Review: Language Modeling

Lecture 10 @ Goal: estimate P(w = wy - - - wj).
e Frequency of word sequence wjy - - - w,.
Advanced Language Modeling @ Helps disambiguate acoustically ambiguous utterances.
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e The fewer choices, the better you do.
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Review: Language Modeling for LVCSR Review: N-Gram Models

@ Decompose probability of sequence ... @ Maximum likelihood estimation.
e Into product of conditional probabilities. ¢(I LIKE TO)
@ e.g., trigram model = Markov order 2 = ... Pue(TO[I LIKE) = (I LIKE)
e Remember last 2 words.
" @ Smoothing.
P(wy---w) = H P(w;|wj_aw;_1) e Helps when data is sparse, e.g., for low counts.

i=1

P(I LIKE TO BIKE) = P(I| > 1) x P(LIKE|>1) x P(TO|l LIKE)X
P(BIKE|LIKE TO) x P(<|TO BIKE)
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Spam, Spam, Spam, Spam, and Spam The Dark Side of N-Gram Models

@ N-gram models are robust. @ In fact, n-gram models are deeply flawed.

e Assigns nonzero probs to all word sequences. @ Let us count the ways.
e Handles unrestricted domains.

@ N-gram models are easy to build.
e Can train on plain unannotated text.
e No iteration required over training corpus.
@ N-gram models are scalable.
e Can build models on billions of words of text, fast.
e Can use larger n with more data.
@ N-gram models are great!
e Or are they?
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What About Short-Distance Dependencies? Medium-Distance Dependencies?

@ Poor generalization. @ “Medium-distance” < within sentence.
e Training data contains sentence: @ Fabio example:
LET’'S EAT STEAK ON TUESDAY FABIO , WHO WAS NEXT IN LINE , ASKED IF THE

. TELLER SPOKE ...
e Test data contains sentence:

LET’S EAT SIRLOIN ON THURSDAY @ Trigram model: P(ASKED | IN LINE)

e Occurrence of STEAK ON TUESDAY ...
e Doesn’t affect P(THURSDAY | SIRLOIN ON).

@ More data won't fix this, e.g., (Brown et al., 1992).
e 350MW training = 15% trigrams unseen.
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Medium-Distance Dependencies? Trigram Model, 20M Words of WSJ

@ Random generation of sentences with P(w = wy - - - w)):

e Roll co-sided die where ...
e Each side labeled with word sequence w ...
e And probability of landing on that side is P(w).

@ Reveals what word sequences model thinks is likely.

Medium-Distance Dependencies?

@ Real sentences tend to “make sense” and be coherent.
e Don’t end/start abruptly.
e Have matching quotes.
e About single subject.
e May even be grammatical.

@ Why can’t n-gram models model this stuff?
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Long-Distance Dependencies?

AND WITH WHOM IT MATTERS AND IN THE SHORT -HYPHEN TERM

AT THE UNIVERSITY OF MICHIGAN IN A GENERALLY QUIET SESSION

THE STUDIO EXECUTIVES LAW

REVIEW WILL FOCUS ON INTERNATIONAL UNION OF THE STOCK MARKET
HOW FEDERAL LEGISLATION

"DOUBLE-QUOTE SPENDING

THE LOS ANGELES

THE TRADE PUBLICATION

SOME FORTY %PERCENT OF CASES ALLEGING GREEN PREPARING FORMS

NORTH AMERICAN FREE TRADE AGREEMENT (LEFT-PAREN NAFTA
JRIGHT-PAREN ,COMMA WOULD MAKE STOCKS

A MORGAN STANLEY CAPITAL INTERNATIONAL PERSPECTIVE ,COMMA GENEVA
"DOUBLE-QUOTE THEY WILL STANDARD ENFORCEMENT
THE NEW YORK MISSILE FILINGS OF BUYERS
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@ “Long-distance” < between sentences.
@ See data generated from trigram model.
@ Inreal life, adjacent sentences tend to be on same topic.

e Referring to same entities, e.g., Clinton.
e In a similar style, e.g., formal vs. conversational.

@ Why can’t n-gram models model this stuff?
@ P(w=wy---w) = frequency of wy --- w; as sentence?
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Recap: Shortcomings of N-Gram Models Part |

@ Not great at modeling short-distance dependencies.
@ Not great at modeling medium-distance dependencies. Language Modeling, Pre-2005-ish
@ Not great at modeling long-distance dependencies.

@ Basically, dumb idea.

e Insult to language modeling researchers.
e Great for me to poop on.
e N-gram models, . ..you're fired!
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Where Are We? Improving Short-Distance Modeling

@ Word n-gram models do not generalize well.

e Occurrence of STEAK ON TUESDAY ...
e Doesn’t affect P(THURSDAY | SIRLOIN ON).

@ |dea: word n-gram = class n-grams!?

ﬂ Short-Distance Dependencies: Word Classes

c([FooD] [PREP] [DAY])

PuLe([DAY] | [FOOD] [PREP]) = c([FooD] [PREP])

@ Any instance of class trigram increases . ..

e Probs of all other instances of class trigram.
e = Generalization!
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Getting From Class to Word Probabilities How To Assign Words To Classes?

@ What we have:
P([DAY] | [FOOD] [PREP]) < P(ci|Ci_2Ci_1)
@ What we want:
P(THURSDAY | SIRLOIN ON) < P(w;|Wi_2W_1)

@ Predict current word given (hidden) class.
e Simplification: each word belongs to single class.

P(wi|Wi_aWi_1) = > P(Ci|Ci—2Ci1) x P(wilc;)
Ci

P(THURSDAY | SIRLOIN ON) =
P([DAY] | [FOOD] [PREP]) x P(THURSDAY | [DAY])
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Use Existing Clustering Algorithms on R?

@ Basic idea: similar words tend to occur in similar contexts.
e e.g., beverages occur to right of word DRINK.
@ Characterize each word by distribution of words ...

e That occur to left and right.
o e.9., W= (P.(Wi_1|w;), Pr(Wi1|wW))).
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A Better Way (Brown et al., 1992)

@ For generalization to work sensibly . ..
e Group “related” words in same class.

ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED
HEYDAY MINE’S STILL MACHINE NEWEST HORRIFIC BEECH

@ With vocab sizes of 50,000+, can’t do this manually.
e = Unsupervised clustering.
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@ Goal: find word classes such that ...

e Class trigram model gives good performance.
@ |dea: find word classes such that . ..

e Class bigram model gives good performance.

P(W,"W,'_1) = P(C,"C,'_1) X P(W,"C,’)

@ Optimize likelihood of training data (MLE).
e Fix number of classes, e.g., 1000.
@ Directly optimizes objective function we care about.
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How To Do Search?

@ Hill climbing.
@ Come up with initial assignment of words to classes.

@ Consider reassigning each word to each other class.
e Do move if helps likelihood.
@ Stop when no more moves help.
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Class N-Gram Model Performance (WSJ)
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class n-gram  n—
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Example Classes, 900MW Training Data

OF

THE TONIGHT’S SARAJEVO’S JUPITER’S PLATO’S CHILDHOOD’S
GRAVITY’S EVOLUTION’S

AS BODES AUGURS BODED AUGURED

HAVE HAVEN'T WHO’VE

DOLLARS BARRELS BUSHELS DOLLARS’ KILOLITERS
MR. MS. MRS. MESSRS. MRS

HIS SADDAM’S MOZART’S CHRIST’S LENIN’S NAPOLEON’S JESUS’
ARISTOTLE’'S DUMMY’S APARTHEID’S FEMINISM’S

ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED TOTALED
EASED PLUNGED SOARED SURGED TOTALING AVERAGED TUMBLED
SLID SANK SLUMPED REBOUNDED PLUMMETED DIPPED FIRMED
RETREATED TOTALLING LEAPED SHRANK SKIDDED ROCKETED SAGGED
LEAPT ZOOMED SPURTED RALLIED TOTALLED NOSEDIVED
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Combining Multiple Models

@ On small training sets, class better than word models.
e On large training sets, word better than class.
e Can we combine the two?

@ Linear interpolation: A “hammer” for combining models.

e Combined model probabilities sum to 1 correcily.
e Easy to train A to maximize likelihood of data. (How?)
e Fast and effective?

Peombine (Wi|Wi_aWi_1) = A X Puora(Wi|Wi_aw;_1)+
(1 = A) X Pojass(W;|Wi_2w;_1)
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Combining Word and Class N-Gram Models Discussion: Class N-Gram Models

@ Smaller than word n-gram models.

word n-gram o e N-gram model over vocab of ~1000, not ~50000.
Cilgtssr n- r?erg I— o Few additional parameters: P(w; | ¢)).
erpolated === e Interpolation = overall model larger.

@ Easy to add new words to vocabulary.
e Only need to initialize P(Wnew | Crew)-

WER

P(wi|wi_owi_1) = P(ci|ci—2Ci—1) x P(wj|c;)

"

20kw 200kw 2MW 20MW
training set size
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Where Are We?

@ Static decoding?

e Start with class n-gram model as FSA.
e Expand each class to all members (generalization).

three/P(three|two)

e Medium-Distance Dependencies: Grammars

@ Dynamic decoding or lattice rescoring only.
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Modeling Medium-Distance Dependencies Modeling Medium-Distance Dependencies

@ N-gram models predict identity of next word ... @ Important words for prediction may occur elsewhere.
e Based on identities of words in fixed positions in past. e Important word for predicting SAW is DOG.
e e.g., two words immediately to left. S
@ Important words for prediction may occur elsewhere.
o Important word for predicting SAW is DOG. /\
S NP VP
A RN
T NP pp v PN
NP VP P _~_ SAW RoOY
DET NV PN pET NP A
THE DOG ON TOP

THE DOG SAW ROY N .
@ Instead of condition on fixed number of words back ...

e Condition on words in fixed positions in parse tree!?
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Using Grammatical Structure Using Grammatical Structure

@ Each constituent has headword. @ Predict next word based on preceding exposed headwords.
e Condition on preceding exposed headwords? P( THE | o > )
S P( DoG | > THE )
SAW P( oN | > DOG )
/\ P( TOP | DOG ON )
P( saw | > DOG )
NP VP P( ROY | DOG sSAW )
DOG SAW
T N @ Picks most relevant preceding words . ..
NP PP V. PN R di f positi
SAW ROY e Regardless of position.
DOG ON @ Structured language model (Chelba and Jelinek, 2000).

DET N P A
THE DOG ON TOP

31/112 32/112



Hey, Where Do Parse Trees Come From? So, Does It Work?

@ Come up with grammar rules ... @ Um, -cough-, kind of.
e That describe legal constituents/parse trees. @ Issue: training is expensive.
S — NPVP e SLM trained on 20M words of WSJ text.
NP — DETN|PN|NPPP e Trigram model trained on 40M words of WSJ text.
N — dog|cat @ Lattice rescoring.
@ Come up with probabilistic parametrization. o SLM: 14.5% WER.
o Way of assigning probabilities to parse trees. o Trigram: 13.7% WER.

@ Can we get gains of both?
c(S — NP VP) : .
e May ignore preceding two words even when useful.
c(S) e Linear interpolation = 12.9%
@ Can extract rules and train probabilities using treebank.
e e.g., Penn Treebank (Switchboard, WSJ text).

PuLe(S — NP VP) =
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Recap: Structured Language Modeling Where Are We?

@ Grammatical language models not yet ready for prime time.
e Need manually-parsed data to bootstrap parser.
e Training is expensive; hard to scale.
e “Decoding” is expensive; difficult to implement.
e Easier to achieve gain with other methods.

@ If have exotic LM and need publishable results ...
e Interpolate with trigram model (“ROVER effect”). @ Long-Distance Dependencies: Adaptation
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Modeling Long-Distance Dependencies Modeling Long-Distance Dependencies

A group including Phillip C. Friedman , a Gardena,, California , @ Observation: words and phrases in previous sentences . ..
investor , raised its stake in Genisco Technology Corporation to

seven . five % of the common shares outstanding . o Are more likely to occur in future sentences.

Neither officials of Compton , California - based Genisco , an ® €.g., GENISCO, GENISCO'S, FRIEDMAN, SHARES.

electronics manufacturer , nor Mr. Friedman could be reached for (*] Lang uage model adaptation.

comment . o Adapt language model to current style or topic.

In a Securities and Exchange Commission filing , the group said it o Similar in spirit to acoustic adaptation.

bought thirty two thousand common shares between August o .

twenty fourth and last Tuesday at four dollars and twenty five cents @ Distribution over single sentences P(w = wy---w)) ...
to five dollars each . e = Sentence sequences P(J = wq - - wy).

The group might buy more shares , its filing said .

According to the filing , a request by Mr. Friedman to be put on
Genisco’s board was rejected by directors .

Mr. Friedman has requested that the board delay Genisco’s
decision to sell its headquarters and consolidate several divisions
until the decision can be " much more thoroughly examined to
determine if it is in the company’s interests , " the filing said .
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Cache Language Models Beyond Cache Language Models

@ How to boost probabilities of recently-occurring words? @ What'’s the problem?
@ Idea: build language model on recent words. e Does seeing THE boost the probability of THE?
o e.g., last k=500 words in current document. e Does seeing MATSUI boost the probability of YANKEES?

@ Can we induce which words trigger which other words?
e Let’s say your training corpus is subdivided into articles.
e How might one find trigger pairs?

@ How to combine with primary language model?
e Linear interpolation.

Poache (Wi| Wi2Wi—1, W] o) = HENSON MUPPETS
A X Pstatic(WilWi—oWi—1) + (1 = X) x P+ (W|Wi_ow_1) TELESCOPE ASTRONOMERS
o0 CLOTS DISSOLVER
@ Cache language models (Kuhn and De Mori, 1990). NODES LYMPH

SPINKS HEAVYWEIGHT
DYSTROPHY MUSCULAR
FEEDLOTS FEEDLOT

SCHWEPPES MOTT'S

39/112 40/112



Trigger Language Models Beyond Trigger Language Models

@ How to combine with primary language model? @ Some groups of words are mutual triggers.
e Linear interpolation? e e.g., IMMUNE, LIVER, TISSUE, TRANSPLANTS, efc.
e Give word unigram count every time triggered? e Corresponding to topic, e.g., medicine.
. e Difficult to discover all pairwise relations: sparse data.
Prig(WilWi—2W; 1, W/"35) = @ May not want to trigger words based on single event.
A X Petatic(Wi|WiaWj 1) + (1 = A) X Pyt (W) o Some words are ambiguous.

@ €.g., LIVER = TRANSPLANTS Or CHICKEN?

@ Another way: maximum entropy models (Lau et al., 1993). o = Topic language models.
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Topic Language Models Example: Seymore and Rosenfeld (1997)

@ Assign topic(s) to each document in training corpus. @ Assigning topics to documents.
e e.g., politics, medicine, Monica Lewinsky, cooking, etc. e One way: manual labels, e.g., Broadcast News corpus.
@ For each topic, build topic-specific language model. o Another way: automatic clustering.

e Map each document to pointin RIVI ...
e Based on frequency of each word in vocab.
@ Guessing current topic.

e Select topic LM’s maximizing likelihood of test data.
e Adapt on previous utterances or first-pass decoding.

e e.g., train n-gram model only on documents ...
e Labeled with topic.

@ Decoding.

e Try to guess current topic (e.g., from past utterances).
e Use appropriate topic-specific language model(s).
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Example: Seymore and Rosenfeld (1997) Example: Seymore and Rosenfeld (1997)

@ Training (transcript); topics: conspiracy; JFK assassination. @ Topic LM’s may be sparse.
THEY WERE RIDING THROUGH DALLAS WITH THE KENNEDYS o Combine with general LM.
WHEN THE FAMOUS SHOTS WERE FIRED @ How to combine selected topic LM’s and general LM?
HE WAS GRAVELY WOUNDED

e Linear interpolation!
HEAR WHAT GOVERNOR AND MRS. JOHN CONNALLY THINK OF

THE CONSPIRACY MOVIE J. F.K. ...
Ptopic(Wi|Wi—2 Wi_1) =
@ Test (decoded); topics: ??7? T

THE MURDER OF J. F. K. WAS IT A CONSPIRACY AoPgeneral (Wi Wi—2Wi—1) + Z AtPe(wi| Wiz Wi—1)

SHOULD SECRET GOVERNMENT FILES BE OPENED TO THE =
PUBLIC

CAN THE TRAGIC MYSTERY EVER BE SATISFACTORILY
RESOLVED ...
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So, Do Cache Models Work? What About Trigger and Topic Models?

@ Um, -cough-, kind of. @ Triggers.

@ Good PP gains (up to ~20%). e Good PP gains (up to ~30%)

e WER gains: little to none. e WER gains: unclear; e.g., (Rosenfeld, 1996).
e e.g., (lyer and Ostendorf, 1999; Goodman, 2001). @ Topic models.

e Good PP gains (up to ~30%)
e WER gains: up to 1% absolute.
e e.g., (lyer and Ostendorf, 1999; Goodman, 2001).
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Recap: Adaptive Language Modeling Where Are We?

@ ASR errors can cause adaptation errors.
e In lower WER domains, LM adaptation may help more.
@ Large PP gains, but small WER gains.
e What's the dillio?
@ Increases system complexity for ASR.
e e.g., how to adapt LM scores with static decoding?
@ Unclear whether worth the effort.

e Not used in most products/live systems?
o Not used in most research evaluation systems. @ Discussion
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Turning It Up To Eleven (Goodman, 2001)

@ Short-distance dependencies. @ If short, medium, and long-distance modeling ...

e Interpolate class n-gram with word n-gram. e All achieve ~1% WER gain ...

e <1% absolute WER gain; pain to implement? e What if combine them all with linear interpolation?
@ Medium-distance dependencies. @ “A Bit of Progress in Language Modeling”.

e Interpolate grammatical LM with word n-gram. e Combined higher order n-grams, skip n-grams, ...

e <1% absolute WER gain; pain to implement. e Class n-grams, cache models, sentence mixtures.
@ Long-distance dependencies. e Achieved 50% reduction in PP over word trigram.

o Interpolate adaptive LM with static n-gram. ° = ~1% WER gain (WSJ N-best list rescoring).

e <1% absolute WER gain; pain to implement.
e PP £ WER.
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State of the Art Circa 2005 Time To Give Up?

@ Commercial systems.

e Word n-gram models.

@ Research systems, e.g., government evaluations.

e No time limits; tiny differences in WER matter.
e Interpolation of word 4-gram models.

@ Why aren’t people using ideas from LM research?

e Too slow (1st pass decoding; rescoring?)
e Gains not reproducible with largest data sets.
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Unpaid Advertisement

@ Lab 4 due next Monday, December 3, at 11:59pm. Course Title: Fundamentals of Speaker Recognition
@ Reading projects: E-mail me paper selection by Friday. Course Number: COMS 6998-5
e Oral presentations for non-reading projects: December 17. Instructor: Homayoon Beigi _

o All papers due same day, 11:59pm. _ Recognition Technologies, Inc.

o Submit via Courseworks Drop Box. _Sl_iemrrée.ster. ?EL';%§3;31 0.9:00 PM
@ Make-up lecture: Wednesday, December 5, 4:10-6:40pm. ' ' '

o Location: TBA. http://www.columbia.edu/cu/bulletin/uwb/subj/
@ Non-reading projects. COMS/E6998-20131-005/

e Will finish setups this week. http://www.recotechnologies.com/beigi

e Optional checkpoint next Monday.
e E-mail to schedule meeting before/after class.
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Part Il What Up?

@ Humans use short, medium, and long-distance info.
Language Modeling, Post-2005-ish o Short: BUY BEER, PURCHASE WINE.
e Medium: complete, grammatical sentences.
e Long: coherent sequences of sentences.
@ Sources of info seem complementary.
@ Yet, linear interpolation fails to yield cumulative gains.
e Maybe instead of hammer, need screwdriver?
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How Should a Good LM Act?

@ Say we have 1M sentences of training data D.

FEDERAL HOME LOAN MORTGAGE CORPORATION —DASH ONE
.POINT FIVE BILLION DOLLARS OF REALESTATE MORTGAGE
-HYPHEN INVESTMENT CONDUIT SECURITIES OFFERED BY
MERRILL LYNCH &AMPERSAND COMPANY .PERIOD

NONCOMPETITIVE TENDERS MUST BE RECEIVED BY NOON
EASTERN TIME THURSDAY AT THE TREASURY OR AT FEDERAL
RESERVE BANKS OR BRANCHES .PERIOD ...

@ Build LM P(w) on this data.
@ Generate 1M sentences of text D’ according to P(w).
@ If word THE occurs ¢(THE) timesin D ...

e How many times should occur in D’ for “good” LM?
e What about for bigram oF THE? Or any other n-gram?
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Is There Another Way?

@ Can we combine multiple information sources ...
e e.g., short, medium, and long-distance info ...
@ Such that resulting language model ...
e |s guaranteed to be “good”?
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Are Interpolated LM’s “Good”?

@ Build two models completely independently.
@ Linearly interpolate, e.g.,

Peombine (Wi|Wi_aW;_1) = X X Puora(Wi|Wi_aWj_1)+
(1 = A) X Pejass(W;|Wi_2wj_1)

@ Any guarantees resulting model is “good”?
@ Example: tuned word/class n-gram model, 1M sentences.

e Cp(IN HONG KONG) = 564.
e Cp/(IN HONG KONG) = 458.
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Where Are We?

Q Introduction to Maximum Entropy Modeling
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Constraint-Based Modeling More Generally

@ Come up with set of constraints on final LM. @ Denote training data D as (wy, . . .,wp).

e Find LM that satisfies all the constraints. @ Count of IN HONG KONG in training data:
@ e.g., want P(w) such that when generate 1M sentences ... 5

e IN HONG KONG occurs 564 times on average. Z i Howe Kona (wa) = 564
@ Let fiy hona kona(w) be number of times . .. d—1

e IN HONG KONG occurs in w. .
@ Then, our constraint becomes:

108 x EP(w)[fIN Hona Kkong (w)] = 564 D D
106 X Z P(w)f,N HONG KONG(W) — 564 Z Z P(w)f,N HONG KONG(W) = Z fin HonG KONG(Wd)

ad=1 w a=1
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Constraints and Feature Functions Constraint-Based Modeling

@ Each feature function f,(w) determines a constraint: @ Given set of feature functions/constraints:
D D D D
33 PH() = Y fulwa) >3 PA() = Y fila)
d=1 w d=1 =1 w a=1
D D
@ What can feature functions f,(w) look like? Z Z P(w)b(w) = Z f(wq)
e How many times IN HONG KONG occurs in w? d=1 w d=1
e How many times [FOOD] [PREP] [DAY] occurs inw? .
e Return 1 if w is grammatical, 0 otherwise.
e Return 1 if both HENSON and MUPPETS occur in w. @ How to find model P(w) satisfying constraints?
e Or anything else that can be computed! @ Problem: in general, many P(w) possible.

e Which one to pick?
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Maximum Entropy Principle (Jaynes, 1957) Can We Find the Maximum Entropy Model?

@ The entropy H(P) of P(w) is @ Given features fi(x,y),....fr(x,y).
@ ME model satisfying associated constraints has form:
Z P(w)log P(w)

Pr(w - ex Aifi(w
@ Entropy < uniformness < least assumptions. M) = P Z

@ Of models satisfying constraints . ..

e Pick one with highest entropy!
e Capture constraints; assume nothing more!

@ One parameter per feature: A = {\;, ..., A\r}.
o If fi(w) # 0, multiply prob by e"fi(«),

@ Z, =normalizer = 3" exp(3C, \ifi(w)).

@ a.k.a. exponential model, log-linear model.
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How to Find the \;’s? Conditional Modeling (Berger et al., 1996)

@ Joint formulation: w = sentence.

PA(w) = - exp(3_ M)

D D
D = (w1,...,wp) DY P)fi(w) =Y filwa)
d=1 w d=1
@ {)\;}’s satisfying constraints ...
o Are ML estimates of {\;}! Pr(w) = - z, &P Z Aifi(w))
@ Training set likelihood is convex function of {;}!
e Can find {\;} using hill-climbing. " o : . .
o e.g. iterative scaling: L-BFGS. @ Conditional formulation: h = history; w = predicted word.

D= ((h17W1) hDa WD)) ZZP(W|hd hd7 Zf(hda Wd)
d11 .
Pa(w|h) = Z(h exp(D_ Aifi(h, w))
i=1
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Recap: Maximum Entropy Modeling Where Are We?

@ Elegant as all hell.
@ Principled way to combine lots of information sources.

e Design choice: which constraints to enforce?
e Can use arbitrary feature functions!

@ Single global optimum when training parameters.
e Given features, “straightforward” to compute LM.
@ But does it blend?

Maximum Entropy N-gram Models?

@ Can maximum entropy modeling ...
e Help build a better word n-gram model?

@ Conditional formulation: one constraint per seen n-gram.

1 if hwendsin I LIKE BIG
fiuke mia(h, W) = 0 otherwise

@ Problem: MLE model is same as before!!!

e Assigns zero-ish probs to unseen n-grams.
e Maximum entropy-ness doesn’t prevent overfitting.
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e N-Gram Models and Smoothing, Revisited
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Smoothing for Exponential Models

@ Point: don’t want to match training counts exactly!
@ Can implement “fuzzy” constraints via penalty term:

obj fn = log PPyain + (penalty for large |\j])

1
(# train wds)

@ The smaller |\j| is, the smaller its effect . ..
e And the smoother the model.
@ e.g., /2 regularization (e.g., Chen and Rosenfeld, 2000).

F 22

(penalty) :Z ’
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Smoothing for Exponential Models (WSJ 4q)

@ Smoothed exponential n-gram models perform well.
@ Why don’t people use them?

e Conventional n-gram: count and normalize.
e Exponential n-gram: run 100 iterations of training.

@ |s there way to do constraint-based modeling ...
e Within conventional n-gram framework?

36

Katz oo
exp n-gram  m—

32

28

WER

24

20
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Kneser-Ney Smoothing (1995) Kneser-Ney Smoothing

@ Back-off smoothing. @ Unigram probabilities Pxn(wj) . ..
@ Not proportional to how often unigram occurs.

PKN(WI‘WI—1) _ { Pprimary(Wi|Wi—1) if C(Wi_.1 W,) >0
aw,_, Pun(w;)  otherwise o) o(w)
KN\ Wi ~ /.
@ Pun(w;) chosen such that . .. >, C(Wi)
o Unigram constraints met exactly. @ Proportional to how many word types unigram follows!

Noc(owi) = [{wiy : c(wiwi) > 0}

o Ni(ew;)
Pl) = = Ny (ow)
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Kneser-Ney Smoothing Recap: N-Gram Models and Smoothing

36
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WER
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Where Are We? What About Other Features?

exp n-gram s
modified Kneser-Ney ===
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e Maximum Entropy Models, Part llI

i N

20MW

@ Best n-gram smoothing methods are all constraint-based.
@ Can express smoothed n-gram models as ...

o Exponential models with simple ¢3 smoothing.
@ “Modified” interpolated Kneser-Ney smoothing' . ..

e Yields similar model, but much faster training.
e Standard in literature for last 10+ years.

@ Available in SRI LM toolkit.

http://www.speech.sri.com/projects/srilm/

f(Chen and Goodman, 1998).
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@ Exponential models make slightly better n-gram models.
e Snore.

@ Can we just toss in tons of cool features ...
e And get fabulous results?
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http://www.speech.sri.com/projects/srilm/

Maybe!? (Rosenfeld, 1996) What'’s the Catch?

@ 38M words of WSJ training data. @ 200 computer-days to train.

@ Trained maximum entropy model with ... @ Really slow training.
e Word n-gram; skip n-gram; trigger features. e For each word, update O(|V|) counts.
e Interpolated with regular word n-gram and cache. 5 b

@ 39% reduction in PP, 2% absolute reduction in WER. Z Z P(w|hy)f(hg, w) = Z fi(hg, W)
e Baseline: (pruned) Katz-smoothed(?) trigram model. d=1 w a=1

@ Contrast: Goodman (2001), -50% PP, -0.9% WER. o Tens of passes through training data.

@ Really slow evaluation: evaluating Zx(x).

exp(Xor; Aifi(h, w))
Zn(h)

F
Z\h) = D exp(y_Aifi(h,w)
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Newer Developments Performance Prediction (Chen, 2008)

@ Fast training: optimizations for simple feature sets. @ Given training set and test set from same distribution.
e e.g., train word n-gram model on 1GW in few hours. @ Desire: want to optimize performance on test set.
@ Fast evaluation: unnormalized models. @ Reality: only have access to training set.

e Not much slower than regular word n-gram.

s
Pa(w|h) = exp(D  \ifi(h, w))

i=1

(test perf) = (training perf) + (overfitting penalty)

@ Can we estimate overfitting penalty?

@ Performance prediction.
e How to intelligently select feature types.
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Model M (Chen, 2008; Chen and Chu, 2010)

@ Old-timey class-based model (Brown, 1992).
e Class prediction features: ¢j_»c;_1C;.
e Word prediction features: c;jw;.

P(wi|wi_awi_1) = P(ci|ci—2Ci—1) x P(wj|c;)
@ Start from word n-gram model; convert to class model . ..

e And choose feature types to reduce overfitting.
e Class prediction features: ¢j_»C;_1Ci, W;_2W,_1C;.
e Word prediction features: w;_ow;_1ciw;.

@ Without interpolation with word n-gram model.
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A Tool for Good

@ Holds for many different types of data.

o Different domains; languages; token types; ...
e Vocab sizes; training set sizes; n-gram orders.

@ Holds for many different types of exponential models.

e Word n-gram models; class-based n-gram models; ...
e Minimum discrimination information models.

@ Explains lots of diverse aspects of language modeling.
@ Can choose features types ...
o To intentionally shrink 7, |\
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Model M (WSJ)
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Recap: Maximum Entropy Where Are We?

@ Some of best WER results in LM literature.
e Gain of up to 3% absolute WER over trigram (not <1%,).
@ Can surpass linear interpolation in WER in many contexts.
e Log-linear interpolation.
e Each is appropriate in different situations. (When?)
e Together, powerful tool set for model combination.
@ Performance prediction explains existing models . ..
e And helps design new ones!

@ Training can still be very painful. e Neural Net Language Models
e Depends very much on types of features.
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Introduction What Is A Neural Network?

@ Ways to combine information sources. @ Represents function from input vector to output vector.
e Linear intgrpolati_on. f-RM o RN
e Exponential/log-linear models.
o Anything else? @ Function is represented using sequence of L layers.

e First layer is input layer; last is output layer.
e Intermediate layers are hidden layers.
o Each layer is vector x' = (x{,..., xy,) € RM.
@ Values in (/4 1)th layer are function of values in /th layer.
e g(+) is linear/non-linear increasing func, e.g., sigmoid.

N
X =g() wx))
j=1

@ Select parameters of model, i.e., weights wj, ...
e To optimize objective function of choice ...
e Using gradient descent-ish algorithm like backprop.
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@ Recently, good results with neural networks.



Designing a Neural Network LM Example (Schwenk and Gauvain, 2005)

@ What we have: something that learns f : RM = RM, ev- _ _ _ _ NewralNetwork
o What we want: something that models P(w;|w;_ow;_1). ble 1w probability cstimation  lyer |
i 2 o Lo -
.o How t(? map from words to continuous space* }efnﬂ: p:r?jemon y 5 I| pzlv(wj=1|hj)
@ Binary coding. ver- \af e 5
e To code one of V words, use vector of length V. Lin ! j : . =
e For vth word, 1 in position v, 0 everywhere else. has ' . _" P(w;=ilhy)
e Input layer: (n — 1) x V units; output layer: V units. I _— L ;'
@ Outputting a probability: softmax function e K !
p g p y . a||- | projections |
| L o
e e / P 3
pi - N, xL ' 1PN =
Zj:L1 e’ I N — I P(w;=N|h;)
ok N
@ Obijective function: training set likelihood + regularization. | -"—--""—-"=-"="="=-"=-"==-°-
discrete continuous LM probabilities
IFA representation: representation: for all words
indices in wordlist P dimensional vectors
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The Hidden Layers

@ 1st hidden layer: projection layer.
e Project each word in history from sparse Vd vector ...
e Down to ~100d using shared linear projection.

@ 2nd hidden layer: “real” hidden layer.
o Nonlinear function of first layer, e.g., tanh().

W ‘\ —
[
]
\\ ,
(delayed)
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Results (Mikolov et al, 2011)

@ Some of best WER results in LM literature.

| Model || Dev WER[%] | Eval WER[%] | Gain of o | WER _ .
Bascline - KNS Do 72 ° aln.o up.to 3% absolute . over trigram (not <1%).
Discriminative LM [14] 11.5 16.9 @ Interpolation with word n-gram optional.

Joint LM [7] - 16.7 @ Can integrate arbitrary features, e.g., syntactic features.
Static RNN 10.5 14.9

e Easy to condition on longer histories.

Static RNN + KN 10.2 14.6 -

Adapted RNN 9.8 14.5 @ Training is slow.

Adapted RNN + KN 9.8 14.5 e Optimizations: class-based modeling; reduced vocab.
AlIRNN 9.7 14.4

@ Evaluation is slow: matrix multiplies.

@ Hard to analyze; tuning essential?

@ Related to exponential models.

@ Publicly-available toolkit:
http://www.fit.vutbr.cz/~imikolov/rnnlm/
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Where Are We? Other Directions in Language Modeling

Discriminative training for LM’s.
Super ARV LM.
LSA-based LM’s.
Variable-length n-grams; skip n-grams.
Concatenating words to use in classing.
Context-dependent word classing.
Word classing at multiple granularities.
Alternate parametrizations of class n-grams.
Using part-of-speech tags.
Semantic structured LM.
Sentence-level mixtures.
Soft classing.

_ . Hierarchical topic models.

9 Discussion Combining data/models from multiple domains.

Whole-sentence maximum entropy models.
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http://www.fit.vutbr.cz/~imikolov/rnnlm/

What Is Used In Real Deployed Systems? Large-Vocabulary Research Systems

@ Technology. @ e.g., government evals: Switchboard, Broadcast News.
e Mostly n-gram models; grammars. e Small differences in WER matter.
e Grammar switching based on dialogue state. e Interpolation of word n-gram models ...
@ Users cannot distinguish WER differences a few percent. o Built from different corpora.
o Good Ul design is WAY, WAY, WAY more important . .. o Neural net LM's; Model M (-0.5% WER?)
o Than small differences in ASR performance. @ Modeling medium-to-long-distance dependencies.
@ Research developments in language modeling. e Almost no gain in combination with other techniques?
o Not worth extra effort and complexity. e Not worth extra effort and complexity.

e The more the data, the less the gain! @ LM gains pale in comparison to acoustic modeling gains.
o Difficult to implement in one-pass decoding paradigm.?

fModel M supported in IBM’s Attila dynamic decoder.
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An Apology to N-Gram Models Where Do We Go From Here?

@ | didn’t mean what | said about you. @ N-gram models are just really easy to build.
@ You know | was kidding when | said . .. e Can train on billions and billions of words.
o You are great to poop on. e Smarter LM’s tend to be orders of magnitude slower.

e Faster computers? Data sets also growing.
@ Need to effectively combine many sources of information.

e Short, medium, and long distance.
e Log-linear models, NN’s promising, but slow to train.

@ Evidence that LM’s will help more when WER’s are lower.
e Human rescoring of N-best lists (Brill et al., 1998).
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The Road Ahead Course Feedback

@ Lecture 11 (12/3): Robustness; adaptation.

@ Was this lecture mostly clear or unclear? What was the

@ Lecture 12 (12/5): Discriminative training; ROVER.
@ Lecture 13 (12/10): Deep belief networks.
@ Final exam week (12/17): Project presentations.
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muddiest topic?

@ Other feedback (pace, content, atmosphere)?
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