
Robustness - Things Change

n Background noise can increase or decrease

n C h annel can ch ange
l D ifferent m icrop h one

l M icrop h one p lacem ent

n S p eaker ch aracteristics v ary
l D ifferent glottal w av eform s

l D ifferent v ocal tract length s

l D ifferent sp eaking rates

n H eav en know s w h at else can h ap p en
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Robustness Strategies

Basic Acoustic Model: P (O|W, θ)

n Robust features: F eatures O th at are in dep en den t of n oise,

ch an n el, sp eak er, etc. so θ does n ot h av e to b e m odifi ed.
l More an art th an a scien ce b ut req uires little/n o data

n N oise M od eling: E x p licit m odels for th e effect b ack g roun d

n oise h as on sp eech recog n ition p aram eters θ′ = f(θ, N )
l W ork s w ell w h en m odel fi ts, req uires less data

n A d ap tation: U p date estim ate of θ from n ew ob serv ation s
l V ery p ow erful b ut often req uires th e m ost data θ′ =

f(N , p (O|W, θ))
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Outline of Today’s Lecture

n Administrivia

n C e p stral M e an R e mo val

n S p e c tral S u b trac tio n

n C o de D e p e nde nt C e p stral N o rmaliz atio n

n P aralle l M o de l C o mb inatio n

n S o me C o mp ariso ns

n B re ak

n M AP Adap tatio n

n M L L R and fM L L R Adap tatio n
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Adaptation - General Retraining

n If the environment changes, retrain system from scratch in new

environment
l V ery ex p ensive - cannot collect hu nd red s of hou rs of d ata for

each new environment

n T wo strategies
l E nvironment simu lation

l M u ltistyle T raining

� � �
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Robustness Outline

n General Adaptation Issues - Training and Retraining

n F eatures
l P L P

n Rob ust F eatures
l C epstral M ean Rem ov al

l S pec tral S ub trac tion

l C odew ord D ependent C epstral N orm aliz ation (C D C N ) -

N oise M odeling

l P arallel M odel C om b ination

l S om e c om parisons of v arious noise im m unity sc h em es

n Adaptation
l M ax im um A P osteriori (M AP ) Adaptation

l M ax im um L ik elih ood L inear Regression (M L L R)

l feature-b ased M L L R (fM L L R)
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Environment Simulation

n Take training data

n M eas u re p aram eters o f new env iro nm ent

n Trans fo rm training data to m atc h new env iro nm ent
l A dd m atc h ing no is e to th e new tes t env iro nm ent

l F ilter to m atc h c h annel c h arac teris tic s o f new env iro nm ent

n R etrain s y s tem , h o p e fo r th e b es t.
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Adaptation - General Training Issues

Most systems today require > 200 hours of speech from > 200

speakers to train robustly for a new domain.
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Cepstral Mean Normalization

We can model a large class of environmental distortions as a

simple linear filter:

ŷ[n] = x̂[n] ∗ ĥ[n]

where ĥ[n] is our linear filter and ∗ denotes convolution (Lecture

1). In the frequency domain we can write

Ŷ (k) = X̂(k)Ĥ(k)

Taking the logarithms of the amplitudes:

log Ŷ (k) = log X̂(k) + log Ĥ(k)

that is, the effect of the linear distortion is to add a constant vector

to the amplitudes in the log domain.

Now if we examine our normal cepstral processing, we can write
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Multistyle Training

n Take training data

n C o rru p t/trans fo rm training data in v ario u s rep res entativ e

fas h io ns

n C o llec t training data in a v ariety o f rep res entativ e env iro nm ents

n P o o l all s u c h data to geth er; retrain s y s tem

�� �
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this as the following processing sequence.

O[k] = Cepst(log Bin(FFT(x̂[n] ∗ ĥ(n))))

= Cepst(log Bin(X̂(k)Ĥ(k)))

We can essentially ignore the effects of binning. Since the

mapping from mel-spectra to mel cepstra is linear, from the above,

we can essentially model the effect of linear filtering as just adding

a constant vector in the cepstral domain:

O
′[k] = O[k] + h[k]

so robustness can be achieved by estimating h[k] and subtracting

it from the observed O
′[k].
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Issues with System Retraining

n Simplistic models of noise and channel
l e.g . telephony deg radations more than ju st a decrease in

b andw idth

n H ard to anticipate ev ery possib ility
l In hig h noise env ironment, person speak s lou der w ith

resu ltant effects on g lottal w av eform, speed, etc.

n Sy stem performance in clean env rironment can b e deg raded.

n R etraining sy stem for each env ironment is v ery ex pensiv e

n T herefore other schemes - noise modeling and g eneral forms

of adaptation - are needed and sometimes u sed in tandem w ith

these other schemes.
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Cepstral Mean Normalization - Issues

n Error rates for utterances even in the same environment

improves (Why?)

n M ust b e performed on b oth training and test d ata.

n B ad thing s happen if utterances are very short (Why?)

n B ad thing s happen if there is a lot of variab le leng th silence in

the utterance (Why?)

n C annot b e used in a real time system (Why?)
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Cepstral Mean Normalization - Estimation

Given a set of cepstral vectors Ot we can compute the mean:

Ō =
1

N

N∑

t=1

Ot

“C epstral mean normaliz ation” prod uces a new output vector Ôt

Ôt = Ot − Ō

S ay the sig nal correpond ing to Ot is processed b y a linear fi lter.

S ay h is a cepstral vector correspond ing to such a linear fi lter. In

such a case, the output after linear fi ltering will b e

yt = Ot + h
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Cepstral Mean Normalization - Real Time

Implementation

Can estimate mean dynamically as

Ōt = αOt + (1− α)Ōt−1

In real-life applications, it is useful run a silence detector in parallel

and turn adaptation off (set α to zero) when silence is detected,

hence:

Ōt = α(s)Ot + (1− α(s))Ōt−1
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The mean of yt is

ȳ =
1

N

N∑

t=1

yt =
1

N

N∑

t=1

(Ot + h) = Ō + h

so after “C ep stral M ean N ormaliz ation”

ŷt = yt − ȳ = Ôt

That is, the infl u enc e of h has b een eliminated .
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spectrum in the mel filter computation, it is also reasonable to

assume the net contribution of the cross terms will be zero.

In such a case we can write

|Y [k]|2 = |X[k]|2 + |N [k]|2

� � �
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Cepstral Mean Normalization - Typical Results

From “Environmental Normalization for Robust Speech Recognition

Using Direct Cepstral Compensation” F. Liu, R. STern, A. Acero

and P. Moreno Proc. ICASSP 1994, Adelaide Australia

CLO SE O TH ER

B ASE 8 .1 3 8 .5

CMN 7 .6 2 1.4

B est 8 .4 13 .5

Task is 5 0 0 0 -w ord W SJ LV CSR
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Spectral Subtraction - Basic Idea

In such a case, it is reasonable to estimate |X[k]|2 as:

|X̂[k]|2 = |Y [k]|2 − |N̂ [k]|2

where |N̂ [k]|2 is some estimate of the noise. One way to estimate

this is to average |Y [k]|2 over a sequence of frames known to be

silence (by using a silence detection scheme):

|N̂ [k]|2 =
1

M

M−1∑

t= 0

|Yt[k]|2

N ote that Y [k] here can either be the F F T outp ut (when trying to

actually reconstruct the original signal) or, in sp eech recognition,

the outp ut of the F F T after M el binning.
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Spectral Subtraction - Background

Another common type of distortion is additive noise. In such a

case, we may write

y[i] = x[i] + n[i]

where n[i] is some noise signal. Since we are dealing with linear

operations, we can write in the frequency domain

Y [k] = X[k] + N [k]

The power spectrum (Lecture 1) is therefore

|Y [k]|2 = |X[k]|2 + |N [k]|2 + X[k]N∗[k] + X∗[k]N [k]

If we assume n[i] is zero mean and uncorrelated with x[i], the

last two terms on the average would also be zero. By the time

we window the signal and also bin the resultant amplitudes of the
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Spectral Subtraction - Performance

%
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Spectral Subtraction - Issues

The main issue with Spectral Subtraction is that |N̂ [k]|2 is only an

estimate of the noise, not the actual noise value itself. In a given

frame, |Y [k]|2 may be less than |N̂ [k]|2. In such a case, |X̂[k]|2

would be negative, wreaking havoc when we take the logarithm of

the amplitude when computing the mel-cepstra.

The standard solution to this problem is just to “floor” the estimate

of |X̂[k]|2:

|X̂[k]|2 = max(|Y [k]|2 − |N̂ [k]|2, β)

where β is some appropriately chosen constant.

Given that for any realistic signal, the actual |X(k)|2 has some

amount of background noise, we can estimate this noise during

training similarly to how we estimate |N(k)|2. Call this estimate

�� �
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Combined Noise and Channel Degradations

Spectral subtraction assumes degradation due to additive noise

and Cepstral Mean Removal assumes degradation due to

multiplicative noise. Combining both, we get

Y = HX + N

or taking logarithms

ln Y = ln X + ln H + ln(1 +
N

HX
)

switching to the log domain we get

yl = xl + hl + ln(1 + en
l
−x

l
−h

l

)

or using the notation y = C yl to move to the cepstral domain we
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|Ntrain[k]|2. In such a case our estimate for |X(k)|2 becomes

|X̂[k]|2 = max(|Y [k]|2 − |N̂ [k]|2, |Ntrain[k]|2)

Even with this noise flooring, because of the variance of the noise

process, little “spikes” come through generating discontinuities in

in time in low-noise regions with disastrous effects on recognition.

To deal with this, sometimes “oversubtraction” is used:

|X̂[k]|2 = max(|Y [k]|2 − α|N̂ [k]|2, |Ntrain[k]|2)

where α is some constant chosen to minimize the noise spikes

when there is no speech.

	
 �

EEC S E6 8 7 0 : A dvanced S peech R ecognition 2 1



Modeling p(x|y) via Gaussian Mixtures

Now

p(x|y) = p(y,x)/ p(y)

Let us model p(x,y) as a function of a sum of K distributions:

p(x,y) =
K∑

k=1

p(x,y|k)p(k)

Let us write

p(x,y|k) = p(y|x,k)q(x|k)

where

q(x|k) =
1

K

1√
2π σ

e
−

(x−µk)2

2σ2

F rom abov e, our noise model is

x = y − h− r(x,n ,h)
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get

y = x + h + C ln(1 + eC
−1(n−x−h)) = x + h + r(x, n, h)

or

x = y − h− r(x, n, h)

So, this is not an easy expression to work with. What do we do?

�� �
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which is equivalent to saying

p(y|x, k) = δ(x− (y − h− r(x, n, h)))

where δ(t) is a delta (impulse) function
�� �
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Generalization: Minimum Mean Square Error

Estimation

Assume the vector y is some corrupted version of the vector x.

We get to observe y and wish to devise an estimate for x. It would

appear that a reasonable property would be to find some estimate

x̂ such that the average value of (x−x̂)2 is minimized. It can easily

be shown that the best estimator x̂ in such a case is just:

x̂ = E(x|y) =

∫
xp(x|y)dx

Spectral subtraction can be shown to be a special case of MMSE

with a set of restrictive assumptions. In general, a goal of MMSE

modeling is to look for relatively simple functional forms for p(x|y)

so that a closed form expression for x̂ in terms of y can be found.
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Estimation Equations

We now may write the estimate for x as

x̂ =

∫
xp(x|y)dx

=

∫
x

p(x, y)∑
K

l=1
q(y − h− r[l]|l)

dx

=

∫
x

∑
K

k=1
δ(x− (y − h− r[k]))q(x|k)∑

K

l=1
q(y − h− r[l]|l)

dx

=
K∑

k=1

(y − h− r[k])q(y − h− r[k]|k)∑
K

l=1
q(y − h− r[l]|l)

N ote the term inv olv ing q is ju st the mix tu re of g au ssian p osterior

p rob ab ility we saw in L ec tu re 3 . Iterativ e eq u ations for estimating

h and n c an also b e d ev elop ed ; refer to the read ing for more
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CDCN - Codeword Dependent Cepstral

Normalization

The main assumption in CDCN is that the correction vector

r(x, n, h) is constant given mixture component k and can just be

computed directly from the mean of mixture component k.

r[k] = C ln(1 + eC−1(n−µk−h))

In this case we can write

p(y|x, k) = δ(x− (y − h− r[k]))

�� �
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information.

Vector Taylor Series is a CDCN variant in which r is

approximated as a linearized function with respect to x and µk

rather than assumed constant.

Algonquin is a more sophistcated CDCN variant in which

p(y|x, k) is assumed to have an actual probability distribution (e.g.,

Normal) to model noise phase uncertainty.
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Note also that because of the nature of the delta function:

p(y) =

∫
p(x, y)dx

=

∫ K∑
k=1

δ(x− (y − h− r[k]))q(x|k)dx

=
K∑

k=1

∫
δ(x− (y − h− r[k]))q(x|k)dx

=

K∑
k=1

q(y − h− r[k]|k)
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CDCN Performance

From Alex Acero’s PhD Thesis “Acoustical and Environmental

Robustness in Automatic Speech Recognition” CMU (1990):

TRAIN /TEST CL S/CL S CL S/PZ M PZ M/CL S PZ M/PZ M

B ASE 14 .7 8 1.4 6 3 .1 2 3 .5

CMR N /A 6 1.7 4 9.1 2 3 .5

PSUB N /A 6 1.4 2 9.4 2 9.9

MSUB N /A 3 7 .4 2 8 .3 2 8 .7

CDCN 14 .7 2 5 .1 2 6 .3 2 2 .1

Error rates for a SI alphanumeric task recorded on tw o different

microphones.
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Parallel Model Combination - Basic Idea

Idea: Incorporate model of noise directly into our GMM-based

HMMs.

If our observations were just the FFT outputs this would be

straightforward. In such a case, the corrupted version of our signal

x with noise n is just:

y = x + n

If x ∼ N(µx, σ
2

x
) and n ∼ N(µn, σ2

n
) then y ∼ N(µx + µn, σ2

x
+ σ2

n
)

But our observations are cepstral parameters - extremely

nonlinear transformations of the space in which the noise is

additive. What do we do?
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Additional Performance Figures
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Parallel Model Combination - One Dimensional

Case

Let us make a Very Simple approximation to Cepstral parameters:

X = ln x, N = ln n.

Pretend we are modeling these “cepstral” parameters with

“HMMs” in the form of univariate Gaussians. In such a case, let

us say X ∼ N(µX, σ2

X
) and N ∼ N(µN , σ2

N
). We can then write:

Y = ln(eX + eN)

What is the probability distribution of Y ?

�� �
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Parallel Model Combination - Lognormal

Approximation

Since back in the linear domain

y = x + n

the distribution of y will correspond to the distribution of a sum of

two lognormal variables x and n.

µx = exp(µX + σ2

X
/2)

σ2

x
= µ2

X
(exp(σ2

X
)− 1)

µn = exp(µN + σ2

N
/2)

σ2

n
= µ2

N
(exp(σ2

N
)− 1)
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Parallel Model Combination - Log Normal

Distribution

If X is a Gaussian random variable with mean µ and variance σ2

then x = eX follows the lognormal distribution:

p(x) =
1

xσ
√

2π
e x p (−

(ln x− µ)2

2σ2
)

T he mean of this distribution can be shown to be

E(x) =

∫
xp(x)d x = ex p (µ + σ2/2)

and the variance

E((x− E(x))2) =

∫
(x− E(x))2p(x)d x = µ2(e x p (σ2)− 1)
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Parallel Model Combination - Actual Cepstra

Remember that the mel-cepstra are computed from mel-spectra

by the following formula:

c[n] =
M−1∑

m=0

X[m] cos(πn(m− 1/2)/M)

We can view this as just a matrix multiplication:

c = Cx

where x is just the vector of the x[m]s and the components of

matrix C are

Cij = cos(πj(i− 1/2)/M)

In such a case, the mean and covariance matrix in the mel-

� � �
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If x and n are uncorrelated, we can write:

µy = µx + µn

σ2

y = σ2

x + σ2

n

Unfortunately, although the sum of two Gaussian variables is a

Gaussian, the sum of two lognormal variables is not lognormal.

As good engineers, we will promptly ignore this fact and act as if y

DOES have a lognormal distribution (!). In such a case, Y = ln y

is Gaussian and the mean and variance are given by:

µY = ln µy −
1

2
ln

[

σ2

y

µ2
y

+ 1

]

σ2

Y = ln

[

σ2

y

µ2
y

+ 1

]
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spectral domain can be computed as

µ
x

= C
−1

µ
c

Σx = C
−1

Σc(C
−1)T

and similarly for the noise cepstra.
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The matrix and vector forms of the modified means and variances,

similar to the unidimensional forms above, can be found in HAH

pg. 533
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Maximum A Posteriori Parameter Estimation -

Basic Idea

Another way to achieve robustness is to take a fully trained HMM

system, a small amount of data from a new domain, and combine

the information from the old and new systems together. To put

everything on a sound framework, we will utilize the parameters

of the fully-trained HMM system as prior information.

In Maximum Likelihood Estimation (Lecture 3) we try to pick a set

of parameters θ̂ that maximize the likelihood of the data:

θ̂ = arg max
θ

L(ON

1
|θ)

In Maximum A Posterior Estimation we assume there is some

prior probability distribution on θ, p(θ) and we try to pick θ̂ to

� � �
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Parallel Model Combination - Performance

From “PMC for Speech Recognition in Convolutional and Additive

Noise” by Mark Gales and Steve Young, (modified by Martin

Russell) TR-154 Cambridge U. 1993.
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maximize the a posteriori probability of θ given the observations:

θ̂ = arg max
θ

p(θ|ON

1
)

= arg max
θ

L(ON

1
|θ)p(θ)
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Although comparisons seem to be rare, when PMC is compared

to schemes such as VTS, VTS seems to have proved somewhat

superior in performance. However, the basic concepts of PMC

have been recently combined with EM-like estimation schemes to

significantly enhance performance (more later).
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Maximum A Posteriori Parameter Estimation -

General HMM Case

Through a set of similar manipulations, we can move generalize

the previous formula to the HMM case. As before, cik is the

mixture weight k for state i, νik, µik, Σik are the prior estimates

for the mixture weight, mean and covariance matrix of mixture

component k for state i from a previously trained HMM system. In

this case:

ĉik =
νik − 1 +

∑
t
Ct(i, k)

∑
l
(νil − 1 +

∑
t
Ct(i, l))

µ̂ik =
τikµik +

∑
N

t=1
Ct(i, k)Ot∑

l
(τik +

∑
t
Ct(i, l))
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Maximum A Posteriori Parameter Estimation -

Conjugate Priors

What form should we use for p(θ)? To simplify later calculations,

we try to use an expression so that L(ON
1 |θ)p(θ) has the same

functional form as L(ON
1 |θ). This type of form for the prior is called

a conjugate prior.

In the case of a univariate Gaussian we are trying to estimate µ

and σ. Let r = 1/σ2. An appropriate conjugate prior is:

p(θ) = p(µ, r) ∝ r(α−1)/2exp(−
τr

2
(µ− µp)

2)exp(−(σ2
pr/2)

where µp and σ2
p are prior estimates/k nowledge of the mean and

variance from some initial set of training data. N ote how ugly the

functional forms get even for a relatively simple case!
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Σ̂ik =
(αik −D)Σik

αik −D +
∑

N

t=1
Ct(i, k )

+
τik(µ̂ik − µik)(µ̂ik − µik)

t

αik −D +
∑

N

t=1
Ct(i, k )

+

∑
N

t=1
Ct(i, k )(Ot − µ̂ik)(Ot − µ̂ik)

t

αik −D +
∑

N

t=1
Ct(i, k )

Both τ and α are balancing parameters that can be tuned to

optimize performance on different test domains. In practice,

a single τ is adequate across all states and Gaussians, and

variance adaptation rarely has been successful, at least in speech

recognition, to improve performance. We will save discussions

of MAP performance on adaptation until the end of the MLLR

section, which is next.
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Maximum A Posteriori Parameter Estimation -

Univariate Gaussian Case

Without torturing you with the math, we can plug in the conjugate

prior expression and compute µ and r to maximize the a posteriori

probability. We get

µ̂ =
N

N + τ
µO +

τ

N + τ
µp

where µO is the mean of the data computed using the M L

procedure.

σ̂2 =
N

N + α− 1
σ2

O +
τ(µO − µ̂)2 + σ2

p

N + α− 1
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Taking derivatives with respect to w we get

N
∑

t=1

2xt(Ot − x
T

t
w) = 0

so collecting terms we get

w =

[

N
∑

t=1

xtx
T

t

]

−1
N

∑

t=1

xtOt

In MLLR, the x values will turn out to correspond to the means of

the Gaussians.

� � �

E E C S E 6 8 7 0 : A dvanced S peech Recognition 5 4

Maximum Likelihood Linear Regression - Basic

Idea

In MAP, the different HMM Gaussians are free to move in any

direction. In Maximum Likelihood Linear Regression the means

of the Gaussians are constrained to only move according to an

affine transformation (Ax + b).
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MLLR for Univariate GMMs

We can write the likelihood of a string of observations ON
1 =

O1, O2, . . . , ON from a Gaussian Mixture Model as:

L(ON
1 ) =

N
∏

t=1

K
∑

k=1

pk√
2π σ k

e
−

(Ot−µk)2

2σ2
k

It is usually more convenient to deal with the log likelihood

L(ON
1 ) =

N
∑

t=1

ln





K
∑

k=1

pk√
2π σ k

e
−

(Ot−µk)2

2σ2
k





L et us now say we want to transform all the means of the

Gaussian by a µ k + b. It is convenient to defi ne w as above,

and to the augmented mean vector µk as the column vector
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Simple Linear Regression - Review

Say we have a set of points (x1, y1), (x2, y2), . . . , (xN , yN) and we

want to find coefficients a, b so that

N∑

t=1

(Ot − (axt + b))2

is minimized. Define w to be the column vector consisting of (a, b),

and the column vector xt corresponding to (xt, 1) We can then

write the above set of equations as

N∑

t=1

(Ot − x
T

t
w)2
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we can iterate to find a w that maximizes pw(ON

1
) or equivalently

L(ON

1
)
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corresponding to (µk, 1). In such a case we can write the overall

likelihood as

L(ON

1 ) =
N

∑

t=1

ln





K
∑

k=1

pk
√

2π σ k

e
−

(Ot−µ
T
k

w)2

2σ2
k





T o m ax im iz e the likelihood of this ex pression we utiliz e the E -

M algorithm we have b riefl y alluded to in our discussion of the

F orward-B ackward (aka B aum -W elch) algorithm .
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E-M for MLLR

For a Gaussian mixture, it can be shown that

Q(w,w′) =

K∑

k=1

N∑

t=1

Ct(k)[ln pk

− ln
√

2π σk − (Ot − µ
T
k w

′)2/2σ2
k]

where

Ct(k) = pw(k|O) =

pk√
2π σk

e
−

(Ot−µ
T
k

w)2

2σ2
k

∑K

l=1
pl√
2π σl

e
−

(Ot−µ
T
l

w)2

2σ2
l

W e can maximiz e Q(w,w′) by comp uting it’s d eriv ativ e and
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E-M Review

The E-M Theorem states that if

Q(w,w′) =
∑

x

pw(XN

1
|ON

1
) ln p

w
′(XN

1
, ON

1
)

>
∑

x

pw(XN

1
|ON

1
) ln pw(XN

1
, ON

1
)

then

p
w

′(ON

1
) > pw(ON

1
)

Therefore if we can find

ŵ
′ = arg max

w
′

Q(w,w′)
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MLLR - Additional Considerations

Since the typical parameter vector being processed is 39

dimensional (13 cepstral parameters, and the associated deltas

and double-deltas) the number of matrix parameters to be

estimated is roughly 1600. As a rule of thumb, if one frame of data

gives you enough information to estimate one parameter, then we

need at least 16 seconds of speech to estimate a full 39x39 MLLR

matrix.
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setting it equal to zero:

N
∑

t=1

[

K
∑

k=1

Ct(k)
µk

σ2
k

(Ot − µ
T

k w
′)

]

S etting to zero and c ollec ting term s w e get

N
∑

t=1

K
∑

k=1

Ct(k)
µkµ

T

k

σ2
k

w
′ =

N
∑

t=1

K
∑

k=1

Ct(k)
µk

σ2
k

Ot

D efi ne C(k) =
∑

t
Ct(k) and Ō(k) = 1

C(k)

∑

t
Ct(k)Ot, w e c an

rew rite th e ab ov e as

[

K
∑

k=1

C(k)
µkµ

T

k

σ2
k

]

w
′ =

K
∑

k=1

C(k)
µk

σ2
k

Ō(k)
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MLLR - Multiple Transforms

A single MLLR transform for all of speech is very restrictive.

Multiple transforms can be created by grouping HMM states into

larger classes, for example, at the phone level. Sometimes these

classes can be arranged hierarchically, in the form of a tree. The

number of speech frames at each node in the tree is examined,

and if there are enough frames at a node, a separate transform is

estimated for all the phones at the node.
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so we may compute w’ as just:

w
′ =

[

K
∑

k=1

C(k)
µkµ

T

k

σ2

k

]−1
K

∑

k=1

C(k)
µk

σ2

k

Ō(k)

compare to th e ex pression for simple lin ear reg ression :

w =

[

N
∑

t=1

xtx
T

t

]−1
N

∑

t=1

xtOt

In actual speech recog n ition systems, th e ob serv ation s are

v ectors, n ot scalars, so th e tran sform to b e estimated is of th e

form

Aµ + b

wh ere A is a matrix an d b is a v ector. T h e resultan t M L L R

eq uation s are somewh at more complex b ut follow th e same b asic

form. W e refer you to th e read in g s for th e d etails.

	
 �

E E C S E 6 8 7 0 : A d v an ced S peech R ecog n ition 6 1



The primary advantage is that the likelihood computation can be

written as purely as a transformation to the input features so if

solvable it is very easy to implement.
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MLLR - Performance
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Solving fMLLR

If we take the derivative, we now get

K∑

k=1

N∑

t=1

Ct(k)[r/rT
w
′
−Ot(O

T

t
w
′
− µk)

2/2σ2

k
]

which can be rewritten as

βr/rT
w
′
− [

K∑

k=1

1/σ2

k

T∑

t=1

Ct(k)OtO
T

t
]w′ +

K∑

k=1

µk/σ2

k

T∑

t=1

Ct(k)Ot

or

βr/rT
w
′
−Gw

′ + s = 0

collecting terms we can rewrite this as

w
′ = G−1(β/rT

w
′ + s)
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Feature Based MLLR

Let’s say we now want to transform all the means by

µk/a− b/a

and the variances by

σ2

k
/a2

Define Ot as the augmented column observation vector (Ot,1),

w = (a, b)T as above, and r = (1, 0)T We can therefore write

Q(w,w′) =
K∑

k=1

N∑

t=1

Ct(k)[ln pk

− ln
√

2π σk + ln r
T
w

′
− (OT

t
w

′
− µk)

2/2σ2

k
]

with Ct(k) defined similarly as in the M LLR discussion.
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MLLR and MAP - Performance
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if we premultiply by r
T we get

r
T
w
′ = r

TG−1(β/rT
w
′ + s)

let α = r
T
w
′ then we can write

α = r
TG−1(β/α + s)

one can then solve for α and w
′ and pick the value of

α that maximizes Q(w,w′) The details on how to do this

for the vector observations are given in the paper in the

readings (“Maximum Likelihood Linear Transformations for HMM-

Based Speech Recognition”, Mark Gales, Computer Speech and

Language 1998 Volume 12).
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MLLR - Comments on Noise Immunity

Performance

Last but not least, one can also apply MLLR and fMLLR as a

noise compensation scheme in “HIGH-PERFORMANCE HMM

ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE

AND CONVOLUTIVE DISTORTIONS VIA VECTOR TAYLOR

SERIES Jinyu Li1, Li Deng, Dong Yu, Yifan Gong, and Alex Acero”

presented at ASRU 2007 in Japan, it is claimed that MLLR/fMLLR

alone is inferior to schemes that use the E-M algorithm to directly

estimate PMC-like noise compensation model based parameters

at very low SNRs but comprehensive comparisons across all

SNRs were not provided.
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Performance of MLLR and fMLLR

Test1 Test2

B A S E 9 .5 7 9 .2 0

M L L R 8 .3 9 8 .2 1

fM L L R 9 .0 7 7 .9 7

S A T 8 .2 6 7 .2 6

Ta sk is B ro a d c a st N ew s w ith a 6 5 K v o c a b u la r y .

S A T refers to “S p ea k er A d a p tiv e Tra in in g ”. In S A T, a tra n sfo rm is

c o m p u ted fo r ea c h sp ea k er d u rin g test a n d tra in in g ; it is a v ery

c o m m o n tra in in g tec h n iq u e in A S R to d a y .
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the

muddiest topic?

n O ther feedb ack (pace, content, atmosphere)?
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