’d

Derivative of the overall cost function J(W,b) over all training
samples can be computed as:

∂

∂W (l)
ij

J(W , b) =

[
1
m

m∑
i=1

∂

∂W (l)
ij

J(W , b; x (i), y (i))

]
+ λW (l)

ij

∂

∂b(l)
i

J(W , b) =
1
m

m∑
i=1

∂

∂b(l)
i

J(W , b; x (i), y (i))

Once we have the derivatives, we can now perform gradient
descent to update our parameters.

24 / 58

Updating Parameters via Gradient Descent

Using matrix notation

W (l) = W (l) − α

[(
1
m

∆W (l)
)

+ λW (l)
]

b(l) = b(l) − α

[
1
m

∆b(l)
]

Now we can repeatedly take steps of gradient descent to reduce
the cost function J(W , b) till convergence.

25 / 58

Optimization Algorithm

We used Gradient Descent. But that is not the only algoritm.
More sophisticated algorithms to minimize J(θ) exist.
An algorithm that uses gradient descent, but automatically
tunes the learning rate α so that the step-size used will
approach a local optimum as quickly as possible.
Other algorithms try to find an approximation to the Hessian
matrix, so that we can take more rapid steps towards a local
optimum (similar to Newton’s method).

26 / 58

Optimization Algorithm

Examples include the ”’L-BFGS”’ algorithm, ”’conjugate
gradient”’ algorithm, etc.
These algorithms need for any θ, J(θ) and ∇θJ(θ). These
optimization algorithms will then do their own internal tuning
of the learning rate/step-size and compute its own
approximation to the Hessian, etc., to automatically search
for a value of θ that minimizes J(θ).
Algorithms such as L-BFGS and conjugate gradient can
often be much faster than gradient descent.

27 / 58

Optimization Algorithm Cont’d

In practice, on-line or Stochastic Gradient Descent is used
The true gradient is approximated by the gradient from a
single or a small number of training samples (mini-batches)
Typical implementations may also randomly shuffle training
examples at each pass and use an adaptive learning rate.

28 / 58

Administrivia

Lab 4 handed back today.
Answers:
/user1/faculty/stanchen/e6870/lab4_ans/.

Next Monday: presentations for non-reading projects.
Gu and Yang (15m).
Yi and Zehui (15m).
Laura (10m).
Dawen (10m).
Colin and Zhuo (15m).
Jeremy (10m).
Mohammad (10m).

Papers due next Monday, 11:59pm.
Submit via Courseworks DropBox.

29 / 58

Recap of Neural Networks

A neural network has multiple hidden layers, where each
layer consists of a linear weight matrix a non-linear function
(sigmoid)
Outputs targets: Number of classes (sub-word units)
Output probabilities used as acoustic model scores (HMM
scores)
Objective function that minimizes loss between target and
hypothesized classes
Benefits: No assumption about a specific data distribution
and parameters are shared across all data
Training is extremely challenging with the objective function
being non-convex.
Recall the weights randomly initialized and can get stuck in
local optima.

30 / 58

Neural Networks and Speech Recognition

Introduced in the 80s and 90s to speech recognition, but
extremely slow and poor in performance compared to the
state-of-the-art GMMs/HMMs
Several papers published by Morgan et. al at ICSI, CMU
Over the last couple of years, renewed interest with what is
known as Deep Belief Networks.

31 / 58

Deep Belief Networks (DBNs)

Deep Belief Networks [Hinton, 2006] Capture higher-level
representations of input features Pre-train ANN weights in
an unsupervised fashion, followed by fine-tuning
(backpropagation)
Address issues with MLPs getting stuck at local optima.
DBN Advantages first applied to image recognition tasks,
showing gains between 10-30% relative successful
application on small vocabulary phonetic recognition task
Also known as Deep Neural Networks (DNNs)

32 / 58

What does a DBN learn?

33 / 58

Good improvement in speech recognition

34 / 58

Why Deepness in Speech?

Want to analyze activations by different speakers to see
what DBN is capturing
t-SNE [van der Maaten, JMLR 2008] plots produce 2-D
embeddings in which points that are close together in the
high-dimensional vector space remain close in the 2-D
space
Similar phones from different-speakers are grouped
together better at higher layers
Better discrimination between classes is performed at
higher layers

35 / 58

What does each layer capture?

36 / 58

Second layer

37 / 58

Experimental Observation for impact of many
layers

38 / 58

DBNs

What is pretraining? It is unsupervised learning of the
network.

Learning of multi-layer generative models of unlabelled
data by learning one layer of features at a time.

Keep the efficiency and simplicity of using a gradient
method for adjusting the weights, but use it for modeling the
structure of the input.
Adjust the weights to maximize the probability that a
generative model would have produced the input.
But this is hard to do.

39 / 58

DBNs

Learning is easy if we can get an unbiased sample from the
posterior distribution over hidden states given the observed
data.
For each unit, maximize the log probability that its binary
state in the sample from the posterior would be generated
by the sampled binary states of its parents.
We need to integrate over all possible configurations of the
higher variables to get the prior for first hidden layer

40 / 58

DBNs

Some ways to learn DBNs:

Monte Carlo methods can be used to sample from the
posterior. But its painfully slow for large, deep models.
In the 1990s people developed variational methods for
learning deep belief nets These only get approximate
samples from the posterior. Nevetheless, the learning is still
guaranteed to improve a variational bound on the log
probability of generating the observed data.
If we connect the stochastic units using symmetric
connections we get a Boltzmann Machine (Hinton and
Sejnowski, 1983). If we restrict the connectivity in a special
way, it is easy to learn a Restricted Boltzmann machine.

41 / 58

Restricted Boltzmann Machines

In an RBM, the hidden units are conditionally independent given
the visible states. This enables us to get an unbiased sample
from the posterior distribution when given a data-vector.

42 / 58

Notion of Energies and Probabilities

The probability of a joint configuration over both visible and
hidden units depends on the energy of that joint configuration
compared with the energy of all other joint configurations.

43 / 58

Notion of Energies and Probabilities

The probability of a configuration of the visible units is the sum
of the probabilities of all the joint configurations that contain it.

44 / 58

A Maxmimum Likelihood Learning Algorithm
for an RBM

45 / 58

Training a deep network

First train a layer of features that receive input directly from
the audio.
Then treat the activations of the trained features as if they
were input features and learn features of features in a
second hidden layer.
It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.
The proof is complicated. But it is based on a neat
equivalence between an RBM and a deep directed model

46 / 58

Training a deep network

First learn one layer at a time greedily. Then treat this as
pre-training that finds a good initial set of weights which can
be fine-tuned by a local search procedure.
Contrastive wake-sleep is one way of fine-tuning the model
to be better at generation.
Backpropagation can be used to fine-tune the model for
better discrimination.

47 / 58

Why does it work?

Greedily learning one layer at a time scales well to really big
networks, especially if we have locality in each layer.
We do not start backpropagation until we already have
sensible feature detectors that should already be very
helpful for the discrimination task. So the initial gradients
are sensible and backprop only needs to perform a local
search from a sensible starting point.

48 / 58

Another view

Most of the information in the final weights comes from
modeling the distribution of input vectors.
The input vectors generally contain a lot more information
than the labels.
The precious information in the labels is only used for the
final fine-tuning.
The fine-tuning only modifies the features slightly to get the
category boundaries right. It does not need to discover
features.
This type of backpropagation works well even if most of the
training data is unlabeled. The unlabeled data is still very
useful for discovering good features.

49 / 58

In speech recognition...

We know with GMM/HMMs, increasing the number of
context-dependent states (i.e., classes) improves
performance
MLPs typically trained with small number of output targets
increasing output targets becomes a harder optimization
problem and does not always improve WER
It increases parameters and increases training time
With DBNs, pre-training putting weights in better space, and
thus we can increase output targets effectively

50 / 58

Performance of DBNs

51 / 58

LVCSR Performance

52 / 58

Historical Performance

53 / 58

Issues with DBNs

Traiining time!!
Architecture: Context of 11 Frames, 2,048 Hidden Units, 5
layers, 9,300 output targets implies 43 million parameters !!
Training time on 300 hours (100 M frames) of data takes 30
days on one 12 core CPU)!
Compare to a GMM/HMM system with 16 M parameters
that takes roughly 2 days to train!!
Need to speed up.

54 / 58

One way to speed up..

One reason DBN training is slow is because we use a large
number of output targets (context dependent targets)
Bottleneck feature DBNs generally have few output targets -
these are features we extract to train GMMs on them.
We can use standard GMM processing techniques on these
features

55 / 58

Example bottleneck feature extraction

56 / 58

Example bottleneck feature extraction

57 / 58

What’s in the future?

Better pre training (parallelization of gradient and larger
batches)
Better Bottlneck Features
Convolutional neural Networks (LeCunn et al)

58 / 58

