General Motivation

Lecture 10 @ The primary goal for a speech recognition system is to
accurately recognize the words.
Discriminative Training, ROVER, and Consensus @ The modeling and adaptation techniques we have studied

till now implicitly address this goal.

@ Today we will focus on techniques explicitly targeted to
improving accuracy.
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Where Are We? Where Are We?

a Linear Discriminant Analysis

@ LDA - Motivation
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Principle Component Analysis-Motivation

Linear Discriminant Analysis - Motivation

In a typical HMM using Gaussian Mixture Models we assume We are in trouble.
diagonal covariances.

This assumes that the classes to be discriminated between lie Py
along the coordinate axes: 2
""

SRS
First, we can try to rotate the coordinate axes to better lie along

What if that is NOT the case? the main sources of variation.
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Linear Discriminant Analysis - Motivation Linear Discriminant Analysis - Computation

If the main sources of class variation do NOT lie along the main How do we find the best directions?
source of variation we need to find the best directions:

JN\
JAVAN
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Where Are We? Eigenvectors and Eigenvalues

A key concept in finding good directions are the eigenvalues and
eigenvectors of a matrix.

The eigenvalues and eigenvectors of a matrix are defined by the
@ Eigenvectors and Eigenvalues following matrix equation:

AX = )X

For a given matrix A the eigenvectors are defined as those
vectors x for which the above statement is true. Each
eigenvector has an associated eigenvalue, \.

9/86 10/86

Eigenvectors and Eigenvalues - continued Eigenvectors and Eigenvalues - continued

To solve this equation, we can rewrite it as For example, let us say

(A—X)x=0 A—[ 2 _41

=1 =1
If xis non-zero, the only way this equation can be solved is if the
determinant of the matrix (A — Al) is zero. In such a case,
The determinant of this matrix is a polynomial (called the p(\) = 2—-\ -4 '
characteristic polynomial) p()). -1 —1-=2
= (2-=XN)(-1-X)—(—4)(-1
The roots of this polynomial will be the eigenvalues of A. B g\Z )\)( 5 )= (=91
(A=3)(A+2)

Therefore, A\ = 3 and X\, = —2 are the eigenvalues of A.
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Eigenvectors and Eigenvalues - continued

To find the eigenvectors, we simply plug in the eigenvalues into
(A — Al)x = 0 and solve for x. For example, for \; = 3 we get

2-3 -4 xx| |0
-1 -1-3 x| |0
Solving this, we find that x; = —4x,, so all the eigenvector

corresponding to \; = 3 is a multiple of [-4 1].

Similarly, we find that the eigenvector corresponding to Ay = —2
is a multiple of [1 1]".
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Principal Component Analysis-Derivation

PCA assumes that the directions with "maximum" variance are
the "best" directions for discrimination. Do you agree?

Problem 1: First consider the problem of "best" representing a
set of vectors Xy, Xz, ..., X, by a single vector Xo.

Find x, that minimizes the sum of the squared distances from
the overall set of vectors.

N
Jo(X0) = ) _ Xk — Xof?
pa
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Where Are We?

@ PCA - Derivation
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Principal Component Analysis-Derivation

It is easy to show that the sample mean, m, minimizes J,, where

m is given by
m—x— 3 x
- O_Nk:1 k

X2
X

X
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Principal Component Analysis-Derivation

Problem 2: Given we have the mean m, how do we find the next
single direction that best explains the variation between vectors?

Let e be a unit vector in this "best" direction.

In such a case, we can express a vector x as
X=m-+ ae

X
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Principal Component Analysis-Derivation

How do we find the best direction e? If we substitute the above
solution for ax into the formula for the overall mean square error
we get after some manipulation:

N
Ji(e)=—e’Se+ ) |x,—mf

k=1

where S is called the Scatter matrix and is given by:

S=) (Xk—m)(xx—m)’

N
k=1

Notice the scatter matrix just looks like N times the sample
covariance matrix of the data.
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Principal Component Analysis-Derivation

Principal Component Analysis-Derivation

For the vectors xx we can find a set of a,s that minimizes the
mean square error:

N

J‘I(a17327 .- '7aN7e) = Z |xk - (m + ake)‘z
k=1

If we differentiate the above with respect to a, we get

ax = e’ (Xx —m)

18/86

To minimize J; we want to maximize e’ Se subject to the

constraint that |e| = e"e = 1. Using Lagrange multipliers we
write

u=e'Se—)e'e
Differentiating u w.r.t e and setting to zero we get:
2Se —2)e =0

or
Se = )\e

So to maximize e’ Se we want to select the eigenvector of S
corresponding to the largest eigenvalue of S.
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Principal Component Analysis-Derivation Where Are We?

Problem 3: How do we find the best d directions?

Express x as
d
X=m-+ Z a,e;
i=1

In this case, we can write the mean square error as

N d
Jg = Z |(m + Z ak,-e,-) — Xk|2
k=1 =1

and it is not hard to show that Jy is minimized when the vectors
e, e,,...,ey correspond to the d largest eigenvectors of the
scatter matrix S.

@ LDA - Derivation

21/86
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Linear Discriminant Analysis - Derivation Linear Discriminant Analysis - Derivation

What if the class variation does NOT lie along the directions of
maximum data variance?

Let us say we have vectors corresponding to ¢ classes of data.
We can define a set of scatter matrices as above as

Si=> (x—m)(x—m,)’

XeD;

where m; is the mean of class /. In this case we can define the
within-class scatter (essentially the average scatter across the
classes relative to the mean of each class) as just:

c
Sw=>_8
i=1
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Linear Discriminant Analysis - Derivation

Another useful scatter matrix is the between class scatter
matrix, defined as
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Linear Discriminant Analysis - Derivation

We would like to determine a set of directions V such that the
classes c¢ are maximally discriminable in the new coordinate
space given by

X = Vx

26/86

Linear Discriminant Analysis - Derivation

A reasonable measure of discriminability is the ratio of the
volumes represented by the scatter matrices. Since the
determinant of a matrix is a measure of the corresponding
volume, we can use the ratio of determinants as a measure:

_ ISsl

J—
Swl

Why is this a good thing?

So we want to find a set of directions that maximize this
expression.
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Linear Discriminant Analysis - Derivation

With a little bit of manipulation similar to that in PCA, it turns out

that the solution are the eigenvectors of the matrix
S,/ Ss

which can be generated by most common mathematical
packages.
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Where Are We?

Linear Discriminant Analysis in Speech

Recognition

The most successful uses of LDA in speech recognition are
achieved in an interesting fashion.

@ Speech recognition training data are aligned against the
underlying words using the Viterbi alignment algorithm
described in Lecture 4.

@ Using this alignment, each cepstral vector is tagged with a

. " different phone or sub-phone. For English this typically
® Applying LDA to Speech Recognition results in a set of 156 (52x3) classes.
@ For each time t the cepstral vector x; is spliced together
with N /2 vectors on the left and right to form a
“supervector” of N cepstral vectors. (N is typically 5-9
frames.) Call this “supervector” y;.
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Linear Discriminant Analysis in Speech
Recognition

Linear Discriminant Analysis in Speech

Recognition

@ The LDA procedure is applied to the supervectors y;.

@ The top M directions (usually 40-60) are chosen and the
supervectors y; are projected into this lower dimensional
space.

@ The recognition system is retrained on these lower
dimensional vectors.

@ Performance improvements of 10%-15% are typical.
@ Almost no additional computational or memory cost!
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Where Are We?

e Maximum Mutual Information Estimation
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Training via Maximum Mutual Information

Fundamental Equation of Speech Recognition:

p(si0) = AL

where S is the sentence and O are our observations. p(O|S)
has a set of parameters 6 that are estimated from a set of
training data, so we write this dependence explicitly: py(O|S).

We estimate the parameters 6 to maximize the likelihood of the
training data. Is this the best thing to do?
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Where Are We?

@ Discussion of ML Estimation
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Main Problem with Maximum Likelihood

Estimation

The true distribution of speech is (probably) not generated by an
HMM, at least not of the type we are currently using.

Therefore, the optimality of the ML estimate is not guaranteed
and the parameters estimated may not result in the lowest error
rates.

Rather than maximizing the likelihood of the data given the

model, we can try to maximize the a posteriori probability of the
model given the data:

OMMI = arg gnax Ps(S|0)
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Where Are We? MMI Estimation

It is more convenient to look at the problem as maximizing the
logarithm of the a posteriori probability across all the sentences:

9MM| = arg gnax Z Iog ,09(3,'|0,')

ps(0i|Si)p(S;)
= arg max lo
gmax2 100" 0)

= argmax ) _log p9(0,~|S,-)§)(S,-)j
o T 2Pe(0i1S)P(S)

@ Basic Principles of MMI Estimation

where S{f refers to the jth possible sentence hypothesis given a
set of acoustic observations O,
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Comparison to ML Estimatior

In ordinary ML estimation, the objective is to find 6 : @ Make-up class: Wednesday, 4:10—6:40pm, right here.
e Deep Belief Networks!
oML = arg max Z log ps(01[Si) e Lab 4 to be handed back Wednesday.
]

@ Next Monday: presentations for non-reading projects.
@ Papers due next Monday, 11:59pm.

Advantages: o
e Submit via Courseworks DropBox.

@ Only need to make computations over correct sentence.
@ Simple algorithm (F-B) for estimating 6

MMI much more complicated.
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Where Are We? MMI Training Algorithm

@ Overview of MMI Training Algorithm
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MMI Training Algorithm MMI Training Algorithm

The MMI objective function is

S)p(S)
2! gZpa( 0/18)p(S)

We can view this as comprising two terms, the numerator, and
the denominator.

We can increase the objective function in two ways:

@ Increase the contribution from the numerator term.
@ Decrease the contribution from the denominator term.

Either way this has the effect of increasing the probability of the
correct hypothesis relative to competing hypotheses.
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A forward-backward-like algorithm exists for MMI training [2].

Derivation complex but resulting estimation formulas are
surprisingly simple.

We will just present formulae for the means.
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Let
um — Zo 1)y 1)
o = zo (055300

vl (t) are the observation counts for state k, mixture

component m, computed from running the forward-backward
algorithm on the “correct” sentence S; and

~v9en(t) are the counts computed across all the sentence

hypotheses for S;

Review: What do we mean by counts?
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MMI Training Algorithm

The MMI estimate for i is:

Lk = e%ukm - egs(n + Dmk:u/mk
mk =
T = Vi + Dk

@ The factor D, is chose large enough to avoid problems
with negative count differences.

@ Notice that ignoring the denominator counts results in the
normal mean estimate.

@ A similar expression exists for variance estimation.
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Computing the Denominator Counts

1. From the previous lectures, realize that the set of sentence
hypotheses are just captured by a large HMM for the entire
sentence:
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Counts can be collected on this HMM the same way counts are
collected on the HMM representing the sentence corresponding
to the correct path.
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Computing the Denominator Counts

Computing the Denominator Counts

The major component of the MMI calculation is the computation
of the denominator counts. Theoretically, we must compute
counts for every possible sentence hypotheis. How can we
reduce the amount of computation?
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2. Use a ML decoder to generate a “reasonable” number of
sentence hypotheses and then use FST operations such as
determinization and minimization to compactify this into an
HMM graph (/attice).

3. Do not regenerate the lattice after every MMI iteration.
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Other Computational Issues

Because we ignore correlation, the likelihood of the data tends

to be dominated by a very small number of lattice paths (Why?). o =T
O(MLE) 44 4 45.¢
To increase the number of confusable paths, the likelihoods are Tk
. . (3xCHE) 2.0 3.5
scaled with an exponential constant: 5 718 29
2 (3xCHE) 11.9 }
Z log pu(91 S,-)*;p(S,-)*; T CHE t g oty
22 Pe(0i] ;) p(S;)"
For similar reasons, a weaker language model (unigram) is used R
to generate the denominator lattice. This also simplifies None ]| 446 | 425
MLLR 42.1 399

denominator lattice generation.

Table 8: Effect of MLLR on MLE and MMIE trained models.

Note that results hold up on a variety of other tasks as well.
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Where Are We? Variations and Embellishments

@ MPE - Minimum Phone Error.

@ BMMI - Boosted MMI.

@ MCE - Minimum Classification Error.

@ FMPE/fMMI - feature-based MPE and MMI.

@ Variations on MMI Training
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MPE

bMMI

> Pe(0i]5)"p(S))*A(Srer, S;) | Po(Oi[S)"P(S)"
2,-: > Ps(0i[S))p(S))" Z > > Po(0i|S))"p(S))" exp(—bA(S], Srer))

@ Ais a phone-frame accuracy function as in MPE.

@ A(Srr, S)) is a phone-frame accuracy function. A measures el _
@ Boosts contribution of paths with lower phone error rates.

the number of correctly labeled frames in S.

@ Povey [3] showed this could be optimized in a way similar to
that of MMI.

@ Usually works somewhat better than MMI itself.

— ML MMIL4 iter
26
25

o= 24

s
=23

22 —
21
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Various Comparisons

MCE

Language | Arabic | English | English English Pe(0i|Si) p(Si)*

Domain Telephon News | Telephony | Parliament Zf(log i j j )
phony phony ; > Pe(0ilS;) p(S;)" exp(—bA(S;. Si))

Hours 80 50 175 80

ML 43.2 25.3 31.8 8.8 where f(x) = 1

MPE 36.8 19.6 28.6 7.2 o e

bMMI 35.9 18.1 28.3 6.8

@ The sum over competing models explicitly excludes the
correct class (unlike the other variations)

@ Comparable to MPE, not aware of comparison to bMMI.
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fMPE/fMMI fMPE/fMMI Results

English BN 50 Hours, SI models

Y= Ot + Mht
RTO3 | DEV04f | RT04
@ h; are the set of Gaussian likelihoods for frame t. May be ML 175 | 28.7 | 253
clustered into a smaller number of Gaussians, may also be fBMMI 132 | 218 | 19.2
combined across multiple frames. foMMI+ bMMI | 12.6 21.1 18.2
@ The training of M is exceedingly complex involving both the
gradients of your favorite objective function with respect to Arabic BN 1400 Hours, SAT Models
M as well as the model parameters 6 with multiple passes
through the data. DEVO07 | EVALO7 | EVALOG
@ Rather amazingly gives significant gains both with and ML 17 1 19.6 24.9
without MML. fMPE 14.3 16.8 22.3
fMPE+ MPE | 12.6 14.5 20.1
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© ROVER
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Where Are We?
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ROVER - Recognizer Output Voting Error ROVER - Basic Architecture

Reduction[1]

Background:
@ Compare errors of recognizers from two different sites. @3@\
@ Error rate performance similar - 44.9% vs 45.1%. @ ignroent Wioting Best Scoring
@ Out of 5919 total errors, 738 are errors for only recognizer A * Module P 110 dule * Transcript

and 755 for only recognizer B. .

@ Suggests that some sort of voting process across
recognizers might reduce the overall error rate.

@ Systems may come from multiple sites.
@ Can be a single site with different processing schemes.
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ROVER - Text String Alignment Process ROVER - Example

(14 el
a 15 . 12 = 9 - Sample “Sentences
bt a2 I9 [/6/'.7 4 AYPL wl_wl et s 9 g
a L9 Iﬁ [/3/, HYP2 o2 RN T
i =g b o d e £
: I HYP-2 - - - - - -
n .6 3 ¥ ¥ 3 e 6
cat 3 L“g/—/t. 3 'y 6 . 9

Sample Alignment
big po3 yo_ O P .t 12 P
the cat in the hat a b C d
BASE-HYP1 = . - . o kikok
HYP-2 b z d e
score(m,n)= min { score{m-1,n-1) + 4*no_match(m,n), score(m-1,n)+ 3, g8 " " # L

CSlI €82 (€83 (€84 C83

score(m, n-1) + 3}

Symbols aligned against each other are called "Confusion Sets"
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ROVER - Process

After First Alignment

a b c d @
WTN-BASE’ .@ﬂ"‘\f;‘\ﬁ"\f;“\.

After Ahgnment Against WTN-BASE’

b c d @ @
WTN-BASE" r"'"\ f"'"“\ /ﬁ\/ﬁ‘\/ﬁ“‘\/"\

\_/\_/\_/\_/'\_/\_/
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ROVER - Aligning Networks Against

Networks

. b . . 4 . @ L3
@Q@mc\mm

No so much a ROVER issue but will be important for confusion networks.
Problem: How to score relative probabilities and deletions?

Solution: no_match(sy,S2)= (1 - py(winner(s,)) + 1 - po(winner(sy)))/2
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ROVER - Vote

ROVER - Aligning Strings Against a Network

. . . . .
f

. . . . ]

. . . . .
d

. . . ° .

.
a b c d @

PlAaNAAN N TN

Solution: Alter cost function so that there is only a substitution
cost if no member of the reference network matches the target
symbol.

score(m, n) = min(score(m—1, n—1)+4xno_match(m, n), score(m—1, n)+3, score(m, n—1)+3)
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@ Main Idea: for each confusion set, take word with highest
frequency.

SYS1 | SYS2 | SYS3 | SYS4 | SYSS | ROVER
449 | 451 | 48.7 | 48.9 | 50.2 39.7

@ Improvement very impressive - as large as any significant
algorithm advance.
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ROVER - Example

Example Confusion Set

lot |of @ [like
labs (@ (@ |[like
last @ @ [like
alive (@ |the [legal
lot |of @ ke

ROVER - As a Function of Number of

Systems [2]

societes @@_ ruin engineers and llakes
sociefies [(@ {for |[women |engineers i ithink -1
societies (@ |true |of engineers |and like g,
society s lfor [women engineers |and like -l
society’s |@ @ |through |engineers @ [like

there's |a
there's |the
there’s the
was (@
there’s |a

bbnl.ctm
crm-isll.ctm
cu-htk2.ctm

‘dragonl.ctm
sril.ctm

number of combined recognizers

Y Error not guaranteed to be reduced Figure 1: 1998 Broadcast News word error rates in function of

@ Sensitive to initial choice of base system used for alignment
- typically take the best system.

the number of combined systems (individual error ranked order)

@ Alphabetical: take systems in alphabetical order.
@ Curves ordered by error rate.
@ Note error actually goes up slightly with 9 systems.
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ROVER - Types of Systems to Combine References
@ ML and MMI. [ J. Fiscus (1997) “A Post-Processing System to Yield
@ Varying amount of acoustic context in pronunciation models Reduced Error Rates”, IEEE Workshop on Automatic
(Triphone, Quinphone) Speech Recognition and Understanding, Santa Barbara, CA
o Different lexicons. @ H. Schwenk and J.L. Gauvain (2000) “Combining Multiple
o Different signal processing schemes (MFCC, PLP). Speech Recognizers using Voting and Language Model
@ Anything else you can think of! Information” ICSLP 2000, Beijing Il pp. 915-918

Rover provides an excellent way to achieve cross-site
collaboration and synergy in a relatively painless fashion.
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Where Are We? Consensus Decoding[1] - Introduction

Problem

@ Standard SR evaluation procedure is word-based.
@ Standard hypothesis scoring functions are sentence-based.

Goal: Explicitly minimize word error metric

@ If a word occurs across many sentence hypotheses with
high posterior probabilities it is more likely to be correct.

@ Consensus Decoding @ For each candidate word, sum the word posteriors and pick
the word with the highest posterior probability.
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Consensus Decoding - Motivation Consensus Decoding - Approach

Find a multiple alignment of all the lattice paths

TABLE Iz Example illustrating the difference between sentenee and word error measures. Input Lattice:
Hypothess (1)

un = 1wy PUHIAY  Plawg|A)  Pluwg]dl  Plugld)  Eleorrect] HAVE VERY
1 Do INSIDE 016 0-34 029 016 079
| Do FFINE 013 034 020 0:28 041

BY DOING IFINE 011 045 040 0:28 122

BY DOING WELL (11 045 049 011 1405

BY DOING SIGHT 010 015 049 010 10

BY DOING BYE 007 015 010 007 1401

BY DOING THOUGHT =05 045 049 0-07 D9
1 DOING FINE 0014 034 =48 028 1.11
| DONT BUY 001 0-34 001 -0 036

BY DOING FUN 001 =A% 049 001 0405

HAVE IT VEAL FINE

@ Original work was done off N-best lists. O nove X~ X ey X oFen )

@ Lattices much more compact and have lower oracle error
rates.
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Consensus Decoding Approach - Clustering Obtaining the Consensus Hypothesis

Algorithm

Input:

Initialize Clusters: form clusters consisting of all the links
having the same starting time, ending time and word label

HAVE VERY

Intra-word Clustering: merge only clusters which are "close"
and correspond to the same word

Inter-word Clustering: merge clusters which are "close"
Output:

HAVE (045)  IT (0.39)  VEAL FINE

0@@@@

77186

Confusion Networks
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Consensus Decoding on DARPA

Communicator

24r

HAVE (045)  IT (0.39)  VEAL FINE ~~ LARGE sLM2
—— SMALL sLM2
@@ - LARGE sLM2+C
' ool ~ - SMALL sLM2+C
—+ LARGE sLM2+C+MX
—o— SMALL sLM2+C+MX

@ Confidence Annotations and Word Spotting
@ System Combination
@ Error Correction

Word Error Rate (%)

40K 70K 280K 40K MLLR
Acoustic Model
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Consensus Decoding on Broadcast News Consensus Decoding on Voice Mail

Word Error Rate (%) Word Error Rate (%)
Avg | FO | F1 F2 | F3 | F4 | F5 | FX System | Baseline | Consensus
C-116.5]8.3|18.6 (27.9|26.2|10.7 | 22.4 | 23.7 S-VM1 30.2 28.8
C+|16.0 85| 18.1 | 26.1 | 25.8 | 10.5| 18.8 | 22.5 S-VM2 33.7 31.2
S-VM3 42.4 41.6
Word Error Rate (%) |ROVER| 292 | 285 |
Avg | FO | F1 F2 | F3 | F4 | F5 | FX

C-1140|86|158|19.4 | 1563 | 16.0 | 5.7 | 44.8
C+ 136 |85|157 | 18.6 | 146 | 153 | 5.7 | 411

81/86 82/86

System Combination Using Confusion

System Combination Using Confusion

Networks

Networks

If we have multiple systems, we can combine the concept of
ROVER with confusion networks as follows:

55 LOVE oI

S e @
@ Use the same process as ROVER to align confusion '
networks. . 6”"—“ gf)
@ Take the overall confusion network and add the posterior
robabilities for each word. Wn S5 wowE 45 -
P . . . . § E‘"E_)S{_w_>
@ For each confusion set, pick the word with the highest 5

summed posteriors.

HAVE i

(b) System Combination
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Combination

eval98 evalOo
WER WER | NCE
single system Quin MMIE 360 265 | 0284
2-way Rover conf 356 257 | 0.267
(MMIE) CNC 352 256 0278
Rover vote 358 259
f-way Rover conf 354 255 | 0.262
CNC 350 254 0.271

lable 4: System Combination Results

Word Error Rate (%)

[
[ Meetings task | MMI PLP [ ML max PLP ] ML mean PLP ] ML max .\1FL'C—] SPAM ]

MAP 36.5 364 389 35.9 36.3
CONS 348 4.6 38.8 347 53
A WER -1.7 -1.8 =11 =12 -1.0

WER Extended ROVER : 33.6%

Results of Confusion-Network-Based System
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