Lab 4 — Large Vocabulary
Decoding: A Love Story

EECS E6870: Speech Recognition

Due: Monday, December 3, 2012 at 11:59pm

SECTION 0
Overview

By far the sexiest piece of software associated with ASR is the large-vocabulary decoder. Since
this course is nothing if not about being sexy, this assignment will deal with various aspects
of large-vocabulary decoding. In the first portions of this lab, we will investigate the various
steps involved in building static decoding graphs as will be needed by our decoder. In the
second half of the lab, you will implement most of the interesting parts of a real-time large-
vocabulary decoder. In particular, you will need to re-implement the Viterbi algorithm from
Lab 2, except this time you will need to worry about memory and speed considerations as well
as skip arcs. This will involve implementing token passing and beam pruning, and optionally
rank pruning.

The goal of this assignment is for you, the student, to gain a better understanding of the
various steps involved in constructing a static decoding graph for LVCSR and of the various
algorithms used in large-vocabulary decoding. The lab consists of the following parts:

» Part 1: Play with FSM’s and the IBM FSM toolkit

» Part 2: Investigate the static graph expansion process

» Part 3: Implement the Viterbi algorithm, handling skip arcs and token passing
» Part 4: Add support for beam pruning and optionally rank pruning

» Part 5: Evaluate the performance of various models on WSJ test data

All of the files needed for the lab can be found in the directory /userl/faculty/stanchen/e6870/1lab4/.
Before starting the lab, please read the file 1ab4 . txt; this includes all of the questions you
will have to answer while doing the lab. Questions about the lab can be posted on Course-

works (https://courseworks.columbia.edu/); a discussion topic will be created for
each lab.


https://courseworks.columbia.edu/

SECTION 1
Part 1: Play With FSM’s and the IBM FSM Toolkit

In this part, we introduce the IBM FSM toolkit as a first step in learning more about the static
graph expansion process. In particular, you will be using the program FsMOP, which is a
utility that can perform a variety of finite-state operations on weighted FSA’s and FST’s. The
program FSMOP is like a calculator that operates on FSM’s rather than real values, where
arguments are input using reverse Polish notation as is used in some HP calculators. For
example, to compute the composition of an FSA held in the file foo. £sm and an FST held in
bar. fsm, you would use the command

FsmOp foo.fsm bar.fsm —-compose > result.fsm

“u_

Operations begin with the character, and include —~compose, ~determinize,and -minimize
among many others. By default, the resulting FSM is written to standard output, but if the last
argument supplied is a filename (rather than an operation), the resulting FSM will be written

to that file instead. Thus, the command

FsmOp foo.fsm bar.fsm —-compose result.fsm

has the same effect as the last example.
We explain the default FSA format through an example:

1 2 foo
1 2 bar
2 3 moo
3

Each line with three fields describes an arc in the FSM; the format is: src-state dst-state label.
States need not be numbered starting from 1; and the label <epsilon> is used to represent
the empty label. Each line with a single field lists a final state. The first state mentioned in the
file is the start state. Thus, the above FSA file corresponds to:

c foo 0 moo @
H .

We drew the above Postscript diagram using the following command:
FsmOp foo.fsm —-draw | dot -Tps > foo.ps

You can use similar commands to help you visualize FSM’s.

For weighted FSA'’s, each line can optionally be followed with a cost, or negative log prob-
ability base 10. If a cost is omitted on a line, it is taken to be zero. For example, here is a
weighted FSA:


http://www.calculator.org/rpn.html
http://www.hpmuseum.org/rpn.htm

foo

bar 2.4

<epsilon>
.2

w NN
= ow NN

corresponding to

’ foo/0 <epsilon>/0 @

Finite-state transducers have a similar format, except lines representing arcs have an extra
field:

src-state dst-state in-label out-label [optional-cost]

In addition, to signal that a file holds an FST rather than an FSA, the following line should be
included at the start of the file:

# transducer: true
Here is an example FST:

transducer: true
2 ax AX
2 bar BAR 1.0
3 moo <epsilon>
1

#
1
1
2
2 .2
3

For this part of the lab, you will have to create various FSM’s and perform operations on
them, as described in 1ab4 . txt. Here are some hints:

» Don't forget to add final states to your FSM’s! Without these, your FSM’s will be equiv-
alent to empty FSM’s.

» For transducers, don't forget the line “# transducer: true”!

» For a list of all of the operations that FSMOP can perform, run FSMOP with no argu-
ments.

To prepare for this part, create the relevant subdirectory and copy over the needed files:



mkdir -p ~/e6870/1lab4d/

chmod 0700 ~/e6870/

cd ~/e6870/1lab4/

cp —-d /userl/faculty/stanchen/e6870/1ab4d/x

Be sure to use the —d flag with cp (so the symbolic links are copied over correctly).

SECTION 2
Part 2: Investigate the Static Graph Expansion Process

In this part of the lab, we will look at the static graph expansion process used to create the
decoding graphs that we will need for our decoder. First, we introduce the models that we
are using in this lab, and then we go step-by-step through the graph expansion process.

2.1 The Model

For this lab, we will be working with the Wall Street Journal corpus. This corpus was created
many years ago for a program sponsored by DARPA to spur development of basic LVCSR
technology, and this corpus was designed to be about as easy as an LVCSR corpus could be
for ASR. The data consists of people reading Wall Street Journal articles into a close-talking
microphone in clean conditions; i.e., there is little noise. Since the data is read text, there
are few conversational artifacts (such as filled pauses like UH) and it is easy to find relevant
language model training data.

We trained an acoustic model on about nine hours of Wall Street Journal audio data and a
smoothed trigram language model on 23M words of WSJ text. The acoustic model is context-
dependent; phonetic decision trees were built for each state position (i.e., start, middle, and
end) for each of the ~ 50 phones, yielding about 3x50=150 trees. The trees have a total of
about 400 leaves; i.e., the model contains 400 GMM'’s, one for each context-dependent variant
of each state for each phone. There are a total of about 28000 Gaussians in the model, so each
GMM has about 70 components on average. The model was trained using the Attila speech
recognition toolkit at IBM by first training a (1 Gaussian per GMM) context-independent pho-
netic model; doing several rounds of mixture splitting; growing a decision tree; seeding the
CD model from the CI model; and doing a few more rounds of mixture splitting (with lots
of iterations of Forward-Backward or Viterbi EM training interspersed). The vocabulary con-
tains about 21000 words and includes all of the words in our test data (so we don’t have to
worry about errors caused by out-of-vocabulary words). Since our vocabulary size is about
three orders of magnitude larger than in our previous decoding experiments, we use a “bet-
ter” front end than the one from Lab 1 to try to get reasonable performance. In particular,
the front end is a PLP front end with cepstral mean subtraction and linear discriminant anal-
ysis (to be described in later lectures). If this paragraph meant nothing to you, you should
probably cut down on the brewski’s.

2.2 Graph Expansion Steps

We explain the steps in graph expansion by going through an example. For full-scale decod-
ing, we would start with a word FSM representing a pruned trigram LM; in this example, we
start with a word graph wd. fsm containing just a single word sequence:



() 1 <2> LIKE_@ BEARS_@

All example files in this section should be among the files you copied over to your directory.
The first thing we do is convert the FSA into an FST:

FsmOp wd.fsm -make-transducer wd2.fsm

L. 5 LIKE:LIKE =@ BEARS:BEARS @

The reason why we do this is left as an exercise.
Then, we compose the FST wd21x. £sm to convert from words to pronunciation variants,
or lexemes in IBM terminology:

resulting in

FsmOp wd2.fsm wd2lx.fsm —compose 1x.fsm

In this case, each word has only a single pronunciation variant (e.g., LIKE(01) denotes the first
pronunciation variant of the word LIKE), but in general there may be words with multiple
pronunciations. This yields

@ LI1(01) _/2\ LIKE:LIKE(01) _/3\ BEARS:BEARS(01) @
N N

Notice that wd21x. fsm only contains entries for the words in wd. £sm; in general, this FST
would contain entries for all words in some large vocabulary.
Next, we convert from lexemes to phones:

FsmOp lx.fsm 1x2pn.fsm —-compose pn.fsm

yielding
() Il < > <epsilon>:AY

(For this and following FSM'’s, we do not display the whole machine due to space constraints.)
Notice that each pronunciation begins with the marker “ | ”; this is used to encode the location
of word boundaries. This marker is ignored during phonetic decision tree expansion here,
and does not expand to an HMM itself.

Next, we compose with the transducer pn2md. £sm to convert from phones to what we’ll

call the model level (held in the file md. £ sm).

BEARS:|

<epsilon>:L. <epsilon>:AY <epsilon>:KD

FsmOp pn.fsm pn2md.fsm —-compose md.fsm



The transducer pn2md. £sm effectively expands each phone to its corresponding triphone(s)
and then maps each triphone to the corresponding sequence of decision-tree leaves. For an
outline of a method for creating pn2md. £sm, see the slides for Lecture 9. Here is the resulting
FSM:

(Dt (7) stomcniir (7} UGcnion (T} spomavo g (T) s (7) snbelondnan (7) s <cpsilons KD:197_195 199

i

To explain the notation, this model has a total of 386 decision-tree leaves or GMM'’s, which we
number from 0 to 385. The notation AY: 67_70_71 denotes that the three states for the phone
AY in this context expand to the leaves numbered 67, 70, and 71, respectively. (This differs
from how leaves are numbered in the slides in that we use a single global numbering here,
while in the slides we number leaves separately for each tree.) Notice that the word labels
are no longer necessarily aligned with the models they expand to. This is because the identity
of the leaves in a model may not be known until phones to the right (since the decision tree
may ask about phones to the right), so the model tokens are shifted later relative to the word
tokens.

The contents of each decision tree can be found in the file t ree. txt. Here is the tree for
the last state of the phone AY:

node 0: quest-P 40[+1] —--> true: node 3, false: node 1
quest: AO AXR ER IY L M N NG OW OY R UH UWN W Y

node 1: quest-P 16[+1] —-—-> true: node 4, false: node 2
quest: B BD CH D DD DH F G GD HH JH K KD M N NG P PD S SH TS Y

node 2: quest-P 12[+1] —--> true: node 5, false: node 6
quest: AO AW AX AY B BD D DD DH EH EY TH K KD M N S TS UH V W Z

node 3: leaf 71

node 4: leaf 72

node 5: leaf 73

node 6: leaf 74

Node 0 is the root of the tree. At node 0, question 40 is asked of the phone in position +1 (i.e.,
the phone to the right); if the question is true, we go to node 3, else we go to node 1. Question
40 asks whether the given phone belongs to the set of phones following the word quest :.

Let us go through the example of calculating the leaf number for the last state in the first
AY phone in our example. Here, the phone to the right of the first AY is the “L” phone, so the
question at the root node is true and we go to node 3. Node 3 contains leaf 71 and we are
done.

Anyway, back to our graph expansion example. In the last step, we expand the FSM to the
final HMM, rewriting each model token by the HMM that represents it:

FsmOp md.fsm md2hmm.fsm -compose —-invert hmm.fsm

This HMM is too large to display in its entirety, but here is an excerpt:

67:<epsilc

67:<epsilon>

<epsilon>:1 <epsilon>:<epsilon> <epsilon>:LIKE 67:<epsilon>

70:<epsilon>



The graph contains GMM indices and words, which is what we need for decoding. We invert
the FSM, or switch its input and output labels, since our decoder expects the GMM indices to
be on the input side and the words on the output side. While the topology of the above HMM
does not look exactly like what we’ve been presenting in class, it is actually equivalent.

The actual Gaussians parameters and mixture weights are held in the files ws3j.gs and
wsj.ms. These are stored in Attila’s binary format, but hold the same information as the
GMM parameter files we used in Lab 2. The reason we use Attila format here is because we
will be calling the Attila library to do fast GMM probability computation. Attila implements
a technique known as hierarchical labeling where only the probabilities of the likeliest GMM’s
at each frame are computed exactly; the remaining GMM's are assigned a default probability.

So, this pretty much describes all the data that we need to feed into our decoder. As
mentioned before, in real life we begin with a word graph representing an n-gram language
model. One of the language model graphs we use in this lab can be found in small_lm. fsm;
it is a trigram model that has been pruned to about 36k bigrams and 6k trigrams. The final
expanded decoding graph can be found in small_graph. fsm. It contains about 550k states
and 1.3M arcs.

For this part of the lab, you will have to edit some of the FSM’s used in our toy example to
handle a new word in the vocabulary. In addition, you will need to do some manual decision-
tree expansion; see 1ab4 . txt for directions.

SECTION 3
Part 3: Implement the Viterbi Algorithm, Handling Skip
Arcs and Token Passing

In this part of the lab, you will need to re-implement the Viterbi algorithm from Lab 2, except
this time handling skip arcs (i.e., arcs with no output) and token passing. We’ll be doing this
in three stages: first, we'll get Viterbi working without skip arcs and token passing; then we’ll
add skip arcs; and then we’ll add token passing. For testing, we will be using isolated digit
models as in Lab 2.

3.1 Not Storing the Whole Chart

Below is a pseudocode representation of the Viterbi algorithm we implemented for Lab 2:

C[0, start].logProb = 0
for t in [0...(T—=1)]:
for Sere in [0...(S—=1)]:
for a in outArcs(ssrc):
Sast = dest(a)
srcLogProb = Cl[t,Ssrc|.1logProb + a.logProb + gmmLogProb(a,t)
if srcLogProb > C[t+1,84s¢].1logProb:
C[t+1,54st] - logProb = srcLogProb
C[t+ 1,845t - trace = a

As mentioned in Lecture 9, it is not generally feasible to store the whole dynamic program-
ming chart C[t, s] in large-vocabulary decoding. In the first stage of this part of the lab, we’ll
figure out how to do Viterbi decoding without storing the whole chart.

Instead of storing the whole chart, we're only going to store the cells that we actually
“visit”, where we may not visit a cell because it’s not reachable from the start state or, more



typically, because of pruning (which we won’t actually do until the next part). We'll call the
cells we visit at a frame the active cells in that frame. Another optimization we mentioned in
Lecture 9 is that we don’t need to keep around cells from past frames if we have some other
way of recovering the best word sequence, e.g., token passing. What this boils down to is that
at any point, we're only going to need to store cells from two frames, the current frame we’re
processing and the next frame.

To store all of the active cells at a particular frame, we’ll use a FrameData object. This
structure holds a list of FrameCel1 objects. These classes are documented at:

http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameCell.html
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameData.html

We allocate two FrameData objects, curFrame and nextFrame, to hold active cells for the
current and next frames, respectively (frames ¢t and t + 1 in the pseudocode). At the end
of processing each frame, we copy all the cells in nextFrame to curFrame and then clear
nextFrame at the start of the next frame, thus setting us up correctly for the next iteration.

Looking at the pseudocode, we need to make two main changes. First, instead of looping
through all states, we should loop through only those states with active cells in curFrame.
To do this, we can use the methods reset_iteration () and get_next_state (); an ex-
ample of this is provided in the code. Secondly, we need to be able to look up the source cell
Clt, Ssre] in curFrame; and to look up the destination cell C[t + 1, s4¢] in nextFrame, creating
it if it doesn’t exist. To look up the source cell (which we already know exists), we can use
the method get_cell_by_state (). To look up the destination cell and create it if doesn’t
exist, we can use the method insert_cell (). Again, examples are provided in the code.

Your job in this part is to fill in the Viterbi algorithm in the sections between the markers
BEGIN_LAB and END_LAB in the file 1ab4_vit.C (or Lab4Vit. java for Java). For now,
you don’t have to worry about skip arcs and you don’t have to worry about computing the
correct word tree node index in each FrameCell (just use the value O for now). Read this
file to see what input and output structures need to be accessed. We have provided sample
skeleton code that you should use as a starting point. Note: don’t forget to apply the acoustic
weight!

To compile this program, typemake lab4_vit, which produces the executable 1ab4_vit.
(For things to work, your LD_LIBRARY_PATH environment variable needs to be set correctly,
but this should already be OK if you set up your account correctly at the beginning of the
course.) For Java, compile via make Lab4Vit, which produces the file Lab4Vit.class.
This program does the exact same thing as 1ab2_vit, except using our new Viterbi imple-
mentation. In particular, it first loads in a big HMM graph to use for decoding and the associ-
ated GMM parameters. Then, for each acoustic signal, it runs the front end to produce feature
vectors, then runs Viterbi, and then outputs the word sequence returned by Viterbi.

For testing, we’ll use the same decoding graph and GMM’s that we used in Lab 2 for
isolated digit recognition. To run lab4_vit (or Lab4Vit.class if lab4_vit is absent) on
a single isolated digit utterance, run the script

lab4_p3a.sh

You can examine this script to see what arguments are being provided to 1ab4_vit. In ad-
dition to outputting the decoded word sequence (which will be empty for now) to standard


http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameCell.html
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classFrameData.html

output, it also outputs the contents of the dynamic programming chart (first log probs, then
node ID’s, then the number of active states at each frame) to p3a.chart. In the first two sec-
tions, each row corresponds to a different frame, and each column corresponds to a different
state. The target output can be found in p3a.chart . ref. You should try to match the target
log probs more or less exactly, modulo arithmetic error; don’t worry about matching the other
parts of the file.

The instructions in lab4.txt will ask you to run the script 1ab4_p3b. sh, which runs
the decoder on a test set of ten single digit utterances.

3.2 Handling Skip Arcs

In this stage, we’ll be adding support for skip arcs, or arcs with no associated GMM that don’t
consume a frame of input. The hard part of handling skip arcs is making sure you visit states
in the correct order. As discussed in Lab 2, at a given frame, you must always visit the source
state of a skip arc before its destination state for Viterbi to work correctly. One way to assure
this is to renumber the states in the graph such that all skip arcs go from lower-numbered
states to higher-numbered states (which will be possible as long as there are no skip arc loops),
and then to visit states in increasing numeric order.

Luckily, we’ve done the hard work for you. We’ve renumbered the states in our decod-
ing graphs to satisfy the preceding constraint. Also, the method get_next_state () used to
loop through cells at a frame does indeed iterate through states in increasing order. In particu-
lar, it keeps track of all cells not yet iterated through and always returns the cell corresponding
to the lowest-numbered state. In case you're interested, the data structure we use for doing
this is a heapl (This is tricky, because we have to be able to handle new cells being inserted into
the current frame as we’re looping through the cells in the current frame.)

However, there’s still a little work left to be done for skip arcs to work correctly, and that’s
your mission in this stage of the lab. That is, you need to edit the code you wrote for the last
stage to handle skip arcs. This should involve only changing a few lines of code. (FYI, an arc
is a skip arc if hasGmm is false.) In particular, here are the issues you need to address:

» The location of the destination cell for a skip arc is different. (Which frame?)

» When computing the log prob of the destination cell of a skip arc, there’s no GMM log
prob to add in.

» You need to process skip arcs for when frmIdx == frmCnt (and not process non-skip
arcs). One thing to worry about is that the backtrace function expects cells for the final
frame to be located in curFrame, not nextFrame. If you do this part in the way that
we expect, this should happen naturally. If you don’t, you may need to call

curFrame.swap (nextFrame) ;

right before the backtrace function is called (and before thatlast call to copy_frame_to_chart ()).

For testing, we’ll use the same decoding graph and GMM'’s as in the last stage, except
we’ve inserted some skip arcs into the decoding graph. Torun lab4_vit (or Lab4Vit.class
if 1ab4_vit is absent) on a single isolated digit utterance using this graph, run the script

lab4_p3c.sh


http://www.dogma.net/markn/articles/pq_stl/priority.htm

Figure 1: A Backtrace Word Tree

You can examine this script to see what arguments are being provided to 1ab4_vit. In addi-
tion to outputting the decoded word sequence (which will still be empty) to standard output,
it also outputs the contents of the dynamic programming chart (first log probs, then node ID’s,
then the number of active states at each frame) to p3c. chart. The target output can be found
in p3c.chart.ref. You should try to match the target log probs more or less exactly, mod-
ulo arithmetic error; don’t worry about matching the other parts of the file. (After completing
this stage, you should make sure your Viterbi still works without skip arcs by checking the
output of lab4_p3a. sh again.)

3.3 Token Passing

From the previous stages, we (hopefully) now have code that can correctly compute the Viterbi
probability of an utterance, even when there are skip arcs. However, we don’t currently have
a way to recover the word sequence labeling the Viterbi path. In this stage, we remedy this
problem. Again, we will be editing your code from the previous stage.

To do this, we will be constructing what we call a word tree (which is an instance of a trie).
An example word tree is depicted in Figure|[l] It can be viewed as a way of compactly storing
a list of related word sequences. The word sequence associated with a node is the sequence of
words labeling the path from the root node to that node. For example, in Figure |1} the index
4 corresponds to the word sequence THE DOG ATE. We represent a word tree using the class
WordTree:

http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classWordTree.html

During decoding, we will be constructing a single word tree, stored in the variable wordTree
that we declare for you. Initially, this tree consists of a single node, the root node. In each
FrameCell, we store the index of a node in this tree, and our goal is to do this such that the
node index at a cell corresponds to the word sequence that labels the best path to that cell.
If we do this correctly, we can recover the best overall word sequence by finding the word
sequence associated with the best final state at the final frame.

So, how do we do this? Here are some hints.


http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classWordTree.html

» All you have to do for this part is to correctly set the word tree node index for each cell
(in addition to its Viterbi log probability, which already should be set correctly). Then,
the traceback function we provide can recover the final word sequence.

» Word labels occur on arcs. To find the index of the word label associated with an arc
arc,do arc.get_word (). If this value is 0, then the arc has no word label. Note: most
arcs do not have word labels on them.

» The best word sequence for the cell associated with the start state at frame 0 is the empty
word sequence. This corresponds to the root node of the word tree, or wordTree.get_root_node ().

» If processing an arc with no word label at a particular frame, how does the best word
sequence to its destination state along that arc compare with the best word sequence to
its source state?

» If processing an arc with a word label at a particular frame, how does the best word
sequence to its destination state along that arc compare with the best word sequence to
its source state?

» To find the index of the node reached by extending the node srcWordTreeIdx with
the word wordIdx, do something like:

int dstWordTreeldx = wordTree.insert_node (srcWordTreeldx, wordIdx);

If the node doesn’t exist, it will be created. For example, wordTree.insert_node (4,
nextWord) would return the value 7 in Figure[I|if nextWord corresponds to the word
MY. By doing calls like this, nodes of the word tree can be be created as needed during
decoding.

Your mission for this stage of the lab is to update the code you wrote for the last stage to
do token passing. You should only need to write a few lines of code for this part. For testing,
we’ll use the same decoding graph and GMM'’s as in the last stage. To run lab4_vit (or
Lab4Vit.class if lab4_vit is absent) on a single isolated digit utterance using this graph,
run the script

lab4_p3c.sh

(the same script as in the last stage). In addition to outputting the decoded word sequence
to standard output, it also outputs the contents of the dynamic programming chart (first log
probs, then node ID’s, then the number of active states at each frame) to p3c.chart. The
target output can be found in p3c.chart.ref. Hopefully, your log probs already match,
but now the node indices section should also match. However, it’s possible that two different
sets of node indices are identical if they differ only via renumbering. Ultimately, what matters
is that you get the correct decoded output, which in this case should be SIL TWO SIL.

The instructions in lab4.txt will ask you to run the script 1ab4_p3d. sh, which runs
the decoder on a test set of ten single digit utterances.



SECTION 4
Part 4: Add Support for Beam Pruning and Optionally
Rank Pruning

4.1 Beam Pruning

In the first task for this part, you need to implement beam pruning. Here is the general idea:
before you process the outgoing arcs of a state in the main loop in Viterbi, you first check
whether its log probability is above a threshold log probability, and if not, you skip that state.
The threshold log probability is computed by taking the highest log probability of any cell at
that frame and subtracting the beam width.

However, it is unacceptable for this lab to add any loops to compute the highest log prob-
ability at a frame, since the whole point of beam pruning is to make things faster. Instead, you
must do this computation within existing loops. To complete this part of the lab, you should
only have to add a few lines of code.

Again, you'll be modifying your code from earlier in this lab to complete this part. For
testing, we'll use the same decoding graph and GMM'’s as in the last stage. To run 1ab4_vit
(or Lab4Vvit.class if lab4_vit is absent) on a single isolated digit utterance using this
graph, run the script

lab4_p4da.sh

This is identical to 1ab4_p3c.sh except with pruning turned on. In addition to outputting
the decoded word sequence to standard output, it also outputs the contents of the dynamic
programming chart (first log probs, then node ID’s, then the number of active states at each
frame) to p4a.chart. The target output can be found in p4a.chart.ref. Hopefully, the
log probs and node indices already match from previous parts of the lab, and now you should
also try to match the number of active states for each frame at the end of the file. While you
needn’t match the number of active states exactly, you should be pretty close. In any case, you
should make sure that at least some states are being pruned. As a contrast, you can look at
p3c.chart.ref which corresponds to the same run without pruning. The number of active
cells at each frame in p4a . chart should be significantly less than in p3c.chart . ref.

The instructions in 1ab4.txt will ask you to run the script 1ab4_p4b. sh, which runs
the decoder on a 10-sentence WS]J test set using several different beams.

4.2 Rank Pruning

This part is optional.

In this part, you can implement rank pruning. This is the same as beam pruning except
that we compute the threshold in a different manner. If the rank pruning beam is set to k
cells/states, we set the threshold to be the log prob of the cell in the current frame with the
k-th highest log prob. In this way, we will process at most k cells at each frame (not counting
the effect of skip arcs). (If there are fewer than k active cells at a frame, then rank pruning
shouldn’t prune away anything at that frame.) To combine rank pruning with beam pruning,
just compute thresholds separately for each and use the threshold that is higher.

Unlike for beam pruning, you will probably need to add a loop. Here is an example of
how to efficiently loop through all of the active cells at the current frame:



int cellCnt = curFrame.size();

for (int celllIdx = 0; cellldx < cellCnt; ++celllIdx)
{
const FrameCell& curCell = curFrame.get_cell_by_ index(cellIdx);
double curLogProb = curCell.get_log_prob();

}

(We don’t use get_next_state () since we don’t need to loop in sorted state order.) It's OK
to not keep exactly k cells at each frame (e.g., if you do a bucket sort). For this part of the lab,
speed matters.

Again, you'll be modifying your code from earlier in this lab to complete this part. Make
sure not to break the earlier parts when you do this. In particular, if k (i.e., beamStateCnt) is
set to 0, turn off rank pruning. For testing, we’ll be using a 10-sentence WSJ test set. First, get
a baseline timing by running;:

lab4_pdc.sh

This decodes with only beam pruning, at about the minimum beam width where no search
errors are being made. Record the real-time factor (xRT) output for this run. (This is how long
processing took divided by the length of the speech signal, so lower is better. The program
uses CPU time to compute this rather than elapsed time, so it should be fine if someone else
is concurrently running a job on the same machine as you.) Then, run

lab4_p4dd.sh

This decodes with only rank pruning, at about the minimum beam width where no search
errors are being made. Your goal is for this run to be roughly as fast as the beam pruning
run, though it’s OK if it's somewhat slower. You should also check that the decoded output
is the same (or almost the same); the decoded output is written to p4c.dcd and p4d.dcd,
respectively. For debugging, you may want to compute the number of cells that pass the
threshold at each frame and print this out. This value may be significantly higher than k due
to skip arcs, but that’s fine.

SECTION 5
Part 5: Evaluate the Performance of Various Models on
WSJ Test Data

In this section, we will be using the decoder you have written to run various experiments
on WSJ data. We will investigate the effects of pruning and vary language model size and
vocabulary size. First, if you're running C++, make sure to recompile with optimization, like
so:



make clean
OPTFLAGS=-02 make lab4_vit

Then, all you have to do in this part is run:
lab4_p5.sh | tee p5.out

This does a bunch of different decoding runs, calling p018h1.calc-wer.sh after each run
to compute the WER of the output hypotheses.

For the WSJ runs, we use the acoustic model described in Section We consider two
vocabulary sizes: the full 21k-word vocabulary, and a smaller 3k-word vocabulary (that still
contains all of the words in the test set). We also consider two language models. Both are
entropy-pruned versions of a modified-Kneser-Ney-smoothed trigram model built on 23M
words of WS]J text. The larger LM was pruned to about 370k n-grams while the smaller LM
contains a total of about 60k n-grams. For the WS] runs, we will be using a small 10-sentence
test set.

In the first set of contrast runs, we look at how the width of the pruning beam affects speed
and accuracy. For these runs, we use the smaller vocabulary and LM with several different
beam widths. In the next set of runs, we look at the effect of increasing vocabulary size and
increasing LM size, by running with both the smaller and larger WS] vocabularies and LM’s.
Look at how both speed and accuracy vary with graph size. The reference transcript for the
WS] test set can be found in wsj.ref. Check out how similar the decoded output is to the
target text, and see whether you can basically understand what is being said from the decoded
output.

In the final set of contrast runs, we look at the difference in the fraction of decoding time
used for front end signal processing, GMM probability computation, and Viterbi search in
small vs. large vocabulary tasks. For the small vocabulary run, we do an isolated digit recog-
nition run, and for the large vocabulary run, we do WSJ with the full vocabulary and large
LM. In fact, this is not a fair comparison because in the large vocabulary run, we do two things
differently. Instead of doing signal processing in lab4_vit, we used Attila to produce the
final feature vectors ahead of time and just read in these features directly. Secondly, as men-
tioned before, we use a different GMM probability computation implementation, involving
hierarchical labeling and using the CBLAS math library. Despite these differences, the relative
fraction of time spent on each subcomputation is still approximately correct.

If you made it this far, congratulations! You have now written most of a real-time (or close
to real-time) large-vocabulary continuous speech recognizer and have shown that it works
reasonably well on a (kind of) real-life task! Yay!

SECTION 6
What is to be handed in

You should have a copy of the ASCII file 1ab4 . t xt in your current directory. Fill in all of the
fields in this file and submit this file using the provided script.
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