
IBM

Lecture 8
LVCSR Decoding

Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

{bhuvana,picheny,stanchen}@us.ibm.com

27 October 2009

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 1 / 138

IBM

Administrivia

Main feedback from last lecture.
Mud: k -means clustering.

Lab 2 handed back today.
Answers:
/user1/faculty/stanchen/e6870/lab2_ans/.

Lab 3 due Thursday, 11:59pm.
Next week: Election Day.
Lab 4 out by then?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 2 / 138

IBM

The Big Picture

Weeks 1–4: Small vocabulary ASR.
Weeks 5–8: Large vocabulary ASR.

Week 5: Language modeling.
Week 6: Pronunciation modeling ⇔ acoustic modeling
for large vocabularies.
Week 7: Training for large vocabularies.
Week 8: Decoding for large vocabularies.

Weeks 9–13: Advanced topics.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 3 / 138

IBM

Outline

Part I: Introduction to LVCSR decoding, i.e., search.
Part II: Finite-state transducers.
Part III: Making decoding efficient.
Part IV: Other decoding paradigms.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 4 / 138

IBM

Part I

Introduction to LVCSR Decoding

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 5 / 138

IBM

Decoding for LVCSR

class(x) = arg max
ω

P(ω|x)

= arg max
ω

P(ω)P(x|ω)

P(x)

= arg max
ω

P(ω)P(x|ω)

Now that we know how to build models for LVCSR . . .
n-gram models via counting and smoothing.
CD acoustic models via complex recipes.

How can we use them for decoding?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 6 / 138

IBM

Decoding: Small Vocabulary

Take graph/WFSA representing language model.
LIKE
UH

i.e., all allowable word sequences.
Expand to underlying HMM.

LIKE

UH

Run the Viterbi algorithm!

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 7 / 138

IBM

Issue: Are N-Gram Models WFSA’s?

Yup.
One state for each (n − 1)-gram history ω.
All paths ending in state ω . . .

Are labeled with word sequence ending in ω.
State ω has outgoing arc for each word w . . .

With arc probability P(w |ω).

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 8 / 138

IBM

Bigram, Trigram LM’s Over Two Word Vocab

h=w1

w1/P(w1|w1)

h=w2w2/P(w2|w1)

w1/P(w1|w2)

w2/P(w2|w2)

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 9 / 138

IBM

Pop Quiz

How many states in FSA representing n-gram model . . .
With vocabulary size |V |?

How many arcs?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 10 / 138

IBM

Issue: Graph Expansion

Word models.
Replace each word with its HMM.

CI phone models.
Replace each word with its phone sequence(s).
Replace each phone with its HMM.

h=LIKE

LIKE/P(LIKE|LIKE)

UH/P(UH|LIKE)

h=UH

LIKE/P(LIKE|UH)

UH/P(UH|UH)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 11 / 138

IBM

Context-Dependent Graph Expansion

DH

D

AH

AO

G

How can we do context-dependent expansion?
Handling branch points is tricky.

Other tricky cases.
Words consisting of a single phone.
Quinphone models.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 12 / 138

IBM

Triphone Graph Expansion Example

DH

D

AH

AO

G

G_D_AO D_AO_G

AO_G_D AO_G_DH G_DH_AH

DH_AH_DH

DH_AH_D

AH_DH_AH

AH_D_AO

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 13 / 138

IBM

Aside: Word-Internal Acoustic Models

Simplify acoustic model to simplify graph expansion.
Word-internal models.

Don’t let decision trees ask questions across word
boundaries.
Pad contexts with the unknown phone.
Hurts performance (e.g., coarticulation across words).

As with word models, just replace each word with its HMM.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 14 / 138

IBM

Issue: How Big The Graph?

Trigram model (e.g., vocabulary size |V | = 2)

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)

|V |3 word arcs in FSA representation.
Say words are ∼4 phones = 12 states on average.
If |V | = 50000, 500003 × 12 ≈ 1015 states in graph.
PC’s have ∼ 109 bytes of memory.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 15 / 138

IBM

Issue: How Slow Decoding?

In each frame, loop through every state in graph.
If 100 frames/sec, 1015 states . . .

How many cells to compute per second?
PC’s can do ∼ 1010 floating-point ops per second.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 16 / 138

IBM

Recap: Small vs. Large Vocabulary Decoding

In theory, can use the same exact techniques.
In practice, three big problems:

(Context-dependent) graph expansion is complicated.
The decoding graph would be way too big.
Decoding would be way too slow.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 17 / 138

IBM

Part II

Finite-State Transducers

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 18 / 138

IBM

A View of Graph Expansion

Step 1: Take word graph as input.
Convert into phone graph.

Step 2: Take phone graph as input.
Convert into context-dependent phone graph.

Step 3: Take context-dependent phone graph.
Convert into HMM.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 19 / 138

IBM

A Framework for Rewriting Graphs

A general way of representing graph transformations?
Finite-state transducers (FST’s).

A general operation for applying transformations to graphs?
Composition.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 20 / 138

IBM

Where Are We?

1 What Is an FST?

2 Composition

3 FST’s, Composition, and ASR

4 Weights

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 21 / 138

IBM

Review: What is a Finite-State Acceptor?

It has states.
Exactly one initial state; one or more final states.

It has arcs.
Each arc has a label, which may be empty (ε).

Ignore probabilities for now.

1

2a

c

3

b

a

<epsilon>

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 22 / 138

IBM

What Does an FSA Mean?

The (possibly infinite) list of strings it accepts.
We need this in order to define composition.

Things that don’t affect meaning.
How labels are distributed along a path.
Invalid paths.

Are these equivalent?
a

<epsilon> a b

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 23 / 138

IBM

What is a Finite-State Transducer?

It’s like a finite-state acceptor, except . . .
Each arc has two labels instead of one.

An input label (possibly empty).
An output label (possibly empty).

1

2a:<epsilon>

c:c

3

b:a

a:a

<epsilon>:b

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 24 / 138

IBM

What Does an FST Mean?

A (possibly infinite) list of pairs of strings . . .
An input string and an output string.

The gist of composition.
If string i1 · · · iN occurs in input graph . . .
And (i1 · · · iN , o1 · · ·oM) occurs in transducer, . . .
Then string o1 · · ·oM occurs in output graph.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 25 / 138

IBM

Terminology

Finite-state acceptor (FSA): one label on each arc.
Finite-state transducer (FST): input and output label on
each arc.
Finite-state machine (FSM): FSA or FST.

Also, finite-state automaton.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 26 / 138

IBM

Where Are We?

1 What Is an FST?

2 Composition

3 FST’s, Composition, and ASR

4 Weights

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 27 / 138

IBM

The Composition Operation

A simple and efficient algorithm for computing . . .
Result of applying a transducer to an acceptor.

Composing FSA A with FST T to get FSA A ◦ T .
If string i1 · · · iN ∈ A and . . .
Input/output string pair (i1 · · · iN , o1 · · ·oM) ∈ T , . . .
Then string o1 · · ·oM ∈ A ◦ T .

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 28 / 138

IBM

Rewriting a Single String A Single Way

A 1 2a 3b 4d

T 1 2a:A 3b:B 4d:D

A ◦ T 1 2A 3B 4D

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 29 / 138

IBM

Rewriting a Single String A Single Way

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1 2A 3B 4D

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 30 / 138

IBM

Transforming a Single String

Let’s say you have a string, e.g.,
THE DOG

Let’s say we want to apply a one-to-one transformation.
e.g., map words to their (single) baseforms.

DH AH D AO G

This is easy, e.g., use sed or perl or . . .

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 31 / 138

IBM

The Magic of FST’s and Composition

Let’s say you have a (possibly infinite) list of strings . . .
Expressed as an FSA, as this is compact.

How to transform all strings in FSA in one go?
How to do one-to-many or one-to-zero transformations?
Can we have the (possibly infinite) list of output strings . . .

Expressed as an FSA, as this is compact?
Fast?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 32 / 138

IBM

Rewriting Many Strings At Once

A 1

2c

d

6

b

3a

5

a

a

4

b

d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1

3
B

2

C

D

4

A

A

5
A 6

D

B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 33 / 138

IBM

Rewriting A Single String Many Ways

A 1 2a 3b 4a

T
1

a:a
a:A
b:b
b:B

A ◦ T 1 2a
A

3b
B

4a
A

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 34 / 138

IBM

Rewriting Some Strings Zero Ways

A 1

2a

d

6

b

3a

5

a

a

4

b

a

T 1

a:a

A ◦ T 1 2a
3a

4

a

5a

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 35 / 138

IBM

Computing Composition: The Basic Idea

For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T . . .
Corresponding to simultaneously being in states s and
t .

Make arcs in the intuitive way.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 36 / 138

IBM

Example

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

Optimization: start from initial state, build outward.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 37 / 138

IBM

Computing Composition: More Formally

For now, pretend no ε-labels.
For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T .
Create arc from (s1, t1) to (s2, t2) with label o iff . . .

There is an arc from s1 to s2 in A with label i and . . .
There is an arc from t1 to t2 in T with input label i and
output label o.

(s, t) is initial iff s and t are initial; similarly for final states.
(Remove arcs and states that cannot reach both an initial
and final state.)
What is time complexity?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 38 / 138

IBM

Another Example

A
1

2
a

3a

b

b

T 1 2

a:A

b:B

a:a

b:b

A ◦ T 1,1 3,2

A

2,2A

b

3,1b 1,2B

a
2,1a B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 39 / 138

IBM

Composition and ε-Transitions

Basic idea: can take ε-transition in one FSM without moving
in other FSM.

A little tricky to do exactly right.
Do the readings if you care: (Pereira, Riley, 1997)

A, T 1 2<epsilon>

A
3B 1 2<epsilon>:B

A:A
3B:B

A ◦ T

1,1

2,2

A

1,2

B

2,1
eps

3,3

B

eps

1,3 2,3
eps

B

3,1

3,2

B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 40 / 138

IBM

Recap: FST’s and Composition

Just as FSA’s are a simple formalism that . . .
Lets us express a large and interesting set of
languages . . .

FST’s are a simple formalism that . . .
Lets us express a large and interesting set of
one-to-many string transformations . . .

And the operation of composition lets us efficiently . . .
Apply an FST to all strings in an FSA in one go!

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 41 / 138

IBM

FSM Toolkits

AT&T FSM toolkit ⇒ OpenFST; lots of others.
Packages up composition, lots of other finite-state
operations.

A syntax for specifying FSA’s and FST’s, e.g.,
1 2 C
2 3 A
3 4 B
4

1 2C 3A 4B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 42 / 138

IBM

Where Are We?

1 What Is an FST?

2 Composition

3 FST’s, Composition, and ASR

4 Weights

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 43 / 138

IBM

Graph Expansion: Original View

Step 1: Take word graph as input.
Convert into phone graph.

Step 2: Take phone graph as input.
Convert into context-dependent phone graph.

Step 3: Take context-dependent phone graph.
Convert into HMM.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 44 / 138

IBM

Graph Expansion: New View

Final decoding graph: L ◦ T1 ◦ T2 ◦ T3.
L = language model FSA.
T1 = FST mapping from words to CI phone sequences.
T2 = FST mapping from CI phone sequences to CD
phone sequences.
T3 = FST mapping from CD phone sequences to GMM
sequences.

How to design T1, T2, T3?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 45 / 138

IBM

How To Design an FST?

Design FSA accepting correct set of strings . . .
Keeping track of necessary “state”, e.g., for CD
expansion.

Add in output tokens.
Creating additional states/arcs as necessary.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 46 / 138

IBM

Example: Inserting Optional Silences

A 1 2C 3A 4B

T
1

<epsilon>:~SIL
A:A
B:B
C:C

A ◦ T
1

~SIL

2C

~SIL

3A

~SIL

4B

~SIL

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 47 / 138

IBM

Example: Mapping Words To Phones

THE(01) DH AH
THE(02) DH IY

A 1 2THE 3DOG

T 1

2

THE:DH

3
DOG:D

<epsilon>:AH

<epsilon>:IY

4

<epsilon>:AO

<epsilon>:G

A ◦ T 1 2DH 3AH

IY
4D 5AO 6G

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 48 / 138

IBM

Example: Rewriting CI Phones as HMM’s
A 1 2D 3AO 4G

T 1

2D:D1

4

AO:AO1

6

G:G1

<epsilon>:D1

3

<epsilon>:D2

<epsilon>:AO1 5<epsilon>:AO2

<epsilon>:G1

7

<epsilon>:G2

<epsilon>:<epsilon>

<epsilon>:D2

<epsilon>:<epsilon>
<epsilon>:AO2

<epsilon>:<epsilon>

<epsilon>:G2

A ◦ T 1 2D1

D1

3D2

D2

4AO1

AO1

5AO2

AO2

6G1

G1

7G2

G2

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 49 / 138

IBM

How to Express CD Expansion via FST’s?

Step 1: Rewrite each phone as a triphone.
Rewrite AX as DH_AX_R if DH to left, R to right.
One strategy: delay output of each phone by one arc.
What information to store in each state? (Think n-gram
models.)

Step 2: Rewrite each triphone with correct
context-dependent HMM.

Just like rewriting a CI phone as its HMM.
Need to precompute HMM for each possible triphone.
See previous slide.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 50 / 138

IBM

How to Express CD Expansion via FST’s?

A 1 2x 3y 4y 5x 6y

T

x_x

x:x_x_x

x_yx:x_x_y

y_y

y:x_y_y

y_x

y:x_y_x

y:y_y_y
y:y_y_x

x:y_x_x

x:y_x_y

A ◦ T 1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 51 / 138

IBM

How to Express CD Expansion via FST’s?

1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x

Point: composition automatically expands FSA to correctly
handle context!

Makes multiple copies of states in original FSA . . .
That can exist in different triphone contexts.
(And makes multiple copies of only these states.)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 52 / 138

IBM

Quinphones and Beyond?

Step 1: Rewrite each phone as a quinphone?
505 ≈ 300M arcs.

Observation: given a word vocabulary . . .
Not all quinphones can occur (usually).

Build FST’s to only handle quinphones that can occur.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 53 / 138

IBM

Recap: FST’s and ASR

Graph expansion can be framed as series of composition
operations.
Building the FST’s for each step is pretty straightforward . . .

Except for context-dependent phone expansion.
Once you have the FST’s, easy peasy.

Composition handles context-dependent expansion
correctly.

Handles graph expansion for training, too.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 54 / 138

IBM

Where Are We?

1 What Is an FST?

2 Composition

3 FST’s, Composition, and ASR

4 Weights

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 55 / 138

IBM

What About Those Probability Thingies?

e.g., to hold language model probs, transition probs, etc.
FSM’s ⇒ weighted FSM’s.

WFSA’s, WFST’s.
Each arc has a score or cost.

So do final states.

1

2/1a/0.3

c/0.4

3/0.4

b/1.3

a/0.2

<epsilon>/0.6

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 56 / 138

IBM

What Does a Weighted FSA Mean?

The (possibly infinite) list of strings it accepts . . .
And for each string, a cost.

Typically, we take costs to be negative log probabilities.
Cost of a path is sum of arc costs plus final cost.
(Total path log prob is sum of arc log probs.)

Things that don’t affect meaning.
How costs or labels are distributed along a path.
Invalid paths.

Are these equivalent?

1 2a/1 3/3b/2 1 2a/0 3/6b/0

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 57 / 138

IBM

What If Two Paths With Same String?

How to compute cost for this string?
Use min operator to compute combined cost (Viterbi)?

Can combine paths with same labels without changing
meaning.

1 2

a/1

a/2

b/3
3/0c/0 1 2a/1

b/3
3/0c/0

Operations (+, min) form a semiring (the tropical semiring).
Other semirings are possible.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 58 / 138

IBM

Which Is Different From the Others?

1 2/1a/0

1 2/0.5a/0.5

a/1

1 2<epsilon>/1 3/0a/0

1 2/-2a/3 3b/1

b/1

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 59 / 138

IBM

Weighted Composition

If (i1 · · · iN , c) in input graph . . .
And (i1 · · · iN , o1 · · ·oM , c′) in transducer, . . .
Then (o1 · · ·oM , c + c′) in output graph.
Combine costs for all different ways to produce same
o1 · · ·oM .

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 60 / 138

IBM

Weighted Composition

A 1 2a/1 3b/0 4/0d/2

T
1/1

a:A/2
b:B/1
c:C/0
d:D/0

A ◦ T 1 2A/3 3B/1 4/1D/2

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 61 / 138

IBM

Weighted Composition and ASR

class(x) = arg max
ω

P(ω)P(x|ω)

P(x|ω) ≈ max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at)

P(ω = w1 · · ·wl) =
l+1∏
i=1

P(wi |wi−2wi−1)

Total log prob of path is sum over component log probs.
In Viterbi, if multiple paths labeled with same string . . .
Only pay attention to path with highest log prob.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 62 / 138

IBM

Weighted Composition and ASR

ASR decoding.
Total log prob of path is sum over component log probs.
In Viterbi, if multiple paths labeled with same string . . .
Only pay attention to path with highest log prob.

Weighted FSM’s; cost = negative log prob.
Total cost of path is sum of costs on arcs.
If multiple paths labeled with same string . . .
Only pay attention to path with lowest cost.
Weighted composition sums costs from input
machines.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 63 / 138

IBM

The Bottom Line

Final decoding graph: L ◦ T1 ◦ T2 ◦ T3.
L = language model FSA.
T1 = FST mapping from words to CI phone sequences.
T2 = FST mapping from CI phone sequences to CD
phone sequences.
T3 = FST mapping from CD phone sequences to GMM
sequences.

If put component LM, AM log probs in L, T1, T2, T3, . . .
Then doing Viterbi decoding on L ◦ T1 ◦ T2 ◦ T3 . . .
Will correctly compute:

class(x) = arg max
ω

P(ω)P(x|ω)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 64 / 138

IBM

Weighted Graph Expansion

Final decoding graph: L ◦ T1 ◦ T2 ◦ T3.
L = language model FSA (w/ LM costs).
T1 = FST mapping from words to CI phone sequences
(w/ pronunciation costs).
T2 = FST mapping from CI phone sequences to CD
phone sequences.
T3 = FST mapping from CD phone sequences to GMM
sequences (w/ HMM transition costs).

In final graph, each path has correct “total” cost.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 65 / 138

IBM

Recap: Weighted FSM’s and ASR

Graph expansion can be framed as series of composition
operations . . .

Even when you need to worry about probabilities.
Weighted composition correctly combines scores from
multiple WFSM’s.
Varying the semiring used can give you other behaviors.

e.g., can we sum probs across paths rather than max?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 66 / 138

IBM

Recap: FST’s and Composition

Like sed, but can operate on all paths in a lattice
simultaneously.
Rewrite symbols as other symbols.

e.g., rewrite words as phone sequences (or vice versa).
Context-dependent rewriting of symbols.

e.g., rewrite CI phones as their CD variants.
Add in new scores.

e.g., language model lattice rescoring.
Restrict the set of allowed paths/intersection.

e.g., find all paths in lattice containing word NOODGE.
Or all of the above at once.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 67 / 138

IBM

Part III

Making Decoding Efficient

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 68 / 138

IBM

The Problem

Naive graph expansion, trigram LM.
If |V | = 50000, 500003 × 12 ≈ 1015 states in graph.

Naive Viterbi on this graph.
1015 states × 100 frames/sec = 1017 cells/sec.

Two main approaches.
Reduce states in graph: saves memory and time.
Don’t process all cells in chart.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 69 / 138

IBM

Where Are We?

5 Shrinking N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 70 / 138

IBM

Compactly Representing N-Gram Models

For trigram model, |V |2 states, |V |3 arcs in naive
representation.

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)

Only a small fraction of the possible |V |3 trigrams will occur
in the training data.

Is it possible to keep arcs only for occurring trigrams?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 71 / 138

IBM

Compactly Representing N-Gram Models

Can express smoothed n-gram models via backoff
distributions

Psmooth(wi |wi−1) =

{
Pprimary(wi |wi−1) if count(wi−1wi) > 0
αwi−1Psmooth(wi) otherwise

e.g., Witten-Bell smoothing

PWB(wi |wi−1) =
ch(wi−1)

ch(wi−1) + N1+(wi−1)
PMLE(wi |wi−1) +

N1+(wi−1)

ch(wi−1) + N1+(wi−1)
PWB(wi)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 72 / 138

IBM

Compactly Representing N-Gram Models

Psmooth(wi |wi−1) =

{
Pprimary(wi |wi−1) if count(wi−1wi) > 0
αwi−1Psmooth(wi) otherwise

h=w

h=<eps>
<eps>/alpha_w

w1/P(w1|w)

w2/P(w2|w)

w3/P(w3|w)

...

...

w1/P(w1)

w2/P(w2)

w3/P(w3)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 73 / 138

IBM

Compactly Representing N-Gram Models

By introducing backoff states . . .
Only need arcs for n-grams with nonzero count.
Compute probabilities for n-grams with zero count . . .
By traversing backoff arcs.

Does this representation introduce any error?
Hint: are there multiple paths with same label
sequence?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 74 / 138

IBM

Can We Make the LM Even Smaller?

Sure, just remove some more arcs. Which?
Count cutoffs.

e.g., remove all arcs corresponding to bigrams . . .
Occurring fewer than k times in the training data.

Likelihood/entropy-based pruning.
Choose those arcs which when removed, . . .
Change the likelihood of the training data the least.
(Seymore and Rosenfeld, 1996), (Stolcke, 1998)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 75 / 138

IBM

LM Pruning and Graph Sizes

Original: trigram model, |V |3 = 500003 ≈ 1014 word arcs.
Backoff: >100M unique trigrams ⇒ ∼100M word arcs.
Pruning: keep <5M n-grams ⇒ ∼5M word arcs.

4 phones/word ⇒ 12 states/word ⇒ ∼60M states?
We’re done?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 76 / 138

IBM

What About Context-Dependent Expansion?

With word-internal models, each word really is only ∼12
states

_S_IH S_IH_K IH_K_S K_S_

With cross-word models, each word is hundreds of states?
50 CD variants of first three states, last three states.

AA_S_IH

S_IH_K IH_K_S
AE_S_IH

AH_S_IH

...

...

K_S_AA

K_S_AE

K_S_AH

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 77 / 138

IBM

Where Are We?

5 Shrinking N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 78 / 138

IBM

Graph Optimization

Can we modify the topology of a graph . . .
Such that it’s smaller (fewer arcs or states) . . .
Yet retains the same meaning.

The meaning of an WFSA:
The set of strings it accepts, and the cost of each
string.
Don’t care how costs or labels are distributed along a
path.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 79 / 138

IBM

Graph Compaction

Consider word graph for isolated word recognition.
Expanded to phone level: 39 states, 38 arcs.

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 80 / 138

IBM

Determinization

Share common prefixes: 29 states, 28 arcs.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 81 / 138

IBM

Minimization

Share common suffixes: 18 states, 23 arcs.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ABU

DD

S

Z

DD

ABROAD

ABUSE

ABSURD

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 82 / 138

IBM

Determinization and Minimization

By sharing arcs between paths . . .
We reduced size of graph by half . . .
Without changing its meaning.

determinization — prefix sharing.
Produce deterministic version of an FSM.

minimization — suffix sharing.
Given a deterministic FSM, find equivalent FSM with
minimal number of states.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 83 / 138

IBM

What Is A Deterministic FSM?

No two arcs exiting the same state have the same input
label.
No ε arcs.
i.e., for any input label sequence . . .

At most one path from start state labeled with that
sequence.

A

A <epsilon>

B

B
A B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 84 / 138

IBM

Determinization: The Basic Idea

For an input label sequence . . .
There is set of states you can reach from start state . . .
Accepting exactly that input sequence.

Collect all such state sets (over all input sequences).
Each such state set maps to a state in the output FSM.

Make arcs in the logical way.

1

2A

3

A 5<epsilon>

4B

B
1 2,3,5A 4B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 85 / 138

IBM

Determinization

Start from start state.
Keep list of state sets not yet expanded.

For each, find outgoing arcs, creating new state sets as
needed.

Must follow ε arcs when computing state sets.

1

2A

3

A 5<epsilon>

4B

B
1 2,3,5A 4B

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 86 / 138

IBM

Example 2

1 2
a

3

a 4
a

5

aaa
bb

1 2,3a 2,3,4,5a

a

4,5b

b

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 87 / 138

IBM

Example 3

1

2
AX

7
AX

8
AX

3AE

4

AE

5

AE

6

AA

9B

14B

15B

10B

11
B

12
B

13
B

16R

17S

18Z

19
UW

20
UW

21Y

22Y

23AO

24ER

25ER

26
ABU

27
ABU

28UW

29UW

30DD

31
DD

32
DD

33S

34Z

35ABROAD

36
ABSURD

37
ABSURD

38ABUSE

39ABUSE

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 88 / 138

IBM

Example 3, Continued

1

2,7,8

AX

3,4,5AE

6

AA

9,14,15
B

10,11,12B

13

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 89 / 138

IBM

Pop Quiz: Determinization

Are all unweighted FSA’s determinizable?
i.e., will the determinization algorithm always
terminate?

For an FSA with s states, . . .
What is the maximum number of states in its
determinization?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 90 / 138

IBM

Recap: Determinization

Improves behavior of composition and search!
In composition, output states (s, t) created when?

Whether reduces or increases number of states . . .
Depends on nature of input FSM.

Required for minimization algorithm.
Can apply to weighted FSM’s and transducers as well.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 91 / 138

IBM

Minimization

Given a deterministic FSM . . .
Find equivalent deterministic FSM with minimal number
of states.

Number of arcs may be nowhere near minimal.
Minimizing number of arcs is NP-complete

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 92 / 138

IBM

Minimization: Acyclic Graphs

Merge states with same following strings (follow sets).

1

2A

6
B

3B

7C

8

D

4C

5

D

1

2A

3,6
B

B

4,5,7,8C

D

states following strings
1 ABC, ABD, BC, BD
2 BC, BD

3, 6 C, D
4,5,7,8 ε

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 93 / 138

IBM

General Minimization: The Basic Idea

Start with all states in single partition.
Whenever find evidence that two states within partition . . .

Have different follow sets . . .
Split the partition.

At end, collapse all states in same partition into single state.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 94 / 138

IBM

Minimization

Invariant: if two states are in different partitions . . .
They have different follow sets.
Converse does not hold.

First split: final and non-final states.
Final states have ε in their follow sets; non-final states
do not.

If two states in same partition have . . .
Different number of outgoing arcs, or different arc
labels . . .
Or arcs go to different partitions . . .
The two states have different follow sets.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 95 / 138

IBM

Minimization

1

2a

4

d

c

3b

5
c

c

6b

action evidence partitioning
{1,2,3,4,5,6}

split 3,6 final {1,2,4,5}, {3,6}
split 1 has a arc {1}, {2,4,5}, {3,6}
split 4 no b arc {1}, {4}, {2,5}, {3,6}

1 2,5

a

4

d

c

3,6b
c

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 96 / 138

IBM

Recap: Minimization

Minimizes states, not arcs, for deterministic FSM’s.
Does minimization always terminate?
Not that expensive, can sometimes get something.
Can apply to weighted FSM’s and transducers as well.

Need to first apply push operation.
Normalizes locations of costs/labels along paths . . .
So arcs that can be merged will have same cost/label.

Determinization and minimization available in FSM toolkits.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 97 / 138

IBM

Weighted Graph Expansion, Optimized

Final decoding graph: min(det(L ◦ T1 ◦ T2 ◦ T3)).
L = pruned, backoff language model FSA.
T1 = FST mapping from words to CI phone sequences.
T2 = FST mapping from CI phone sequences to CD
phone sequences.
T3 = FST mapping from CD phone sequences to GMM
sequences.

1015 states ⇒ 10–20M states/arcs.
2–4M n-grams kept in LM.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 98 / 138

IBM

Practical Considerations

Final decoding graph: min(det(L ◦ T1 ◦ T2 ◦ T3)).
Strategy: build big graph, then minimize at the end?

Problem: can’t hold big graph in memory.
Another strategy: minimize graph after each expansion
step.
A little bit of art involved.

Composition is associative.
Many existing recipes for graph expansion.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 99 / 138

IBM

Historical Note

In the old days (pre-AT&T):
People determinized their decoding graphs . . .
And did the push operation for LM lookahead . . .
Without calling it determinization or pushing.
ASR-specific implementations.

Nowadays (late 1990’s–)
FSM toolkits implementing general finite-state
operations.
Can apply finite-state operations in many contexts in
ASR.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 100 / 138

IBM

Where Are We?

5 Shrinking N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 101 / 138

IBM

Real-Time Decoding

Why is this desirable?
Decoding time for Viterbi algorithm; 10M states in graph.

In each frame, loop through every state in graph.
100 frames/sec × 10M states × ∼100 cycles/state ⇒
1011 cycles/sec.
PC’s do ∼ 109 cycles/second (e.g., 3GHz P4).

We cannot afford to evaluate each state at each frame.
⇒ Pruning!

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 102 / 138

IBM

Pruning

At each frame, only evaluate states/cells with best Viterbi
scores.
Given active states/cells from last frame . . .

Only examine states/cells in current frame . . .
Reachable from active states in last frame.
Keep best to get active states in current frame.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 103 / 138

IBM

Pruning

When not considering every state at each frame . . .
We may make search errors.

The field of search in ASR.
Trying to minimize computation and search errors.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 104 / 138

IBM

How Many Active States To Keep?

Goal: Try to prune paths . . .
With no chance of ever becoming the best path.

Beam pruning.
Keep only states with log probs within fixed distance . . .
Of best log prob at that frame.
Why does this make sense? When could this be bad?

Rank or histogram pruning.
Keep only k highest scoring states.
Why does this make sense? When could this be bad?

Can we get the best of both worlds?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 105 / 138

IBM

Pruning Visualized

Active states are small fraction of total states (<1%)
Tend to be localized in small regions in graph.

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 106 / 138

IBM

Pruning and Determinization

Most uncertainty occurs at word starts.
Determinization drastically reduces branching here.

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 107 / 138

IBM

Language Model Lookahead

In practice, put word labels at word ends. (Why?)
What’s wrong with this picture? (Hint: think beam pruning.)

AX/0

AE/0

AA/0

B/0

B/0

B/0

R/0

Y/0

S/0

Z/0

UW/0

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/7

ABU/7

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/4.3

ABUSE/3.5

ABUSE/3.5

ABSURD/4.7

ABSURD/4.7

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 108 / 138

IBM

Language Model Lookahead

Move LM scores as far ahead as possible.
At each point, total cost ⇔ min LM cost of following words.
push operation does this.

AX/3.5

AE/4.7

AA/7.0

B/0

B/0

B/0

R/0.8

Y/0

S/0

Z/0

UW/2.3

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/0

ABU/0

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/0

ABUSE/0

ABUSE/0

ABSURD/0

ABSURD/0

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 109 / 138

IBM

Recap: Efficient Viterbi Decoding

Pruning is key.
Pruning behavior improves immensely with . . .

Determinization.
LM lookahead.

Can process ∼10000 states/frame in < 1x RT on a PC.
Can process ∼1% of cells for 10M-state graph . . .
And make very few search errors.

Can go even faster with smaller LM’s (or more search
errors).

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 110 / 138

IBM

Where Are We?

5 Shrinking N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 111 / 138

IBM

What’s the Problemo?

Naive implementation: store whole DP chart.
If 10M-state decoding graph:

10 second utterance ⇒ 1000 frames.
1000 frames × 10M states = 10 billion cells in DP chart.

Each cell holds:
Viterbi log prob.
Backtrace pointer.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 112 / 138

IBM

Optimization 1: Sparse Chart

Use sparse representation of DP chart.
Only store cells for active states.

10M cells/frame ⇒ 10k cells/frame.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 113 / 138

IBM

Optimization 2: Forgetting the Past

Insight: the only reason we need to keep around cells from
past frames . . .

Is so we can do backtracing to recover the final word
sequence.

Can we store backtracing information in some other way?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 114 / 138

IBM

Token Passing

Maintain “word tree”:
Compact encoding of a list of similar word sequences.

Backtrace pointer points to node in tree . . .
Holding word sequence labeling best path to cell.

Set backtrace to same node as at best last state . . .
Unless cross word boundary.

1

2THE

9THIS

11

THUD

3DIG

4DOG

10DOG

5ATE

6
EIGHT

7MAY

8
MY

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 115 / 138

IBM

Recap: Saving Memory in Viterbi Decoding

Before:
Static decoding graph.
(# states) × (# frames) cells.

After:
Static decoding graph (shared memory) ⇐ the biggie.
(# active states) × (2 frames) cells.
Backtrace word tree.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 116 / 138

IBM

Part IV

Other Decoding Paradigms

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 117 / 138

IBM

Where Are We?

9 Dynamic Graph Expansion

10 Stack Search

11 Two-Pass Decoding

12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 118 / 138

IBM

My Graph Is Too Big

One approach: static graph expansion.
Shrink the graph by . . .
Using a simpler language model and . . .
Statically optimizing the graph.

Another approach: dynamic graph expansion.
Don’t store the whole graph in memory.
Build the parts of the graph with active states on the fly.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 119 / 138

IBM

A Tale of Two Decoding Styles

Approach 1: Dynamic graph expansion.
Since late 1980’s.
Can handle more complex language models.
Decoders are incredibly complex beasts.
e.g., cross-word CD expansion without FST’s.

Approach 2: Static graph expansion.
Pioneered by AT&T in late 1990’s.
Enabled by optimization algorithms for WFSM’s.
Static graph expansion is complex.
Decoding is relatively simple.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 120 / 138

IBM

Dynamic Graph Expansion

How can we store a really big graph such that . . .
It doesn’t take that much memory, but . . .
Easy to expand any part of it that we need.

Observation: composition is associative:

(A ◦ T1) ◦ T2 = A ◦ (T1 ◦ T2)

Observation: decoding graph is composition of LM with a
bunch of FST’s:

Gdecode = ALM ◦ Twd→pn ◦ TCI→CD ◦ TCD→HMM

= ALM ◦ (Twd→pn ◦ TCI→CD ◦ TCD→HMM)

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 121 / 138

IBM

Review: Composition

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 122 / 138

IBM

On-the-Fly Composition

Gdecode = ALM ◦ (Twd→pn ◦ TCI→CD ◦ TCD→HMM)

Instead of storing one big graph Gdecode, . . .
Store two smaller graphs: ALM and
T = Twd→pn ◦ TCI→CD ◦ TCD→HMM.

Replace states with state pairs (sA, sT).
Straightforward to compute outgoing arcs of (sA, sT).

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 123 / 138

IBM

Notes: Dynamic Graph Expansion

Really complicated to explain before FSM perspective.
Other decompositions into component graphs are possible.
Speed:

Statically optimize component graphs.
Try to approximate static optimization of composed
graph . . .
Using on-the-fly techniques.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 124 / 138

IBM

Where Are We?

9 Dynamic Graph Expansion

10 Stack Search

11 Two-Pass Decoding

12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 125 / 138

IBM

Synchronicity

Synchronous search — e.g., Viterbi search.
Extend all paths and calculate all scores synchronously.
Expand states with mediocre scores in case improve
later.

Asynchronous search — e.g., stack search.
Pursue best-looking path first, regardless of length!
If lucky, expand very few states at each frame.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 126 / 138

IBM

Stack Search

Pioneered at IBM in mid-1980’s; first real-time dictation
system.
May be competitive at low-resource operating points; low
noise.

Difficult to tune (nonmonotonic behavior w.r.t.
parameters).
Going out of fashion?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 127 / 138

IBM

Stack Search

Extend hypotheses word-by-word
Use fast match to decide which word to extend best path
with.

Decode single word with simpler acoustic model.

THE

THIS

THUD

DIG

DOG

DOG

ATE

EIGHT

MAY

MY

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 128 / 138

IBM

Stack Search

Advantages.
If best path pans out, very little computation.

Disadvantages.
Difficult to compare paths of different lengths.
May need to recompute the same values multiple times.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 129 / 138

IBM

Where Are We?

9 Dynamic Graph Expansion

10 Stack Search

11 Two-Pass Decoding

12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 130 / 138

IBM

Two-Pass Decoding

What about my fuzzy logic 15-phone acoustic model and
7-gram neural net language model with SVM boosting?
Some of the ASR models we develop in research are . . .

Too expensive to implement in one-pass decoding.
First-pass decoding: use simpler model . . .

To find “likeliest” word sequences . . .
As lattice (WFSA) or flat list of hypotheses (N-best list).

Rescoring: use complex model . . .
To find best word sequence from among first-pass
hypotheses.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 131 / 138

IBM

Lattice Generation and Rescoring

THE

THIS

THUD

DIG

DOG

DOG

DOGGY

ATE

EIGHT

MAY

MY

MAY

In Viterbi, store k -best tracebacks at each word-end cell.
To add in new LM scores to a lattice . . .

What operation can we use?
Lattices have other uses.

e.g., confidence estimation, consensus decoding,
lattice MLLR, etc.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 132 / 138

IBM

N-Best List Rescoring

For exotic models, even lattice rescoring may be too slow.
For some models, computation linear in number of
hypotheses.

Easy to generate N-best lists from lattices.
A∗ algorithm.

N-best lists have other uses.
e.g., confidence estimation, alternatives in interactive
apps, etc.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 133 / 138

IBM

Where Are We?

9 Dynamic Graph Expansion

10 Stack Search

11 Two-Pass Decoding

12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 134 / 138

IBM

Synchronous or Asynchronous?

Stack search: lots of search errors in noise.
Only consider if very low memory footprint.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 135 / 138

IBM

Static or Dynamic? Two-Pass?

If speed is a premium?
If flexibility is a premium?

e.g., update LM vocabulary every night.
If need a gigantic language model?
If latency is a premium?

What can’t we use?
If accuracy is a premium (speed OK, no latency
requirements)?
If accuracy is a premium (all the time in the world)?
If doing cutting-edge research?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 136 / 138

IBM

The Road Ahead

Weeks 1–4: Small vocabulary ASR.
Weeks 5–8: Large vocabulary ASR.

Weeks 9–12: Advanced topics.
Adaptation; robustness.
Advanced language modeling.
Discriminative training; ROVER; consensus.
Applications: ???.

Week 13: Final presentations.

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 137 / 138

IBM

Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?

EECS 6870: Speech Recognition LVCSR Decoding 27 October 2009 138 / 138

	Introduction to LVCSR Decoding
	Finite-State Transducers
	What Is an FST?
	Composition
	FST's, Composition, and ASR
	Weights

	Making Decoding Efficient
	Shrinking N-Gram Models
	Graph Optimization
	Pruning Search
	Saving Memory

	Other Decoding Paradigms
	Dynamic Graph Expansion
	Stack Search
	Two-Pass Decoding
	Which Decoding Paradigm Should I Use?

