
Lab 1: My First Front End

EECS E6870: Speech Recognition

Due: October 3, 2012 at 6pm

SECTION 1

Overview

The goal of this assignment is for you, the student, to write a basic ASR front end and to eval-
uate it using a dynamic time warping recognition system. It is meant to help you understand
what basic signal processing steps are used in ASR, and why they are taken. Before you start
this lab, make sure you set up your account as described at http://www.ee.columbia.edu/~stanchen/fall12/e6870/account_info.html.
You need to do this to get some environment variables set correctly.

The lab consists of the following parts:

ä Part 0: Familiarization with the data (Required) — Listen to a few utterances in the
data set, until you believe you are processing actual speech signals.

ä Part 1: Write a front end (Required) — Write a complete mel-frequency cepstral coeffi-
cient (MFCC) front end, except for the FFT, which will be provided.

ä Part 2: Implement dynamic time warping (Optional) — Write a function that imple-
ments DTW.

ä Part 3: Evaluate different front ends using a DTW recognizer (Required) — Run ex-
periments on the TIDIGITS data set comparing the performance of different portions of
the front end you implemented.

ä Part 4: Try to beat the MFCC front end (Optional) — Try to develop a modification
to the given MFCC front end (or do something completely different) to get better per-
formance. The student achieving the best performance on a test set (that will not be
released until after the assignment is due) will be awarded some sort of crappy prize.

All of the files needed for the lab can be found in the directory /user1/faculty/stanchen/e6870/lab1/.
Before starting the lab, please read the file lab1.txt; this includes all of the questions you
will have to answer while doing the lab. Questions about the lab can be posted on Course-
works (https://courseworks.columbia.edu/); a discussion topic will be created for
each lab.

http://www.ee.columbia.edu/~stanchen/fall12/e6870/account_info.html
https://courseworks.columbia.edu/
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Figure 1: Mel binning

SECTION 2

Part 0: Familiarization with the data (Required)

The data to be used in this lab is the TIDIGITS corpus, a standard ASR data set consisting
of clean recordings of about 300 speakers reading digit sequences. In this lab, we are doing
isolated digit recognition, so we will use only the utterances consisting of a single digit: each
speaker was required to say each of the 11 digits (one through nine, zero, and oh) by itself two
times.

For this part of the exercise, just listen to a few samples of the data. Here is one sample
for each digit; click on the links to listen to each sample: [Sample 1], [Sample 2], [Sample
3], [Sample 4], [Sample 5], [Sample 6], [Sample 7], [Sample 8], [Sample 9], [Sample 10], and
[Sample 11]. (You’ll need to use the HTML version of this document to do this part.)

SECTION 3

Part 1: Write a front end (Required)

In this part of the exercise, you will be writing an MFCC front end, except for the FFT which
will be provided for you. (Pre-emphasis and adding deltas will be ignored.) In particular,
you will be writing a program that reads a file containing the digitized audio signal for a
sequence of utterances, and outputs a file containing the acoustic feature vectors for each
of those utterances. The format for the input and output files will be Matlab/octave text
matrix format; routines for reading/writing this format are provided in the course class library
(which can be accessed from C++, Java, and Python). In other words, your program will read
a file that looks like this:

% name: utt1
% type: matrix
% rows: 15104
% columns: 1
10
8
4
-2

http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp1.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp2.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp3.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp3.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp4.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp5.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp6.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp7.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp8.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp9.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp10.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp11.wav


-6
...
% name: utt2
% type: matrix
% rows: 14080
% columns: 1
-2
-1
0
-2
-3

...

and write a file that looks like this:

% name: utt1
% type: matrix
% rows: 74
% columns: 12
-1.35008 1.70376 1.05819 0.891178 ...
-0.735043 2.22319 1.23097 1.01904 ...
0.354016 1.77824 0.0652225 -0.369128 ...

...
% name: utt2
% type: matrix
% rows: 68
% columns: 12
-0.940911 2.29026 0.922323 1.37886 ...
-0.46562 2.9617 1.4576 1.01031 0.222223 ...
-1.08419 2.00002 0.628429 0.890354 ...

...

To make things easier for you, we provide a bunch of C++ and Java skeleton code which does
all the I/O and stuff, and you just have to fill in the key algorithms. In a later part of the
lab, the signal processing algorithms you implement here will be used in a primitive speech
recognizer to evaluate the relative efficacy of different signal processing schemes. Note: There
may be differences between the equations given here and the corresponding equations in the
slides for the lectures or in the readings. While it’s fine not to do things exactly the way we
have here, we strongly recommend trying to implement the versions of the equations given in
the lab, so you can check your output against the target output we provide. (There is no one
“correct” version of MFCC’s; different sites have implemented different variations.)

As alluded to in the slides, we can decompose the MFCC computation into a series of
primitive processing operations: windowing, FFT, mel binning (and log), and DCT, each tak-
ing a matrix as input and a matrix as output. The output matrix of the last step is used as the
input matrix of the next. The rows of each matrix correspond to samples or frames, and the
columns correspond to the values at each frame. (In the first step, windowing, the input is a
waveform which can be viewed as a matrix of width 1.) You’ll have to fill in functions that do
each of these steps, except for the FFT, which we have provided. We describe the algorithms



to implement in detail in the next section, and in Section 3.2, we give information on how to
actually complete the lab in C++ or Java.

3.1 Algorithms To Implement

3.1.1 Windowing

The first function to be completed takes a sequence of raw waveform samples for an utterance
and performs windowing, returning a 2-D array containing the windowed samples for each
frame.

That is, before we begin frequency analysis we want to chop the waveform into over-
lapping windows of samples, so that we can perform short-time frequency analysis on each
window. For example, we might choose a window width of 256 samples with a shift of 100
samples. In this case, the first frame/window would contain samples 0 to 255; the second
frame/window would contain samples 100 to 355; etc. In terms of the code (see Section 3.2),
the values for the first frame would be written in the locations outFeats(0, 0..255), the
values for the second frame in outFeats(1, 0..255), etc. In the lab, the total number of
output frames has been computed for you (i.e., outFrameCnt).

Both rectangular and Hamming windowing should be supported. In rectangular window-
ing, sample values are unchanged. For Hamming windowing, the values in each frame/window
should be modified by a Hamming window. Recall that for samples {si, i = 0, . . . , N − 1}, the
samples {Si} after being Hammed are:

Si =
(

0.54 − 0.46 cos
2πi

N − 1

)
si

3.1.2 Mel binning

The second function to be completed should implement mel binning. Preceding this step, an
FFT will have been performed for each frame on windowed samples {si, i = 0, . . . , N − 1},
producing an array {Si, i = 0, . . . , N − 1} of the same size (rounded up to the next power of
2). The real and imaginary parts of the FFT value for frequency i

NT (in Hz) will be held in
S2i and S2i+1, respectively, where T is the sampling period for the original signal. In terms of
the code, for frame frmIdx this corresponds to the locations inFeats(frmIdx, 2*i) and
inFeats(frmIdx, 2*i+1). The variable samplePeriod holds the value of T (in seconds).
For each frame, the magnitude of the (complex) value for each frequency should be binned
according to the diagram in Figure 1. (The number of bins in the diagram should not be taken
literally; just the shapes of the bins.) The number of bins to use is held in outDimCnt.

More precisely, the bins should be uniformly spaced in mel frequency space, where

Mel( f ) = 1127 ln(1 +
f

700
)

The bins should be perfectly triangular (in mel frequency space!), with the right corner of each
bin being directly under the center of the next, as in the diagram. The left corner of the left-
most bin should be at mel frequency 0, and the right corner of the right-most bin should be
at mel frequency fmax = Mel( 1

2T ). To decide the weight with which each FFT magnitude
should be added to each bin, take the value of the curve corresponding to the given bin at the
given frequency mapped to mel frequency space. That is, the output values {Si} (before the
logarithm) should be

Si = ∑
f
|X( f )| Hi(Mel( f ))



where X( f ) is the output of the FFT at frequency f , f ranges over the set of frequencies evalu-
ated in the FFT, and Hi( fmel) is the height of the ith bin at frequency fmel in Figure 1 (where the
left-most bin is the 0th bin). (Note that we are not squaring |X( f )| in the previous equation, as
is sometimes done.)

If this all seems very confusing, it’s not as bad as it seems. Basically, you just have to
implement the previous equation for each frame. For a frame frmIdx, the {Si} are the output
values outFeats(frmIdx, i) and the {X f } are the input values inFeats(frmIdx, i),
where you just have to translate from indices i into frequencies f as described earlier in this
section, and combine the real and imaginary parts for each frequency when computing |X f |.
The Mel function is given above. The trickiest part is figuring out the windowing function
Hi(). For help, check out equation (6.141) on page 317 of HAH in the assigned readings.
(Don’t use the filter centers f [m] suggested in the text as they do things differently. Instead,
figure them out by studying Figure 1.)

3.1.3 Discrete Cosine Transform

The third function to be completed should implement the discrete cosine transform. For input
values {si, i = 0, . . . , N − 1}, the output values {Sj, j = 0, . . . , M − 1} are:

Sj =
√

2
N

N−1

∑
i=0

si cos
(

π(j + 1)
N

(i + 0.5)
)

where M is the number of cepstral coefficients that you want to keep (i.e., the value outDimCnt).
This transform should be applied to the feature values for each frame.

3.2 Logistics
To prepare for the exercise, create the relevant subdirectory and copy over the needed files:

mkdir -p ~/e6870/lab1/
chmod 0700 ~/e6870/
cd ~/e6870/lab1/
cp -d /user1/faculty/stanchen/e6870/lab1/* .

Be sure to use the -d flag with cp (so the symbolic links are copied over correctly).
We provide a C++ library which can be accessed from C++ as well as from Java and Python.

It includes functions for handling command-line parameters, for the input and output of ma-
trices in Matlab format, and for FFT’s. Also, we use the matrix class supplied in the Boost
C++ libraries (http://www.boost.org) as well as the STL vector class. For documenta-
tion of this stuff, check out http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/util_8H.html,
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classmatrix.html,
and http://www.cplusplus.com/reference/stl/vector/. In general, http://www.cplusplus.com/reference/
is a good reference site for the C++ library.

Here’s a small example of matrices and vectors in C++:

matrix<double> mat;
// Resize matrix to 3 rows, 4 cols; values uninitialized.
mat.resize(3, 4);

http://www.boost.org
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/util_8H.html
http://www.ee.columbia.edu/~stanchen/fall09/e6870/classlib/classmatrix.html
http://www.cplusplus.com/reference/stl/vector/
http://www.cplusplus.com/reference/


// Set values to 0.
mat.clear();
for (int frmIdx = 0; frmIdx < mat.size1(); ++frmIdx)

for (int dimIdx = 0; dimIdx < mat.size2(); ++dimIdx)
mat(frmIdx, dimIdx) += 2.5;

// Allocate vector with 5 items; values initialized to 0.
vector<int> vec(5);
for (int idx = 0; idx < 5; ++idx)

vec[idx] *= 3;

Here’s the analogous example in Java:

DoubleMatrix mat = new DoubleMatrix();
mat.resize(3, 4);
mat.clear();
for (int frmIdx = 0; frmIdx < mat.size1(); ++frmIdx)

for (int dimIdx = 0; dimIdx < mat.size2(); ++dimIdx)
mat.set(frmIdx, dimIdx, mat.get(frmIdx, dimIdx) + 2.5);

IntVector vec = new IntVector(5);
for (int idx = 0; idx < 5; ++idx)

vec.set(idx, vec.get(idx) * 3);

Also, for C++, we recommend using the format construct from Boost instead of printf();
this is automatically included when you include util.H. Instead of

printf("%d %d\n", 4, 6);

you would do something like

cout << format("%d %d\n") % 4 % 6;

This is safer and works correctly with C++ strings.

3.2.1 C++ instructions

The files util.H and util.C contain routines for reading and writing Matlab-format files,
as well as an FFT routine. The file lab1.C contains the main() program and need not be
changed; this program loops through each input utterance and calls the FrontEnd class to
do signal processing on each and outputs the result. The file front_end.H contains the
declarations for the file front_end.C, which is the file you need to edit. Read the file and
fill in all the algorithms that need filling; your job is to fill in the sections between the markers
BEGIN_LAB and END_LAB in three different functions.

To compile, you can just type make lab1, which produces the executable lab1. The basic
usage of this program is



lab1 --audio_file in-file --feat_file out-file

By default, all signal processing modules are applied, but you can specify flags to exclude
certain modules. For example,

lab1 --audio_file in-file --feat_file out-file \
--frontend.window false --frontend.fft false \
--frontend.melbin false --frontend.dct false

excludes every single module, so the output will be the same as the input. Flags can be speci-
fied in any order.

In ASR, it is important to be able to specify parameters to programs, because the under-
lying algorithms typically have lots of parameters that can be tuned to optimize performance
on particular domains. For our purposes, command-line parameters let us easily run contrast
experiments to reveal how important each signal processing module is to overall performance.

3.2.2 Java instructions

These are similar to the C++ instructions, except that instead of editing front_end.C, you
need to edit FrontEnd.java. The file Lab1.java contains the main loop and need not be
edited. To compile, you can type make Lab1. To run, the basic usage is

java Lab1 --audio_file in-file --feat_file out-file

The command-line arguments are the same as for C++.
As templates are not supported in Java, to access the C++ template classes in Java we need

to rename them. Here is the mapping from C++ template class names to Java (and Python)
class names:

C++ Java/Py
vector<int> IntVector

vector<double> DoubleVector
vector<string> StringVector

matrix<int> IntMatrix
matrix<double> DoubleMatrix

map<string, string> StringMap

See the earlier example to see how to set and get elements in matrix and vector objects. To
see all the methods that are available for a given C++ class, you can look in the corresponding
.javawrapper file in the directory /user1/faculty/stanchen/e6870/lib/edu/columbia/asr/.
Global C++ functions and variables are attached to the class asr_lib, e.g., asr_lib.get_bool_param(...).

3.3 Testing
To aid in testing, we provide the “correct” output for the input file p1in.dat. All of these
files should have been copied into your directory earlier. (The originals can be found in
/user1/faculty/stanchen/e6870/lab1/, in case you overwrite something.)



The correct output after applying just windowing (with Hamming on) can be found in the
file p1win.dat. To produce the corresponding output, you can do something like (for C++)

lab1 --audio_file p1in.dat --feat_file out-file \
--frontend.fft false --frontend.melbin false --frontend.dct false

For Java, replace lab1 with java Lab1.
To print out feature values after applying the windowing, FFT, and mel-binning (w/ log)

modules, type something like

lab1 --audio_file p1in.dat --feat_file out-file --frontend.dct false

To print out feature values after everything (i.e., MFCC features), type something like

lab1 --audio_file p1in.dat --feat_file out-file

The correct outputs can be found in the files p1bin.dat and p1all.dat, respectively. (The
correct output after just windowing and FFT can be found in p1fft.dat.)

You may find it useful to visualize your output and/or the target output using Matlab.
(This requires that you are running X Windows and that you run “ssh” with the “-X” flag.)
For example, you can look at the input waveform by running matlab and typing

load p1in.dat
plot(p1in)

It is trickier to visualize the other output stages since the data is 2D instead of 1D, but it is
straightforward to view the data at a single frame. So, we could do

load p1win.dat
plot(p1win(37,:))

to view the data for the 37th frame. The output of the FFT alternates real and imaginary
components of a value; to visualize this we can plot both types of values together:

load p1fft.dat
plot(1:256,p1fft(37,1:2:512),1:256,p1fft(37,2:2:512))

Don’t sweat it if you don’t match the “correct” answer exactly for every step; just try to get
reasonably close so the word-error rate numbers that you will calculate later are sensible. One
check you can do is to run the following script:

cat sd.10.list | b018t.run-set.py p018h1.run_dtw.sh %trn %tst



This does a little speaker-dependent speech recognition experiment (see Section 5 for more
details) using the program lab1 to do the front end processing, or if that file doesn’t exist, it
uses Lab1.class. Try to get the accuracy above 90%, say (it should be 100% if you match the
target algorithm exactly). In terms of speed, don’t worry about it, but if running the preceding
script takes more than ten minutes, say, you might want to speed things up or Part 3 will take
forever.

SECTION 4

Part 2: Implement dynamic time warping (Optional)

In this optional exercise, you have the opportunity to implement dynamic time warping. You
may implement any variation you would like, but we advocate the version championed in the
Sakoe and Chiba paper: symmetric DTW with P = 1.

Here is the big picture: we can construct a simple speech recognizer as follows. First, we
get one (or more) training (or template) examples for each target word (i.e., digits in our case).
Then, for each test example, we find the nearest training example using dynamic time warp-
ing; this tells us what digit we think it is. We apply dynamic time warping on the processed
acoustic feature vectors rather than the original waveform as this works better. (This is the
same technology that was used for voice dialing in early cell phones.)

Here, we use our front end program from Part 1 to generate the acoustic feature vectors
for all of our training and test utterances. Then, we can write a program that reads in acoustic
feature vectors for training and test utterances and computes the nearest training utterance
for each test utterance.

We give C++ skeleton code in lab1_dtw.C; this can be compiled by doing make lab1_dtw.
Fill in the part delimited by BEGIN_LAB and END_LAB. For Java, you’re on your own. One
option is to port lab1_dtw.C to Java; compare lab1.C and Lab1.C for hints on how to do
this.

To test your code, you can run something like

lab1_dtw --verbose true --template_file template.feats \
--feat_file devtest.feats --feat_label_list devtest.labels

(The mentioned files should have been copied into your directory earlier.) This will run your
program on a simple digits data set consisting of 11 training templates from a single speaker
and 11 test utterances from the same speaker using acoustic feature vectors generated by our
front end code. The target output can be found in p2.out. Note that the target output will
not be useful for those of you who implement alternate versions of DTW.

To make things run faster, you have the option of compiling your code with optimization.
You can do this for C++ by doing

rm -f lab1_dtw.o
OPTFLAGS=-O2 make lab1_dtw

Deleting the object file forces recompilation to occur.



SECTION 5

Part 3: Evaluate different front ends (Required)

In this part, you will evaluate different portions of the front end you wrote in Part 1 to see how
much each technique affects speech recognition performance. In addition, you will do runs
on different test sets to see the difference in difficulties of various testing conditions (speaker-
dependent, speaker-independent, etc.). We will be performing speech recognition with vari-
ous data sets using the speech recognition setup described in Part 2. For this exercise, you can
either use the DTW engine you wrote in Part 2, or you can use the one supplied by us. If the
file lab1_dtw is present in the current directory, the script will use that version; otherwise,
our version will be called. If you decide to use your own DTW engine, be sure to compile with
optimizations for this part. You will need to be in the directory ~/e6870/lab1/; our scripts
will run the version of the program lab1 or Lab1.class in the current directory (the script
looks for both) to do signal processing. (The program lab1 takes priority, so delete this if it
exists and you are using Java.)

In each individual experiment, we choose a particular front-end configuration and particu-
lar training set. Each experiment consists of 10 runs of lab1_dtw over different test speakers
where we average the results over runs. In each run, we have a test set of 11 utterances (one
of each digit) from the given speaker, and 11 training examples from either the same speaker
or a different speaker depending on the condition. By comparing the results between experi-
ments, we can get insight on the importance of various front-end modules, and the difficulties
of different data sets. While these test sets are not large enough to reveal statistically signifi-
cant differences between some of the contrast conditions, we did not want to use a larger test
set so the runs will be quick, and these data sets should be large enough to give you the basic
idea.

To do this part, run the following command:

lab1p3.sh | tee lab1p3.log

This script will take a while to run (hopefully less than an hour total). If you don’t see any ac-
curacies printed within a few minutes, you may need to speed up your front end. You can ex-
amine the script to see what it is doing; it is located in the directory /user1/faculty/stanchen/pub/exec/.
The tee command takes its input and writes it to both standard output and the given file.

The script lab1p3.sh calls the following command repeatedly

cat speaker-pair-file | b018t.run-set.py command

What this does is run command on each of the speaker pairs listed in speaker-pair-file and aver-
ages the results. The command that we run is

p018h1.run_dtw.sh [FE-parameters] train-spkr test-spkr

What this script does first is extract utterances for the training and test speakers from the
TIDIGITS corpus and convert them to Matlab text format. Then, it calls lab1 or java Lab1



to compute acoustic features for all of these utterances. Finally, it runs lab1_dtw to do de-
coding using dynamic time warping and to compute word accuracy.

In the first set of experiments, the training and test speaker in each run are the same,
and we compare the performance of using various front-end modules, such as windowing
alone; just windowing and FFT; etc. The first two experiments are quite slow (since the output
features are of high dimension), so be patient. In case you are wondering what the accuracy
of running DTW on raw (time-domain) waveforms are for this test set, it is 89.1% (accuracy,
not error rate). You can run this for yourself if you figure out how, but this run took about 12
hours.

In the second part of the script, we relax the constraint that for each test speaker, we use
DTW templates from the same speaker (i.e., we no longer do speaker-dependent recognition).
In these experiments (which all use the full MFCC front end), we see how much performance
degrades as the variation between training and test speaker increases.

SECTION 6

Part 4: Try to beat the MFCC front end (Optional)

In this optional exercise, you have the opportunity to improve on your MFCC front end. The
instructions for this part are the same as for Part 1, except do everything in a different direc-
tory. To get started, type

mkdir -p ~/e6870/lab1ec/
cd ~/e6870/lab1ec/
cp -d /user1/faculty/stanchen/e6870/lab1/* .

You’ll probably want to copy over your existing front end from Part 1 as a starting point.
We have provided two development sets for optimizing your front ends, a mini-test set

consisting of ~100 utterances and a larger test set consisting of ~1000 utterances. To run on
these test sets, you can do something like:

cat si.10.list | b018t.run-set.py p018h1.run_dtw.sh %trn %tst
cat si.100.list | b018t.run-set.py p018h1.run_dtw.sh %trn %tst

for the small and large test sets, respectively. The task is set up to be speaker-independent:
the speaker used to provide the templates for a test set may have no relation to the speaker
of that test set. If you want to play with parameter settings, you can put --name val flags
immediately after p018h1.run_dtw.sh in the commands above. To add new parameters,
just add calls to get_bool_param(), etc., as in the existing code.

The evaluation test set we will use to determine which front end wins the “Best Front
End” award will not be released until after this assignment is due, to prevent the tempta-
tion of developing techniques that may only work well on the development test sets. This is
consistent with the evaluation paradigm used in government-sponsored speech recognition
competitions, the primary ones being the [NIST Spoken Language Technology Evaluations].

http://www.itl.nist.gov/iad/mig//tests/index.htm


SECTION 7

What is to be handed in

You should have a copy of the ASCII file lab1.txt in your current directory. Fill in all of the
fields in this file and submit this file using the provided script.

For the written questions (e.g., “What did you learn in this part?”), answers of a sentence
or two in length are sufficient. Our answers for the written questions (as well as any inter-
esting answers provided by you, the students) will be presented at a future lecture if deemed
enlightening.
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