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Review: Language Modeling

Goal: estimate P(ω = w1 · · ·wl).
Frequency of word sequence w1 · · ·wl .

Helps disambiguate acoustically ambiguous utterances.

THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD

ω∗ = arg max
ω

P(ω|x) = arg max
ω

P(ω)Pω(x)

Analogy: multiple-choice test.
LM restricts choices given to acoustic model.
The fewer choices, the better you do.
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Review: Language Modeling for LVCSR

Decompose probability of sequence . . .
Into product of conditional probabilities.

e.g., trigram model ⇒ Markov order 2 ⇒ . . .
Remember last 2 words.

P(w1 · · ·wL) =
L+1∏
i=1

P(wi |wi−2wi−1)

P(I LIKE TO BIKE) = P(I| . .)× P(LIKE| . I)× P(TO|I LIKE)×
P(BIKE|LIKE TO)× P(/|TO BIKE)
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Review: N-Gram Models

Maximum likelihood estimation.

PMLE(TO|I LIKE) =
c(I LIKE TO)

c(I LIKE)

Smoothing.
Helps when data is sparse, e.g., for low counts.
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Spam, Spam, Spam, Spam, and Spam

N-gram models are robust.
Assigns nonzero probs to all word sequences.
Handles unrestricted domains.

N-gram models are easy to build.
Can train on plain unannotated text.
No iteration required over training corpus.

N-gram models are scalable.
Can build models on billions of words of text, fast.
Can use larger n with more data.

N-gram models are great!
Or are they?
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The Dark Side of N-Gram Models

In fact, n-gram models are deeply flawed.
Let us count the ways.
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What About Short-Distance Dependencies?

Poor generalization.
Training data contains sentence:

LET’S EAT STEAK ON TUESDAY

Test data contains sentence:

LET’S EAT SIRLOIN ON THURSDAY

Occurrence of STEAK ON TUESDAY . . .
Doesn’t affect P(THURSDAY | SIRLOIN ON).

More data won’t fix this, e.g., (Brown et al., 1992).
350MW training ⇒ 15% trigrams unseen.
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Medium-Distance Dependencies?

“Medium-distance” ⇔ within sentence.
Fabio example:

FABIO , WHO WAS NEXT IN LINE , ASKED IF THE
TELLER SPOKE . . .

Trigram model: P(ASKED | IN LINE)
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Medium-Distance Dependencies?

Random generation of sentences with P(ω = w1 · · ·wl):
Roll ∞-sided die where . . .
Each side labeled with word sequence ω . . .
And probability of landing on that side is P(ω).

Reveals what word sequences model thinks is likely.
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Trigram Model, 20M Words of WSJ
AND WITH WHOM IT MATTERS AND IN THE SHORT -HYPHEN TERM

AT THE UNIVERSITY OF MICHIGAN IN A GENERALLY QUIET SESSION

THE STUDIO EXECUTIVES LAW

REVIEW WILL FOCUS ON INTERNATIONAL UNION OF THE STOCK MARKET

HOW FEDERAL LEGISLATION

"DOUBLE-QUOTE SPENDING

THE LOS ANGELES

THE TRADE PUBLICATION

SOME FORTY %PERCENT OF CASES ALLEGING GREEN PREPARING FORMS

NORTH AMERICAN FREE TRADE AGREEMENT (LEFT-PAREN NAFTA
)RIGHT-PAREN ,COMMA WOULD MAKE STOCKS

A MORGAN STANLEY CAPITAL INTERNATIONAL PERSPECTIVE ,COMMA GENEVA

"DOUBLE-QUOTE THEY WILL STANDARD ENFORCEMENT

THE NEW YORK MISSILE FILINGS OF BUYERS
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Medium-Distance Dependencies?

Real sentences tend to “make sense” and be coherent.
Don’t end/start abruptly.
Have matching quotes.
About single subject.
May even be grammatical.

Why can’t n-gram models model this stuff?
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Long-Distance Dependencies?

“Long-distance” ⇔ between sentences.
See data generated from trigram model.
In real life, adjacent sentences tend to be on same topic.

Referring to same entities, e.g., Clinton.
In a similar style, e.g., formal vs. conversational.

Why can’t n-gram models model this stuff?
P(ω = w1 · · ·wl) = frequency of w1 · · ·wl as sentence?

12 / 112



Recap: Shortcomings of N-Gram Models

Not great at modeling short-distance dependencies.
Not great at modeling medium-distance dependencies.
Not great at modeling long-distance dependencies.
Basically, dumb idea.

Insult to language modeling researchers.
Great for me to poop on.
N-gram models, . . . you’re fired!
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Part I

Language Modeling, Pre-2005-ish
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Discussion
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Improving Short-Distance Modeling

Word n-gram models do not generalize well.
Occurrence of STEAK ON TUESDAY . . .
Doesn’t affect P(THURSDAY | SIRLOIN ON).

Idea: word n-gram ⇒ class n-grams!?

PMLE([DAY] | [FOOD] [PREP]) =
c([FOOD] [PREP] [DAY])

c([FOOD] [PREP])

Any instance of class trigram increases . . .
Probs of all other instances of class trigram.
⇒ Generalization!
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Getting From Class to Word Probabilities

What we have:

P([DAY] | [FOOD] [PREP]) ⇔ P(ci |ci−2ci−1)

What we want:

P(THURSDAY | SIRLOIN ON) ⇔ P(wi |wi−2wi−1)

Predict current word given (hidden) class.
Simplification: each word belongs to single class.

P(wi |wi−2wi−1) =
∑

ci

P(ci |ci−2ci−1)× P(wi |ci)

P(THURSDAY | SIRLOIN ON) =

P([DAY] | [FOOD] [PREP])× P(THURSDAY | [DAY])
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How To Assign Words To Classes?

For generalization to work sensibly . . .
Group “related” words in same class.

ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED
HEYDAY MINE’S STILL MACHINE NEWEST HORRIFIC BEECH

With vocab sizes of 50,000+, can’t do this manually.
⇒ Unsupervised clustering.
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Use Existing Clustering Algorithms on Rk?

Basic idea: similar words tend to occur in similar contexts.
e.g., beverages occur to right of word DRINK.

Characterize each word by distribution of words . . .
That occur to left and right.
e.g., wi ⇒ (PL(wi−1|wi), PR(wi+1|wi)).
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A Better Way (Brown et al., 1992)

Goal: find word classes such that . . .
Class trigram model gives good performance.

Idea: find word classes such that . . .
Class bigram model gives good performance.

P(wi |wi−1) = P(ci |ci−1)× P(wi |ci)

Optimize likelihood of training data (MLE).
Fix number of classes, e.g., 1000.

Directly optimizes objective function we care about.
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How To Do Search?

Hill climbing.
Come up with initial assignment of words to classes.
Consider reassigning each word to each other class.

Do move if helps likelihood.
Stop when no more moves help.
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Example Classes, 900MW Training Data

OF

THE TONIGHT’S SARAJEVO’S JUPITER’S PLATO’S CHILDHOOD’S
GRAVITY’S EVOLUTION’S
AS BODES AUGURS BODED AUGURED

HAVE HAVEN’T WHO’VE

DOLLARS BARRELS BUSHELS DOLLARS’ KILOLITERS

MR. MS. MRS. MESSRS. MRS

HIS SADDAM’S MOZART’S CHRIST’S LENIN’S NAPOLEON’S JESUS’
ARISTOTLE’S DUMMY’S APARTHEID’S FEMINISM’S
ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED TOTALED

EASED PLUNGED SOARED SURGED TOTALING AVERAGED TUMBLED

SLID SANK SLUMPED REBOUNDED PLUMMETED DIPPED FIRMED

RETREATED TOTALLING LEAPED SHRANK SKIDDED ROCKETED SAGGED

LEAPT ZOOMED SPURTED RALLIED TOTALLED NOSEDIVED
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Class N-Gram Model Performance (WSJ)

20

24

28

32

36

20kw 200kw 2MW 20MW

W
E

R

training set size

word n-gram
class n-gram
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Combining Multiple Models

On small training sets, class better than word models.
On large training sets, word better than class.
Can we combine the two?

Linear interpolation: A “hammer” for combining models.
Combined model probabilities sum to 1 correctly.
Easy to train λ to maximize likelihood of data. (How?)
Fast and effective?

Pcombine(wi |wi−2wi−1) = λ× Pword(wi |wi−2wi−1)+

(1− λ)× Pclass(wi |wi−2wi−1)
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Combining Word and Class N-Gram Models

20

24

28

32

36

20kw 200kw 2MW 20MW

W
E

R

training set size

word n-gram
class n-gram
interpolated
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Discussion: Class N-Gram Models

Smaller than word n-gram models.
N-gram model over vocab of ∼1000, not ∼50000.
Few additional parameters: P(wi | ci).
Interpolation ⇒ overall model larger.

Easy to add new words to vocabulary.
Only need to initialize P(wnew | cnew).

P(wi |wi−2wi−1) = P(ci |ci−2ci−1)× P(wi |ci)
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Discussion

Static decoding?
Start with class n-gram model as FSA.
Expand each class to all members (generalization).

three/P(threejtwo)

one/P(onejone)

two/P(twojtwo)

one/P(onejtwo)

one/P(onejthree)

�/�(one)

�/�(three)

one/P(one)

three/P(threejthree)

two/P(twojthree)

two/P(twojone)

two/P(two)

three/P(three)

three/P(threejone)

�/�(two)

one

three

two

�

Dynamic decoding or lattice rescoring only.
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Discussion
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Modeling Medium-Distance Dependencies

N-gram models predict identity of next word . . .
Based on identities of words in fixed positions in past.
e.g., two words immediately to left.

Important words for prediction may occur elsewhere.
Important word for predicting SAW is DOG.

S

�
���

HHHH

NP
�� HH

DET
THE

N
DOG

VP
�� HH

V
SAW

PN
ROY
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Modeling Medium-Distance Dependencies

Important words for prediction may occur elsewhere.
Important word for predicting SAW is DOG.

S

�
����

H
HHHH

NP

����
HHHH

NP
�� HH

DET
THE

N
DOG

PP
�� HH

P
ON

A
TOP

VP
�� HH

V
SAW

PN
ROY

Instead of condition on fixed number of words back . . .
Condition on words in fixed positions in parse tree!?
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Using Grammatical Structure

Each constituent has headword.
Condition on preceding exposed headwords?

S
SAW

�
����

H
H

HHH

NP
DOG

��
��

HH
HH

NP
DOG

�� HH

DET
THE

N
DOG

PP
ON

�� HH

P
ON

A
TOP

VP
SAW

�� HH

V
SAW

PN
ROY
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Using Grammatical Structure

Predict next word based on preceding exposed headwords.

P( THE | . . )
P( DOG | . THE )
P( ON | . DOG )
P( TOP | DOG ON )
P( SAW | . DOG )
P( ROY | DOG SAW )

Picks most relevant preceding words . . .
Regardless of position.

Structured language model (Chelba and Jelinek, 2000).
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Hey, Where Do Parse Trees Come From?

Come up with grammar rules . . .
That describe legal constituents/parse trees.

S → NP VP
NP → DET N | PN | NP PP
N → dog | cat

Come up with probabilistic parametrization.
Way of assigning probabilities to parse trees.

PMLE(S → NP VP) =
c(S → NP VP)

c(S)

Can extract rules and train probabilities using treebank.
e.g., Penn Treebank (Switchboard, WSJ text).
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So, Does It Work?

Um, -cough-, kind of.
Issue: training is expensive.

SLM trained on 20M words of WSJ text.
Trigram model trained on 40M words of WSJ text.

Lattice rescoring.
SLM: 14.5% WER.
Trigram: 13.7% WER.

Can we get gains of both?
May ignore preceding two words even when useful.
Linear interpolation ⇒ 12.9%
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Recap: Structured Language Modeling

Grammatical language models not yet ready for prime time.
Need manually-parsed data to bootstrap parser.
Training is expensive; hard to scale.
“Decoding” is expensive; difficult to implement.
Easier to achieve gain with other methods.

If have exotic LM and need publishable results . . .
Interpolate with trigram model (“ROVER effect”).
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Discussion
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Modeling Long-Distance Dependencies
A group including Phillip C. Friedman , a Gardena , California ,
investor , raised its stake in Genisco Technology Corporation to
seven . five % of the common shares outstanding .

Neither officials of Compton , California - based Genisco , an
electronics manufacturer , nor Mr. Friedman could be reached for
comment .

In a Securities and Exchange Commission filing , the group said it
bought thirty two thousand common shares between August
twenty fourth and last Tuesday at four dollars and twenty five cents
to five dollars each .

The group might buy more shares , its filing said .

According to the filing , a request by Mr. Friedman to be put on
Genisco’s board was rejected by directors .

Mr. Friedman has requested that the board delay Genisco’s
decision to sell its headquarters and consolidate several divisions
until the decision can be " much more thoroughly examined to
determine if it is in the company’s interests , " the filing said .
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Modeling Long-Distance Dependencies

Observation: words and phrases in previous sentences . . .
Are more likely to occur in future sentences.
e.g., GENISCO, GENISCO’S, FRIEDMAN, SHARES.

Language model adaptation.
Adapt language model to current style or topic.
Similar in spirit to acoustic adaptation.

Distribution over single sentences P(ω = w1 · · ·wl) . . .
⇒ Sentence sequences P(~ω = ω1 · · ·ωL).
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Cache Language Models

How to boost probabilities of recently-occurring words?
Idea: build language model on recent words.

e.g., last k=500 words in current document.
How to combine with primary language model?

Linear interpolation.

Pcache(wi |wi−2wi−1, w i−1
i−500) =

λ× Pstatic(wi |wi−2wi−1) + (1− λ)× Pw i−1
i−500

(wi |wi−2wi−1)

Cache language models (Kuhn and De Mori, 1990).
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Beyond Cache Language Models

What’s the problem?
Does seeing THE boost the probability of THE?
Does seeing MATSUI boost the probability of YANKEES?

Can we induce which words trigger which other words?
Let’s say your training corpus is subdivided into articles.
How might one find trigger pairs?

HENSON MUPPETS
TELESCOPE ASTRONOMERS

CLOTS DISSOLVER
NODES LYMPH
SPINKS HEAVYWEIGHT

DYSTROPHY MUSCULAR
FEEDLOTS FEEDLOT

SCHWEPPES MOTT’S
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Trigger Language Models

How to combine with primary language model?
Linear interpolation?
Give word unigram count every time triggered?

Ptrig(wi |wi−2wi−1, w i−1
i−500) =

λ× Pstatic(wi |wi−2wi−1) + (1− λ)× Pw i−1
i−500

(wi)

Another way: maximum entropy models (Lau et al., 1993).
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Beyond Trigger Language Models

Some groups of words are mutual triggers.
e.g., IMMUNE, LIVER, TISSUE, TRANSPLANTS, etc.
Corresponding to topic, e.g., medicine.
Difficult to discover all pairwise relations: sparse data.

May not want to trigger words based on single event.
Some words are ambiguous.
e.g., LIVER ⇒ TRANSPLANTS or CHICKEN?

⇒ Topic language models.
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Topic Language Models

Assign topic(s) to each document in training corpus.
e.g., politics, medicine, Monica Lewinsky, cooking, etc.

For each topic, build topic-specific language model.
e.g., train n-gram model only on documents . . .
Labeled with topic.

Decoding.
Try to guess current topic (e.g., from past utterances).
Use appropriate topic-specific language model(s).
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Example: Seymore and Rosenfeld (1997)

Assigning topics to documents.
One way: manual labels, e.g., Broadcast News corpus.
Another way: automatic clustering.
Map each document to point in R|V | . . .
Based on frequency of each word in vocab.

Guessing current topic.
Select topic LM’s maximizing likelihood of test data.
Adapt on previous utterances or first-pass decoding.
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Example: Seymore and Rosenfeld (1997)

Training (transcript); topics: conspiracy; JFK assassination.

THEY WERE RIDING THROUGH DALLAS WITH THE KENNEDYS
WHEN THE FAMOUS SHOTS WERE FIRED
HE WAS GRAVELY WOUNDED
HEAR WHAT GOVERNOR AND MRS. JOHN CONNALLY THINK OF
THE CONSPIRACY MOVIE J. F. K. . . .

Test (decoded); topics: ???

THE MURDER OF J. F. K. WAS IT A CONSPIRACY
SHOULD SECRET GOVERNMENT FILES BE OPENED TO THE
PUBLIC
CAN THE TRAGIC MYSTERY EVER BE SATISFACTORILY
RESOLVED . . .
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Example: Seymore and Rosenfeld (1997)

Topic LM’s may be sparse.
Combine with general LM.

How to combine selected topic LM’s and general LM?
Linear interpolation!

Ptopic(wi |wi−2wi−1) =

λ0Pgeneral(wi |wi−2wi−1) +
T∑

t=1

λtPt(wi |wi−2wi−1)
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So, Do Cache Models Work?

Um, -cough-, kind of.
Good PP gains (up to ∼20%).
WER gains: little to none.

e.g., (Iyer and Ostendorf, 1999; Goodman, 2001).

47 / 112

What About Trigger and Topic Models?

Triggers.
Good PP gains (up to ∼30%)
WER gains: unclear; e.g., (Rosenfeld, 1996).

Topic models.
Good PP gains (up to ∼30%)
WER gains: up to 1% absolute.
e.g., (Iyer and Ostendorf, 1999; Goodman, 2001).
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Recap: Adaptive Language Modeling

ASR errors can cause adaptation errors.
In lower WER domains, LM adaptation may help more.

Large PP gains, but small WER gains.
What’s the dillio?

Increases system complexity for ASR.
e.g., how to adapt LM scores with static decoding?

Unclear whether worth the effort.
Not used in most products/live systems?
Not used in most research evaluation systems.
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Where Are We?

1 Short-Distance Dependencies: Word Classes

2 Medium-Distance Dependencies: Grammars

3 Long-Distance Dependencies: Adaptation

4 Discussion
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Recap

Short-distance dependencies.
Interpolate class n-gram with word n-gram.
<1% absolute WER gain; pain to implement?

Medium-distance dependencies.
Interpolate grammatical LM with word n-gram.
<1% absolute WER gain; pain to implement.

Long-distance dependencies.
Interpolate adaptive LM with static n-gram.
<1% absolute WER gain; pain to implement.

PP 6= WER.
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Turning It Up To Eleven (Goodman, 2001)

If short, medium, and long-distance modeling . . .
All achieve ∼1% WER gain . . .
What if combine them all with linear interpolation?

“A Bit of Progress in Language Modeling”.
Combined higher order n-grams, skip n-grams, . . .
Class n-grams, cache models, sentence mixtures.
Achieved 50% reduction in PP over word trigram.
⇒ ∼1% WER gain (WSJ N-best list rescoring).
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State of the Art Circa 2005

Commercial systems.
Word n-gram models.

Research systems, e.g., government evaluations.
No time limits; tiny differences in WER matter.
Interpolation of word 4-gram models.

Why aren’t people using ideas from LM research?
Too slow (1st pass decoding; rescoring?)
Gains not reproducible with largest data sets.
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Time To Give Up?

. . . we argue that meaningful, practical reductions in
word error rate are hopeless. We point out that trigrams
remain the de facto standard not because we don’t
know how to beat them, but because no improvements
justify the cost.

— Joshua Goodman (2001)
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Administrivia

Lab 4 due next Monday, December 3, at 11:59pm.
Reading projects: E-mail me paper selection by Friday.
Oral presentations for non-reading projects: December 17.

All papers due same day, 11:59pm.
Submit via Courseworks Drop Box.

Make-up lecture: Wednesday, December 5, 4:10–6:40pm.
Location: TBA.

Non-reading projects.
Will finish setups this week.
Optional checkpoint next Monday.
E-mail to schedule meeting before/after class.
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Unpaid Advertisement

Course Title: Fundamentals of Speaker Recognition
Course Number: COMS 6998-5
Instructor: Homayoon Beigi

Recognition Technologies, Inc.
Semester: Spring 2013
Time: Thursdays 7:10-9:00 PM

http://www.columbia.edu/cu/bulletin/uwb/subj/
COMS/E6998-20131-005/
http://www.recotechnologies.com/beigi
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Part II

Language Modeling, Post-2005-ish
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What Up?

Humans use short, medium, and long-distance info.
Short: BUY BEER, PURCHASE WINE.
Medium: complete, grammatical sentences.
Long: coherent sequences of sentences.

Sources of info seem complementary.
Yet, linear interpolation fails to yield cumulative gains.

Maybe instead of hammer, need screwdriver?
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How Should a Good LM Act?

Say we have 1M sentences of training data D.

FEDERAL HOME LOAN MORTGAGE CORPORATION –DASH ONE
.POINT FIVE BILLION DOLLARS OF REALESTATE MORTGAGE
-HYPHEN INVESTMENT CONDUIT SECURITIES OFFERED BY
MERRILL LYNCH &AMPERSAND COMPANY .PERIOD

NONCOMPETITIVE TENDERS MUST BE RECEIVED BY NOON
EASTERN TIME THURSDAY AT THE TREASURY OR AT FEDERAL
RESERVE BANKS OR BRANCHES .PERIOD . . .

Build LM P(ω) on this data.
Generate 1M sentences of text D′ according to P(ω).
If word THE occurs c(THE) times in D . . .

How many times should occur in D′ for “good” LM?
What about for bigram OF THE? Or any other n-gram?
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Are Interpolated LM’s “Good”?

Build two models completely independently.
Linearly interpolate, e.g.,

Pcombine(wi |wi−2wi−1) = λ× Pword(wi |wi−2wi−1)+

(1− λ)× Pclass(wi |wi−2wi−1)

Any guarantees resulting model is “good”?
Example: tuned word/class n-gram model, 1M sentences.

cD(IN HONG KONG) = 564.
cD′(IN HONG KONG) = 458.

62 / 112

Is There Another Way?

Can we combine multiple information sources . . .
e.g., short, medium, and long-distance info . . .

Such that resulting language model . . .
Is guaranteed to be “good”?
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Constraint-Based Modeling

Come up with set of constraints on final LM.
Find LM that satisfies all the constraints.

e.g., want P(ω) such that when generate 1M sentences . . .
IN HONG KONG occurs 564 times on average.

Let fIN HONG KONG(ω) be number of times . . .
IN HONG KONG occurs in ω.

106 × EP(ω)[fIN HONG KONG(ω)] = 564

106 ×
∑

ω

P(ω)fIN HONG KONG(ω) = 564
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More Generally

Denote training data D as (ω1, . . . , ωD).
Count of IN HONG KONG in training data:

D∑
d=1

fIN HONG KONG(ωd) = 564

Then, our constraint becomes:

D∑
d=1

∑
ω

P(ω)fIN HONG KONG(ω) =
D∑

d=1

fIN HONG KONG(ωd)
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Constraints and Feature Functions

Each feature function fα(ω) determines a constraint:

D∑
d=1

∑
ω

P(ω)fα(ω) =
D∑

d=1

fα(ωd)

What can feature functions fα(ω) look like?
How many times IN HONG KONG occurs in ω?
How many times [FOOD] [PREP] [DAY] occurs in ω?
Return 1 if ω is grammatical, 0 otherwise.
Return 1 if both HENSON and MUPPETS occur in ω.
Or anything else that can be computed!
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Constraint-Based Modeling

Given set of feature functions/constraints:

D∑
d=1

∑
ω

P(ω)f1(ω) =
D∑

d=1

f1(ωd)

D∑
d=1

∑
ω

P(ω)f2(ω) =
D∑

d=1

f2(ωd)

. . . . . . . . . . . . . . . . . .

How to find model P(ω) satisfying constraints?
Problem: in general, many P(ω) possible.

Which one to pick?
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Maximum Entropy Principle (Jaynes, 1957)

The entropy H(P) of P(ω) is

H(P) = −
∑

ω

P(ω) log P(ω)

Entropy ⇔ uniformness ⇔ least assumptions.
Of models satisfying constraints . . .

Pick one with highest entropy!
Capture constraints; assume nothing more!
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Can We Find the Maximum Entropy Model?

Given features f1(x , y), . . . , fF (x , y).
ME model satisfying associated constraints has form:

PΛ(ω) =
1
ZΛ

exp(
F∑

i=1

λi fi(ω))

One parameter per feature: Λ = {λi , . . . , λF}.
If fi(ω) 6= 0, multiply prob by eλi fi (ω).

ZΛ = normalizer =
∑

ω exp(
∑F

i=1 λi fi(ω)).
a.k.a. exponential model, log-linear model.
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How to Find the λi ’s?

PΛ(ω) =
1
ZΛ

exp(
F∑

i=1

λi fi(ω))

{λi}’s satisfying constraints . . .
Are ML estimates of {λi}!

Training set likelihood is convex function of {λi}!
Can find {λi} using hill-climbing.
e.g., iterative scaling; L-BFGS.
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Conditional Modeling (Berger et al., 1996)

Joint formulation: ω = sentence.

D = (ω1, . . . , ωD)
D∑

d=1

∑
ω

P(ω)fi(ω) =
D∑

d=1

fi(ωd)

PΛ(ω) =
1

ZΛ
exp(

F∑
i=1

λi fi(ω))

Conditional formulation: h = history; w = predicted word.

D = ((h1, w1), . . . , (hD, wD))
D∑

d=1

∑
w

P(w |hd)fi(hd , w) =
D∑

d=1

fi(hd , wd)

PΛ(w |h) =
1

ZΛ(h)
exp(

F∑
i=1

λi fi(h, w))
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Recap: Maximum Entropy Modeling

Elegant as all hell.
Principled way to combine lots of information sources.

Design choice: which constraints to enforce?
Can use arbitrary feature functions!

Single global optimum when training parameters.
Given features, “straightforward” to compute LM.

But does it blend?
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Maximum Entropy N-gram Models?

Can maximum entropy modeling . . .
Help build a better word n-gram model?

Conditional formulation: one constraint per seen n-gram.

fI LIKE BIG(h, w) =

{
1 if hw ends in I LIKE BIG
0 otherwise

Problem: MLE model is same as before!!!
Assigns zero-ish probs to unseen n-grams.
Maximum entropy-ness doesn’t prevent overfitting.
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Smoothing for Exponential Models

Point: don’t want to match training counts exactly!
Can implement “fuzzy” constraints via penalty term:

obj fn = log PPtrain +
1

(# train wds)
(penalty for large |λi |)

The smaller |λi | is, the smaller its effect . . .
And the smoother the model.

e.g., `2
2 regularization (e.g., Chen and Rosenfeld, 2000).

(penalty) =
F∑

i=1

λ2
i

2σ2
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Smoothing for Exponential Models (WSJ 4g)
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Yay!?

Smoothed exponential n-gram models perform well.
Why don’t people use them?

Conventional n-gram: count and normalize.
Exponential n-gram: run 100 iterations of training.

Is there way to do constraint-based modeling . . .
Within conventional n-gram framework?
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Kneser-Ney Smoothing (1995)

Back-off smoothing.

PKN(wi |wi−1) =

{
Pprimary(wi |wi−1) if c(wi−1wi) > 0

αwi−1PKN(wi) otherwise

PKN(wi) chosen such that . . .
Unigram constraints met exactly.

79 / 112

Kneser-Ney Smoothing

Unigram probabilities PKN(wi) . . .
Not proportional to how often unigram occurs.

PKN(wi) 6=
c(wi)∑
wi

c(wi)

Proportional to how many word types unigram follows!

N1+(•wi) ≡ |{wi−1 : c(wi−1wi) > 0}|

PKN(wi) =
N1+(•wi)∑
wi

N1+(•wi)
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Kneser-Ney Smoothing
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Recap: N-Gram Models and Smoothing

Best n-gram smoothing methods are all constraint-based.
Can express smoothed n-gram models as . . .

Exponential models with simple `2
2 smoothing.

“Modified” interpolated Kneser-Ney smoothing† . . .
Yields similar model, but much faster training.
Standard in literature for last 10+ years.

Available in SRI LM toolkit.
http://www.speech.sri.com/projects/srilm/

†(Chen and Goodman, 1998).
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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What About Other Features?

Exponential models make slightly better n-gram models.
Snore.

Can we just toss in tons of cool features . . .
And get fabulous results?
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http://www.speech.sri.com/projects/srilm/


Maybe!? (Rosenfeld, 1996)

38M words of WSJ training data.
Trained maximum entropy model with . . .

Word n-gram; skip n-gram; trigger features.
Interpolated with regular word n-gram and cache.

39% reduction in PP, 2% absolute reduction in WER.
Baseline: (pruned) Katz-smoothed(?) trigram model.

Contrast: Goodman (2001), -50% PP, -0.9% WER.
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What’s the Catch?

200 computer-days to train.
Really slow training.

For each word, update O(|V |) counts.

D∑
d=1

∑
w

P(w |hd)fi(hd , w) =
D∑

d=1

fi(hd , wd)

Tens of passes through training data.
Really slow evaluation: evaluating ZΛ(x).

PΛ(w |h) =
exp(

∑F
i=1 λi fi(h, w))

ZΛ(h)

ZΛ(h) =
∑
w ′

exp(
F∑

i=1

λi fi(h, w ′))
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Newer Developments

Fast training: optimizations for simple feature sets.
e.g., train word n-gram model on 1GW in few hours.

Fast evaluation: unnormalized models.
Not much slower than regular word n-gram.

PΛ(w |h) = exp(
F∑

i=1

λi fi(h, w))

Performance prediction.
How to intelligently select feature types.
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Performance Prediction (Chen, 2008)

Given training set and test set from same distribution.
Desire: want to optimize performance on test set.
Reality: only have access to training set.

(test perf) = (training perf) + (overfitting penalty)

Can we estimate overfitting penalty?

88 / 112



Yes

log PPtest − log PPtrain ≈
0.938

(# train wds)

F∑
i=1

|λi |
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A Tool for Good

Holds for many different types of data.
Different domains; languages; token types; . . .
Vocab sizes; training set sizes; n-gram orders.

Holds for many different types of exponential models.
Word n-gram models; class-based n-gram models; . . .
Minimum discrimination information models.

Explains lots of diverse aspects of language modeling.
Can choose features types . . .

To intentionally shrink
∑F

i=1 |λi |.
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Model M (Chen, 2008; Chen and Chu, 2010)

Old-timey class-based model (Brown, 1992).
Class prediction features: ci−2ci−1ci .
Word prediction features: ciwi .

P(wi |wi−2wi−1) = P(ci |ci−2ci−1)× P(wi |ci)

Start from word n-gram model; convert to class model . . .
And choose feature types to reduce overfitting.
Class prediction features: ci−2ci−1ci , wi−2wi−1ci .
Word prediction features: wi−2wi−1ciwi .

Without interpolation with word n-gram model.
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Model M (WSJ)
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Recap: Maximum Entropy

Some of best WER results in LM literature.
Gain of up to 3% absolute WER over trigram (not <1%).

Can surpass linear interpolation in WER in many contexts.
Log-linear interpolation.
Each is appropriate in different situations. (When?)
Together, powerful tool set for model combination.

Performance prediction explains existing models . . .
And helps design new ones!

Training can still be very painful.
Depends very much on types of features.
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Where Are We?

1 Introduction to Maximum Entropy Modeling
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5 Discussion
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Introduction

Ways to combine information sources.
Linear interpolation.
Exponential/log-linear models.
Anything else?

Recently, good results with neural networks.
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What Is A Neural Network?

Represents function from input vector to output vector.

f : RN1 ⇒ RNL

Function is represented using sequence of L layers.
First layer is input layer; last is output layer.
Intermediate layers are hidden layers.
Each layer is vector xl = (x l

1, . . . , x l
Nl

) ∈ RNl .
Values in (l + 1)th layer are function of values in l th layer.

g(·) is linear/non-linear increasing func, e.g., sigmoid.

x l+1
i = g(

Nl∑
j=1

w l
ijx

l
j )

Select parameters of model, i.e., weights w l
ij , . . .

To optimize objective function of choice . . .
Using gradient descent-ish algorithm like backprop.
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Designing a Neural Network LM

What we have: something that learns f : RN1 ⇒ RNL.
What we want: something that models P(wi |wi−2wi−1).
How to map from words to continuous space?

Binary coding.
To code one of V words, use vector of length V .
For v th word, 1 in position v , 0 everywhere else.
Input layer: (n − 1)× V units; output layer: V units.

Outputting a probability: softmax function.

pi =
exL

i∑NL
j=1 exL

j

Objective function: training set likelihood + regularization.
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Example (Schwenk and Gauvain, 2005)

time consuming and the algorithms used with sev-
eral tens of millions examples may be impracticable
for larger amounts. Training back-off LMs on large
amounts of data is not a problem, as long as power-
ful machines with enough memory are available in
order to calculate the word statistics. Practice has
also shown that back-off LMs seem to perform very
well when large amounts of training data are avail-
able and it is not clear that the above mentioned new
approaches are still of benefit in this situation.

In this paper we compare the neural network
language model ton-gram model with modified
Kneser-Ney smoothing using LM training corpora
of up to 600M words. New algorithms are pre-
sented to effectively train the neural network on such
amounts of data and the necessary capacity is ana-
lyzed. The LMs are evaluated in a real-time state-
of-the-art speech recognizer for French Broadcast
News. Word error reductions of up to 0.5% abso-
lute are reported.

2 Architecture of the neural network LM

The basic idea of the neural network LM is to project
the word indices onto a continuous space and to use
a probability estimator operating on this space (Ben-
gio and Ducharme, 2001; Bengio et al., 2003). Since
the resulting probability functions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. A neural
network can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate then-gram probabilities. This is still a
n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts.

The architecture of the neural networkn-gram
LM is shown in Figure 1. A standard fully-
connected multi-layer perceptron is used. The
inputs to the neural network are the indices of
the n−1 previous words in the vocabularyhj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the pos-
terior probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., thei-th word
of the vocabulary is coded by setting thei-th ele-
ment of the vector to 1 and all the other elements to

projection
layer hidden

layer

output
layerinput

projections
shared

continuous
representation: representation:

indices in wordlist

LM probabilitiesdiscrete
for all words

probability estimation

Neural Network

N

wj−1 P

H

N

P (wj=1|hj)
wj−n+1

wj−n+2

P (wj=i|hj)

P (wj=N|hj)

P dimensional vectors

ck

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the neural network
language model. hj denotes the context
wj−n+1, ..., wj−1. P is the size of one projec-
tion and H and N is the size of the hidden and
output layer respectively. When shortlists are used
the size of the output layer is much smaller then the
size of the vocabulary.

0. Thei-th line of theN ×P dimensional projection
matrix corresponds to the continuous representation
of thei-th word. Let us denoteck these projections,
dj the hidden layer activities,oi the outputs,pi their
softmax normalization, andmjl, bj , vij andki the
hidden and output layer weights and the correspond-
ing biases. Using these notations the neural network
performs the following operations:

dj = tanh

(∑
l

mjl cl + bj

)
(2)

oi =
∑
j

vij dj + ki (3)

pi = eoi /
N∑

k=1

eok (4)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj). Training is
performed with the standard back-propagation algo-
rithm minimizing the following error function:

E =
N∑

i=1

ti log pi + β(
∑
jl

m2
jl +

∑
ij

v2
ij) (5)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next word in the training
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The Hidden Layers

1st hidden layer: projection layer.
Project each word in history from sparse Vd vector . . .
Down to ∼100d using shared linear projection.

2nd hidden layer: “real” hidden layer.
Nonlinear function of first layer, e.g., tanh().
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Recurrent NN LM’s (Mikolov et al., 2010)

EXTENSIONS OF RECURRENT NEURAL NETWORK LANGUAGEMODEL

Tomáš Mikolov1,2, Stefan Kombrink1, Lukáš Burget1, Jan “Honza” Černocký1, Sanjeev Khudanpur2

1Brno University of Technology, Speech@FIT, Czech Republic
2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA
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ABSTRACT
We present several modifications of the original recurrent neural net-
work language model (RNN LM). While this model has been shown
to significantly outperform many competitive language modeling
techniques in terms of accuracy, the remaining problem is the com-
putational complexity. In this work, we show approaches that lead
to more than 15 times speedup for both training and testing phases.
Next, we show importance of using a backpropagation through time
algorithm. An empirical comparison with feedforward networks is
also provided. In the end, we discuss possibilities how to reduce the
amount of parameters in the model. The resulting RNN model can
thus be smaller, faster both during training and testing, and more
accurate than the basic one.

Index Terms— language modeling, recurrent neural networks,
speech recognition

1. INTRODUCTION

Statistical models of natural language are a key part of many systems
today. The most widely known applications are automatic speech
recognition (ASR), machine translation (MT) and optical charac-
ter recognition (OCR). In the past, there was always a struggle be-
tween those who follow the statistical way, and those who claim that
we need to adopt linguistics and expert knowledge to build mod-
els of natural language. The most serious criticism of statistical ap-
proaches is that there is no true understanding occurring in these
models, which are typically limited by the Markov assumption and
are represented by n-gram models. Prediction of the next word is
often conditioned just on two preceding words, which is clearly in-
sufficient to capture semantics. On the other hand, the criticism of
linguistic approaches was even more straightforward: despite all the
efforts of linguists, statistical approaches were dominating when per-
formance in real world applications was a measure.

Thus, there has been a lot of research effort in the field of statis-
tical language modeling. Among models of natural language, neural
network based models seemed to outperform most of the competi-
tion [1] [2], and were also showing steady improvements in state of
the art speech recognition systems [3]. The main power of neural
network based language models seems to be in their simplicity: al-
most the same model can be used for prediction of many types of
signals, not just language. These models perform implicitly cluster-
ing of words in low-dimensional space. Prediction based on this
compact representation of words is then more robust. No additional
smoothing of probabilities is required.

This work was partly supported by European project DIRAC (FP6-
027787), Grant Agency of Czech Republic project No. 102/08/0707, Czech
Ministry of Education project No. MSM0021630528 and by BUT FIT grant
No. FIT-10-S-2.

Fig. 1. Simple recurrent neural network.

Among many following modifications of the original model, the
recurrent neural network based language model [4] provides further
generalization: instead of considering just several preceding words,
neurons with input from recurrent connections are assumed to repre-
sent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks
(those with just one hidden layer) can only cluster similar words,
recurrent neural network (which can be considered as a deep archi-
tecture [5]) can perform clustering of similar histories. This allows
for instance efficient representation of patterns with variable length.

In this work, we show the importance of the Backpropagation
through time algorithm for learning appropriate short term memory.
Then we show how to further improve the original RNN LM by de-
creasing its computational complexity. In the end, we briefly discuss
possibilities of reducing the size of the resulting model.

2. MODEL DESCRIPTION

The recurrent neural network described in [4] is also called Elman
network [6]. Its architecture is shown in Figure 1. The vector x(t) is
formed by concatenating the vector w(t) that represents the current
word while using 1 of N coding (thus its size is equal to the size of
the vocabulary) and vector s(t − 1) that represents output values in
the hidden layer from the previous time step. The network is trained
by using the standard backpropagation and contains input, hidden
and output layers. Values in these layers are computed as follows:

x(t) = [w(t)T
s(t − 1)T ]T (1)

sj(t) = f

 X
i

xi(t)uji

!
(2)

yk(t) = g

 X
j

sj(t)vkj

!
(3)

5528978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011
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Results (Mikolov et al., 2011)Table 6: Comparison of advanced language modeling tech-
niques on the WSJ task with all training data.

Model Dev WER[%] Eval WER[%]
Baseline - KN5 12.2 17.2
Discriminative LM [14] 11.5 16.9
Joint LM [7] - 16.7
Static RNN 10.5 14.9
Static RNN + KN 10.2 14.6
Adapted RNN 9.8 14.5
Adapted RNN + KN 9.8 14.5
All RNN 9.7 14.4

5. Conclusion and future work
On the Penn Treebank, we achieved a new state of the art result
by using a combination of many advanced language modeling
techniques, surpassing previous state of the art by a large margin
- the obtained perplexity 79.4 is significantly better than 96 re-
ported in our previous work [5]. Compared to the perplexity of
Good-Turing smoothed trigram that is 165.2 on this setup, we
have achieved 52% reduction of perplexity, and 14.3% reduc-
tion of entropy. Compared to the 5-gram with modified Kneser-
Ney smoothing that has perplexity 141.2, we obtained 44% re-
duction of perplexity and 11.6% reduction of entropy.

On the WSJ task, we have shown that the possible improve-
ments actually increase with more training data. Although we
have used just two RNNLMs that were trained on all data, we
observed similar gains as on the previous setup. Against Good-
Turing smoothed trigram that has perplexity 246, our final result
108 is by more than 56% lower (entropy reduction 15.0%). The
5-gram with modified Kneser-Ney smoothing has on this task
perplexity 212, thus our combined result is by 49% lower (en-
tropy reduction 12.6%).

As far as we know, our work is the first attempt to com-
bine many advanced language modeling techniques after the
work done by Goodman [1], as usually combination of only
two or three techniques is reported. We have found that many
techniques are actually redundant and do not contribute signif-
icantly to the final combination - it seems that by using Re-
current neural network based language models and a standard
n-gram model, we can obtain near-optimal results. However,
this should not be interpreted as that further work on other tech-
niques is useless. We are aware of several possibilities how to
make better use of individual models - it was reported that log-
linear interpolation of models [15] outperforms in some cases
significantly the basic linear interpolation. While we have not
seen any significant gains when we combined log-linearly indi-
vidual RNNLMs, for combination of different techniques, this
might be an interesting extension of our work in the future.
However, it should be noted that log-linear interpolation is com-
putationally very expensive.

As the final combination is dominated by the RNNLM, we
believe that future work should focus on its further extension.
We observed that combination of different RNNLMs works bet-
ter than any individual RNNLM. Even if we combine models
that are individually suboptimal, as was the case when we used
large learning rate during adaptation, we observe further im-
provements. This points us towards investigating Bayesian neu-
ral networks, that consider all possible parameters and hyper-
parameters. We actually assume that combination of RNNLMs
behaves as a crude approximation of a Bayesian neural network.
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Discussion

Some of best WER results in LM literature.
Gain of up to 3% absolute WER over trigram (not <1%).

Interpolation with word n-gram optional.
Can integrate arbitrary features, e.g., syntactic features.

Easy to condition on longer histories.
Training is slow.

Optimizations: class-based modeling; reduced vocab.
Evaluation is slow: matrix multiplies.
Hard to analyze; tuning essential?
Related to exponential models.
Publicly-available toolkit:

http://www.fit.vutbr.cz/~imikolov/rnnlm/
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Where Are We?

1 Introduction to Maximum Entropy Modeling

2 N-Gram Models and Smoothing, Revisited

3 Maximum Entropy Models, Part III

4 Neural Net Language Models

5 Discussion
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Other Directions in Language Modeling

Discriminative training for LM’s.
Super ARV LM.
LSA-based LM’s.
Variable-length n-grams; skip n-grams.
Concatenating words to use in classing.
Context-dependent word classing.
Word classing at multiple granularities.
Alternate parametrizations of class n-grams.
Using part-of-speech tags.
Semantic structured LM.
Sentence-level mixtures.
Soft classing.
Hierarchical topic models.
Combining data/models from multiple domains.
Whole-sentence maximum entropy models.
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http://www.fit.vutbr.cz/~imikolov/rnnlm/


What Is Used In Real Deployed Systems?

Technology.
Mostly n-gram models; grammars.
Grammar switching based on dialogue state.

Users cannot distinguish WER differences a few percent.
Good UI design is WAY, WAY, WAY more important . . .
Than small differences in ASR performance.

Research developments in language modeling.
Not worth extra effort and complexity.
The more the data, the less the gain!
Difficult to implement in one-pass decoding paradigm.†

†Model M supported in IBM’s Attila dynamic decoder.
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Large-Vocabulary Research Systems

e.g., government evals: Switchboard, Broadcast News.
Small differences in WER matter.
Interpolation of word n-gram models . . .
Built from different corpora.
Neural net LM’s; Model M (-0.5% WER?)

Modeling medium-to-long-distance dependencies.
Almost no gain in combination with other techniques?
Not worth extra effort and complexity.

LM gains pale in comparison to acoustic modeling gains.
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An Apology to N-Gram Models

I didn’t mean what I said about you.
You know I was kidding when I said . . .

You are great to poop on.
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Where Do We Go From Here?

N-gram models are just really easy to build.
Can train on billions and billions of words.
Smarter LM’s tend to be orders of magnitude slower.
Faster computers? Data sets also growing.

Need to effectively combine many sources of information.
Short, medium, and long distance.
Log-linear models, NN’s promising, but slow to train.

Evidence that LM’s will help more when WER’s are lower.
Human rescoring of N-best lists (Brill et al., 1998).
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The Road Ahead

Lecture 11 (12/3): Robustness; adaptation.
Lecture 12 (12/5): Discriminative training; ROVER.
Lecture 13 (12/10): Deep belief networks.
Final exam week (12/17): Project presentations.
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Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?
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