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Outline of Today’s Lecture

n Administrivia
n Cepstral Mean Removal
n Spectral Subtraction
n Code Dependent Cepstral Normalization
n Parallel Model Combination
n Some Comparisons
n Break
n MAP Adaptation
n MLLR and fMLLR Adaptation
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Robustness - Things Change

n Background noise can increase or decrease
n Channel can change

l Different microphone
l Microphone placement

n Speaker characteristics vary
l Different glottal waveforms
l Different vocal tract lengths
l Different speaking rates

n Heaven knows what else can happen
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Robustness Strategies

Basic Acoustic Model: P (O|W, θ)

n Robust features: Features O that are independent of noise,
channel, speaker, etc. so θ does not have to be modified.
l More an art than a science but requires little/no data

n Noise Modeling: Explicit models for the effect background
noise has on speech recognition parameters θ′ = f(θ,N)
l Works well when model fits, requires less data

n Adaptation: Update estimate of θ from new observations
l Very powerful but often requires the most data θ′ =
f(N, p(O|W, θ))
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Robustness Outline

n General Adaptation Issues - Training and Retraining
n Features

l PLP
n Robust Features

l Cepstral Mean Removal
l Spectral Subtraction
l Codeword Dependent Cepstral Normalization (CDCN) -

Noise Modeling
l Parallel Model Combination
l Some comparisons of various noise immunity schemes

n Adaptation
l Maximum A Posteriori (MAP) Adaptation
l Maximum Likelihood Linear Regression (MLLR)
l feature-based MLLR (fMLLR)
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Adaptation - General Training Issues

Most systems today require > 200 hours of speech from > 200
speakers to train robustly for a new domain.
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Adaptation - General Retraining

n If the environment changes, retrain system from scratch in new
environment
l Very expensive - cannot collect hundreds of hours of data for

each new environment
n Two strategies

l Environment simulation
l Multistyle Training
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Environment Simulation

n Take training data
n Measure parameters of new environment
n Transform training data to match new environment

l Add matching noise to the new test environment
l Filter to match channel characteristics of new environment

n Retrain system, hope for the best.
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Multistyle Training

n Take training data
n Corrupt/transform training data in various representative

fashions
n Collect training data in a variety of representative environments
n Pool all such data together; retrain system
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Issues with System Retraining

n Simplistic models of noise and channel
l e.g. telephony degradations more than just a decrease in

bandwidth
n Hard to anticipate every possibility

l In high noise environment, person speaks louder with
resultant effects on glottal waveform, speed, etc.

n System performance in clean envrironment can be degraded.
n Retraining system for each environment is very expensive
n Therefore other schemes - noise modeling and general forms

of adaptation - are needed and sometimes used in tandem with
these other schemes.
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Cepstral Mean Normalization

We can model a large class of environmental distortions as a
simple linear filter:

ŷ[n] = x̂[n] ∗ ĥ[n]
where ĥ[n] is our linear filter and ∗ denotes convolution (Lecture
1). In the frequency domain we can write

Ŷ (k) = X̂(k)Ĥ(k)

Taking the logarithms of the amplitudes:

log Ŷ (k) = log X̂(k) + log Ĥ(k)

that is, the effect of the linear distortion is to add a constant vector
to the amplitudes in the log domain.

Now if we examine our normal cepstral processing, we can write
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this as the following processing sequence.

O[k] = Cepst(log Bin(FFT(x̂[n] ∗ ĥ(n))))

= Cepst(log Bin(X̂(k)Ĥ(k)))

We can essentially ignore the effects of binning. Since the
mapping from mel-spectra to mel cepstra is linear, from the above,
we can essentially model the effect of linear filtering as just adding
a constant vector in the cepstral domain:

O′[k] = O[k] + h[k]

so robustness can be achieved by estimating h[k] and subtracting
it from the observed O′[k].
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Cepstral Mean Normalization - Estimation

Given a set of cepstral vectors Ot we can compute the mean:

Ō =
1
N

N∑
t=1

Ot

“Cepstral mean normalization” produces a new output vector Ôt

Ôt = Ot − Ō

Say the signal correponding to Ot is processed by a linear filter.
Say h is a cepstral vector corresponding to such a linear filter. In
such a case, the output after linear filtering will be

yt = Ot + h
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The mean of yt is

ȳ =
1
N

N∑
t=1

yt =
1
N

N∑
t=1

(Ot + h) = Ō + h

so after “Cepstral Mean Normalization”

ŷt = yt − ȳ = Ôt

That is, the influence of h has been eliminated.
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Cepstral Mean Normalization - Issues

n Error rates for utterances even in the same environment
improves (Why?)

n Must be performed on both training and test data.
n Bad things happen if utterances are very short (Why?)
n Bad things happen if there is a lot of variable length silence in

the utterance (Why?)
n Cannot be used in a real time system (Why?)
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Cepstral Mean Normalization - Real Time
Implementation

Can estimate mean dynamically as

Ōt = αOt + (1− α)Ōt−1

In real-life applications, it is useful run a silence detector in parallel
and turn adaptation off (set α to zero) when silence is detected,
hence:

Ōt = α(s)Ot + (1− α(s))Ōt−1
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Cepstral Mean Normalization - Typical Results

From “Environmental Normalization for Robust Speech Recognition
Using Direct Cepstral Compensation” F. Liu, R. STern, A. Acero
and P. Moreno Proc. ICASSP 1994, Adelaide Australia

CLOSE OTHER
BASE 8.1 38.5
CMN 7.6 21.4
Best 8.4 13.5

Task is 5000-word WSJ LVCSR
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Spectral Subtraction - Background

Another common type of distortion is additive noise. In such a
case, we may write

y[i] = x[i] + n[i]

where n[i] is some noise signal. Since we are dealing with linear
operations, we can write in the frequency domain

Y [k] = X[k] +N [k]

The power spectrum (Lecture 1) is therefore

|Y [k]|2 = |X[k]|2 + |N [k]|2 +X[k]N∗[k] +X∗[k]N [k]

If we assume n[i] is zero mean and uncorrelated with x[i], the
last two terms on the average would also be zero. By the time
we window the signal and also bin the resultant amplitudes of the
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spectrum in the mel filter computation, it is also reasonable to
assume the net contribution of the cross terms will be zero.

In such a case we can write

|Y [k]|2 = |X[k]|2 + |N [k]|2
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Spectral Subtraction - Basic Idea

In such a case, it is reasonable to estimate |X[k]|2 as:

|X̂[k]|2 = |Y [k]|2 − |N̂ [k]|2

where |N̂ [k]|2 is some estimate of the noise. One way to estimate
this is to average |Y [k]|2 over a sequence of frames known to be
silence (by using a silence detection scheme):

|N̂ [k]|2 =
1
M

M−1∑
t=0

|Yt[k]|2

Note that Y [k] here can either be the FFT output (when trying to
actually reconstruct the original signal) or, in speech recognition,
the output of the FFT after Mel binning.
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Spectral Subtraction - Issues

The main issue with Spectral Subtraction is that |N̂ [k]|2 is only an
estimate of the noise, not the actual noise value itself. In a given
frame, |Y [k]|2 may be less than |N̂ [k]|2. In such a case, |X̂[k]|2
would be negative, wreaking havoc when we take the logarithm of
the amplitude when computing the mel-cepstra.

The standard solution to this problem is just to “floor” the estimate
of |X̂[k]|2:

|X̂[k]|2 = max(|Y [k]|2 − |N̂ [k]|2, β)

where β is some appropriately chosen constant.

Given that for any realistic signal, the actual |X(k)|2 has some
amount of background noise, we can estimate this noise during
training similarly to how we estimate |N(k)|2. Call this estimate
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|Ntrain[k]|2. In such a case our estimate for |X(k)|2 becomes

|X̂[k]|2 = max(|Y [k]|2 − |N̂ [k]|2, |Ntrain[k]|2)

Even with this noise flooring, because of the variance of the noise
process, little “spikes” come through generating discontinuities in
in time in low-noise regions with disastrous effects on recognition.
To deal with this, sometimes “oversubtraction” is used:

|X̂[k]|2 = max(|Y [k]|2 − α|N̂ [k]|2, |Ntrain[k]|2)

where α is some constant chosen to minimize the noise spikes
when there is no speech.
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Spectral Subtraction - Performance

%

IBM EECS E6870: Advanced Speech Recognition 22



Combined Noise and Channel Degradations

Spectral subtraction assumes degradation due to additive noise
and Cepstral Mean Removal assumes degradation due to
multiplicative noise. Combining both, we get

Y = HX +N

or taking logarithms

lnY = lnX + lnH + ln(1 +
N

HX
)

switching to the log domain we get

yl = xl + hl + ln(1 + en
l−xl−hl)

or using the notation y = Cyl to move to the cepstral domain we
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get

y = x+ h+ C ln(1 + eC
−1(n−x−h)) = x+ h+ r(x, n, h)

or
x = y − h− r(x, n, h)

So, this is not an easy expression to work with. What do we do?
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Generalization: Minimum Mean Square Error
Estimation

Assume the vector y is some corrupted version of the vector x.
We get to observe y and wish to devise an estimate for x. It would
appear that a reasonable property would be to find some estimate
x̂ such that the average value of (x−x̂)2 is minimized. It can easily
be shown that the best estimator x̂ in such a case is just:

x̂ = E(x|y) =
∫
xp(x|y)dx

Spectral subtraction can be shown to be a special case of MMSE
with a set of restrictive assumptions. In general, a goal of MMSE
modeling is to look for relatively simple functional forms for p(x|y)
so that a closed form expression for x̂ in terms of y can be found.
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Modeling p(x|y) via Gaussian Mixtures

Now
p(x|y) = p(y, x)/p(y)

Let us model p(x, y) as a function of a sum of K distributions:

p(x, y) =
K∑
k=1

p(x, y|k)p(k)

Let us write
p(x, y|k) = p(y|x, k)q(x|k)

where

q(x|k) =
1
K

1√
2πσ

e
−(x−µk)

2

2σ2

From above, our noise model is

x = y − h− r(x, n, h)
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which is equivalent to saying

p(y|x, k) = δ(x− (y − h− r(x, n, h)))

where δ(t) is a delta (impulse) function
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CDCN - Codeword Dependent Cepstral
Normalization

The main assumption in CDCN is that the correction vector
r(x, n, h) is constant given mixture component k and can just be
computed directly from the mean of mixture component k.

r[k] = C ln(1 + eC
−1(n−µk−h))

In this case we can write

p(y|x, k) = δ(x− (y − h− r[k]))
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Note also that because of the nature of the delta function:

p(y) =
∫
p(x, y)dx

=
∫ K∑

k=1

δ(x− (y − h− r[k]))q(x|k)dx

=
K∑
k=1

∫
δ(x− (y − h− r[k]))q(x|k)dx

=
K∑
k=1

q(y − h− r[k]|k)
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Estimation Equations

We now may write the estimate for x as

x̂ =
∫
xp(x|y)dx

=
∫
x

p(x, y)∑K
l=1 q(y − h− r[l]|l)

dx

=
∫
x

∑K
k=1 δ(x− (y − h− r[k]))q(x|k)∑K

l=1 q(y − h− r[l]|l)
dx

=
K∑
k=1

(y − h− r[k])q(y − h− r[k]|k)∑K
l=1 q(y − h− r[l]|l)

Note the term involving q is just the mixture of gaussian posterior
probability we saw in Lecture 3. Iterative equations for estimating
h and n can also be developed; refer to the reading for more
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information.

Vector Taylor Series is a CDCN variant in which r is
approximated as a linearized function with respect to x and µk
rather than assumed constant.

Algonquin is a more sophistcated CDCN variant in which
p(y|x, k) is assumed to have an actual probability distribution (e.g.,
Normal) to model noise phase uncertainty.

IBM EECS E6870: Advanced Speech Recognition 31



CDCN Performance

From Alex Acero’s PhD Thesis “Acoustical and Environmental
Robustness in Automatic Speech Recognition” CMU (1990):

TRAIN/TEST CLS/CLS CLS/PZM PZM/CLS PZM/PZM
BASE 14.7 81.4 63.1 23.5
CMR N/A 61.7 49.1 23.5
PSUB N/A 61.4 29.4 29.9
MSUB N/A 37.4 28.3 28.7
CDCN 14.7 25.1 26.3 22.1

Error rates for a SI alphanumeric task recorded on two different
microphones.
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Additional Performance Figures

IBM EECS E6870: Advanced Speech Recognition 33



IBM EECS E6870: Advanced Speech Recognition 34



Parallel Model Combination - Basic Idea

Idea: Incorporate model of noise directly into our GMM-based
HMMs.

If our observations were just the FFT outputs this would be
straightforward. In such a case, the corrupted version of our signal
x with noise n is just:

y = x+ n

If x ∼ N(µx, σ2
x) and n ∼ N(µn, σ2

n) then y ∼ N(µx + µn, σ
2
x + σ2

n)

But our observations are cepstral parameters - extremely
nonlinear transformations of the space in which the noise is
additive. What do we do?
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Parallel Model Combination - One Dimensional
Case

Let us make a Very Simple approximation to Cepstral parameters:
X = lnx,N = lnn.

Pretend we are modeling these “cepstral” parameters with
“HMMs” in the form of univariate Gaussians. In such a case, let
us say X ∼ N(µX, σ2

X) and N ∼ N(µN , σ2
N). We can then write:

Y = ln(eX + eN)

What is the probability distribution of Y ?
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Parallel Model Combination - Log Normal
Distribution

If X is a Gaussian random variable with mean µ and variance σ2

then x = eX follows the lognormal distribution:

p(x) =
1

xσ
√

2π
exp(−(lnx− µ)2

2σ2
)

The mean of this distribution can be shown to be

E(x) =
∫
xp(x)dx = exp(µ+ σ2/2)

and the variance

E((x− E(x))2) =
∫

(x− E(x))2p(x)dx = µ2(exp(σ2)− 1)
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Parallel Model Combination - Lognormal
Approximation

Since back in the linear domain

y = x+ n

the distribution of y will correspond to the distribution of a sum of
two lognormal variables x and n.

µx = exp(µX + σ2
X/2)

σ2
x = µ2

X(exp(σ2
X)− 1)

µn = exp(µN + σ2
N/2)

σ2
n = µ2

N(exp(σ2
N)− 1)
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If x and n are uncorrelated, we can write:

µy = µx + µn

σ2
y = σ2

x + σ2
n

Unfortunately, although the sum of two Gaussian variables is a
Gaussian, the sum of two lognormal variables is not lognormal.

As good engineers, we will promptly ignore this fact and act as if y
DOES have a lognormal distribution (!). In such a case, Y = ln y
is Gaussian and the mean and variance are given by:

µY = lnµy −
1
2

ln

[
σ2
y

µ2
y

+ 1

]

σ2
Y = ln

[
σ2
y

µ2
y

+ 1

]
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The matrix and vector forms of the modified means and variances,
similar to the unidimensional forms above, can be found in HAH
pg. 533
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Parallel Model Combination - Actual Cepstra

Remember that the mel-cepstra are computed from mel-spectra
by the following formula:

c[n] =
M−1∑
m=0

X[m] cos(πn(m− 1/2)/M)

We can view this as just a matrix multiplication:

c = Cx

where x is just the vector of the x[m]s and the components of
matrix C are

Cij = cos(πj(i− 1/2)/M)

In such a case, the mean and covariance matrix in the mel-
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spectral domain can be computed as

µx = C−1µc

Σx = C−1Σc(C−1)T

and similarly for the noise cepstra.
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Parallel Model Combination - Performance

From “PMC for Speech Recognition in Convolutional and Additive
Noise” by Mark Gales and Steve Young, (modified by Martin
Russell) TR-154 Cambridge U. 1993.
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Although comparisons seem to be rare, when PMC is compared
to schemes such as VTS, VTS seems to have proved somewhat
superior in performance. However, the basic concepts of PMC
have been recently combined with EM-like estimation schemes to
significantly enhance performance (more later).
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Maximum A Posteriori Parameter Estimation -
Basic Idea

Another way to achieve robustness is to take a fully trained HMM
system, a small amount of data from a new domain, and combine
the information from the old and new systems together. To put
everything on a sound framework, we will utilize the parameters
of the fully-trained HMM system as prior information.

In Maximum Likelihood Estimation (Lecture 3) we try to pick a set
of parameters θ̂ that maximize the likelihood of the data:

θ̂ = arg max
θ

L(ON1 |θ)

In Maximum A Posterior Estimation we assume there is some
prior probability distribution on θ, p(θ) and we try to pick θ̂ to
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maximize the a posteriori probability of θ given the observations:

θ̂ = arg max
θ

p(θ|ON1 )

= arg max
θ

L(ON1 |θ)p(θ)
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Maximum A Posteriori Parameter Estimation -
Conjugate Priors

What form should we use for p(θ)? To simplify later calculations,
we try to use an expression so that L(ON1 |θ)p(θ) has the same
functional form as L(ON1 |θ). This type of form for the prior is called
a conjugate prior.

In the case of a univariate Gaussian we are trying to estimate µ

and σ. Let r = 1/σ2. An appropriate conjugate prior is:

p(θ) = p(µ, r) ∝ r(α−1)/2exp(−τr
2

(µ− µp)2)exp(−(σ2
pr/2)

where µp and σ2
p are prior estimates/knowledge of the mean and

variance from some initial set of training data. Note how ugly the
functional forms get even for a relatively simple case!
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Maximum A Posteriori Parameter Estimation -
Univariate Gaussian Case

Without torturing you with the math, we can plug in the conjugate
prior expression and compute µ and r to maximize the a posteriori
probability. We get

µ̂ =
N

N + τ
µO +

τ

N + τ
µp

where µO is the mean of the data computed using the ML
procedure.

σ̂2 =
N

N + α− 1
σ2
O +

τ(µO − µ̂)2 + σ2
p

N + α− 1
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Maximum A Posteriori Parameter Estimation -
General HMM Case

Through a set of similar manipulations, we can move generalize
the previous formula to the HMM case. As before, cik is the
mixture weight k for state i, νik,µik,Σik are the prior estimates
for the mixture weight, mean and covariance matrix of mixture
component k for state i from a previously trained HMM system. In
this case:

ĉik =
νik − 1 +

∑
tCt(i, k)∑

l(νil − 1 +
∑
tCt(i, l))

µ̂ik =
τikµik +

∑N
t=1Ct(i, k)Ot∑

l(τik +
∑
tCt(i, l))
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Σ̂ik =
(αik −D)Σik

αik −D +
∑N
t=1Ct(i, k)

+
τik(µ̂ik − µik)(µ̂ik − µik)t

αik −D +
∑N
t=1Ct(i, k)

+
∑N
t=1Ct(i, k)(Ot − µ̂ik)(Ot − µ̂ik)t

αik −D +
∑N
t=1Ct(i, k)

Both τ and α are balancing parameters that can be tuned to
optimize performance on different test domains. In practice,
a single τ is adequate across all states and Gaussians, and
variance adaptation rarely has been successful, at least in speech
recognition, to improve performance. We will save discussions
of MAP performance on adaptation until the end of the MLLR
section, which is next.
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Maximum Likelihood Linear Regression - Basic
Idea

In MAP, the different HMM Gaussians are free to move in any
direction. In Maximum Likelihood Linear Regression the means
of the Gaussians are constrained to only move according to an
affine transformation (Ax+ b).
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Simple Linear Regression - Review

Say we have a set of points (x1, y1), (x2, y2), . . . , (xN , yN) and we
want to find coefficients a, b so that

N∑
t=1

(Ot − (axt + b))2

is minimized. Define w to be the column vector consisting of (a, b),
and the column vector xt corresponding to (xt, 1) We can then
write the above set of equations as

N∑
t=1

(Ot − xTt w)2
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Taking derivatives with respect to w we get

N∑
t=1

2xt(Ot − xTt w) = 0

so collecting terms we get

w =

[
N∑
t=1

xtxTt

]−1 N∑
t=1

xtOt

In MLLR, the x values will turn out to correspond to the means of
the Gaussians.
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MLLR for Univariate GMMs

We can write the likelihood of a string of observations ON1 =
O1, O2, . . . , ON from a Gaussian Mixture Model as:

L(ON1 ) =
N∏
t=1

K∑
k=1

pk√
2πσk

e
−(Ot−µk)

2

2σ2
k

It is usually more convenient to deal with the log likelihood

L(ON1 ) =
N∑
t=1

ln

 K∑
k=1

pk√
2πσk

e
−(Ot−µk)

2

2σ2
k


Let us now say we want to transform all the means of the
Gaussian by aµk + b. It is convenient to define w as above,
and to the augmented mean vector µk as the column vector
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corresponding to (µk, 1). In such a case we can write the overall
likelihood as

L(ON1 ) =
N∑
t=1

ln

 K∑
k=1

pk√
2πσk

e
−

(Ot−µTk w)2

2σ2
k


To maximize the likelihood of this expression we utilize the E-
M algorithm we have briefly alluded to in our discussion of the
Forward-Backward (aka Baum-Welch) algorithm.
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E-M Review

The E-M Theorem states that if

Q(w,w′) =
∑
x

pw(XN
1 |ON1 ) ln pw′(XN

1 , O
N
1 )

>
∑
x

pw(XN
1 |ON1 ) ln pw(XN

1 , O
N
1 )

then
pw′(ON1 ) > pw(ON1 )

Therefore if we can find

ŵ′ = arg max
w′

Q(w,w′)
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we can iterate to find a w that maximizes pw(ON1 ) or equivalently
L(ON1 )
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E-M for MLLR

For a Gaussian mixture, it can be shown that

Q(w,w′) =
K∑
k=1

N∑
t=1

Ct(k)[ln pk

− ln
√

2πσk − (Ot − µTkw′)2/2σ2
k]

where

Ct(k) = pw(k|O) =
pk√
2πσk

e
−

(Ot−µTk w)2

2σ2
k

∑K
l=1

pl√
2πσl

e
−

(Ot−µT
l

w)2

2σ2
l

We can maximize Q(w,w′) by computing it’s derivative and
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setting it equal to zero:

N∑
t=1

[
K∑
k=1

Ct(k)
µk
σ2
k

(Ot − µTkw′)

]

Setting to zero and collecting terms we get

N∑
t=1

K∑
k=1

Ct(k)
µkµ

T
k

σ2
k

w′ =
N∑
t=1

K∑
k=1

Ct(k)
µk
σ2
k

Ot

Define C(k) =
∑
tCt(k) and Ō(k) = 1

C(k)

∑
tCt(k)Ot, we can

rewrite the above as[
K∑
k=1

C(k)
µkµ

T
k

σ2
k

]
w′ =

K∑
k=1

C(k)
µk
σ2
k

Ō(k)
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so we may compute w’ as just:

w′ =

[
K∑
k=1

C(k)
µkµ

T
k

σ2
k

]−1 K∑
k=1

C(k)
µk
σ2
k

Ō(k)

compare to the expression for simple linear regression:

w =

[
N∑
t=1

xtxTt

]−1 N∑
t=1

xtOt

In actual speech recognition systems, the observations are
vectors, not scalars, so the transform to be estimated is of the
form

Aµ + b
where A is a matrix and b is a vector. The resultant MLLR
equations are somewhat more complex but follow the same basic
form. We refer you to the readings for the details.

IBM EECS E6870: Advanced Speech Recognition 61



MLLR - Additional Considerations

Since the typical parameter vector being processed is 39
dimensional (13 cepstral parameters, and the associated deltas
and double-deltas) the number of matrix parameters to be
estimated is roughly 1600. As a rule of thumb, if one frame of data
gives you enough information to estimate one parameter, then we
need at least 16 seconds of speech to estimate a full 39x39 MLLR
matrix.
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MLLR - Multiple Transforms

A single MLLR transform for all of speech is very restrictive.
Multiple transforms can be created by grouping HMM states into
larger classes, for example, at the phone level. Sometimes these
classes can be arranged hierarchically, in the form of a tree. The
number of speech frames at each node in the tree is examined,
and if there are enough frames at a node, a separate transform is
estimated for all the phones at the node.
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MLLR - Performance
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Feature Based MLLR

Let’s say we now want to transform all the means by

µk/a− b/a

and the variances by
σ2
k/a

2

Define Ot as the augmented column observation vector (Ot,1),
w = (a, b)T as above, and r = (1, 0)T We can therefore write

Q(w,w′) =
K∑
k=1

N∑
t=1

Ct(k)[ln pk

− ln
√

2πσk + ln rTw′ − (OT
t w′ − µk)2/2σ2

k]

with Ct(k) defined similarly as in the MLLR discussion.
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The primary advantage is that the likelihood computation can be
written as purely as a transformation to the input features so if
solvable it is very easy to implement.
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Solving fMLLR

If we take the derivative, we now get

K∑
k=1

N∑
t=1

Ct(k)[r/rTw′ −Ot(OT
t w′ − µk)2/2σ2

k]

which can be rewritten as

βr/rTw′ − [
K∑
k=1

1/σ2
k

T∑
t=1

Ct(k)OtOT
t ]w′ +

K∑
k=1

µk/σ
2
k

T∑
t=1

Ct(k)Ot

or
βr/rTw′ −Gw′ + s = 0

collecting terms we can rewrite this as

w′ = G−1(β/rTw′ + s)
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if we premultiply by rT we get

rTw′ = rTG−1(β/rTw′ + s)

let α = rTw′ then we can write

α = rTG−1(β/α+ s)

one can then solve for α and w′ and pick the value of
α that maximizes Q(w,w′) The details on how to do this
for the vector observations are given in the paper in the
readings (“Maximum Likelihood Linear Transformations for HMM-
Based Speech Recognition”, Mark Gales, Computer Speech and
Language 1998 Volume 12).
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Performance of MLLR and fMLLR

Test1 Test2
BASE 9.57 9.20
MLLR 8.39 8.21
fMLLR 9.07 7.97
SAT 8.26 7.26

Task is Broadcast News with a 65K vocabulary.

SAT refers to “Speaker Adaptive Training”. In SAT, a transform is
computed for each speaker during test and training; it is a very
common training technique in ASR today.
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MLLR and MAP - Performance
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MLLR - Comments on Noise Immunity
Performance

Last but not least, one can also apply MLLR and fMLLR as a
noise compensation scheme in “HIGH-PERFORMANCE HMM
ADAPTATION WITH JOINT COMPENSATION OF ADDITIVE
AND CONVOLUTIVE DISTORTIONS VIA VECTOR TAYLOR
SERIES Jinyu Li1, Li Deng, Dong Yu, Yifan Gong, and Alex Acero”
presented at ASRU 2007 in Japan, it is claimed that MLLR/fMLLR
alone is inferior to schemes that use the E-M algorithm to directly
estimate PMC-like noise compensation model based parameters
at very low SNRs but comprehensive comparisons across all
SNRs were not provided.
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the
muddiest topic?

n Other feedback (pace, content, atmosphere)?
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