Lecture 8
LVCSR Decoding

Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA
{bhuvana,picheny,stanchen}@us.ibm.com

27 October 2009
Main feedback from last lecture.

- Mud: k-means clustering.

Lab 2 handed back today.

- Answers:
 /user1/faculty/stanchen/e6870/lab2_ans/.

Lab 3 due Thursday, 11:59pm.

Next week: Election Day.

Lab 4 out by then?
The Big Picture

- Weeks 1–4: Small vocabulary ASR.
- Weeks 5–8: Large vocabulary ASR.
 - Week 5: Language modeling.
 - Week 6: Pronunciation modeling ⇔ acoustic modeling for large vocabularies.
 - Week 7: Training for large vocabularies.
 - **Week 8: Decoding for large vocabularies.**
- Weeks 9–13: Advanced topics.
Outline

- Part I: Introduction to LVCSR decoding, i.e., search.
- Part II: Finite-state transducers.
- Part III: Making decoding efficient.
- Part IV: Other decoding paradigms.
Part I

Introduction to LVCSR Decoding
Decoding for LVCSR

\[
\text{class}(x) = \arg \max_{\omega} P(\omega|x) \\
= \arg \max_{\omega} \frac{P(\omega)P(x|\omega)}{P(x)} \\
= \arg \max_{\omega} P(\omega)P(x|\omega)
\]

Now that we know how to build models for LVCSR . . .

- \textit{n}-gram models via counting and smoothing.
- CD acoustic models via complex recipes.

How can we use them for decoding?
Decoding: Small Vocabulary

- Take graph/WFSA representing language model.
 \(\text{UH LIKE} \)
 \(\text{i.e.}, \) all allowable word sequences.

- Expand to underlying HMM.
 \(\text{LIKE} \)
 \(\text{UH} \)

- Run the Viterbi algorithm!
Yup.

One state for each \((n - 1)\)-gram history \(\omega\).

All paths ending in state \(\omega\) . . .
 - Are labeled with word sequence ending in \(\omega\).

State \(\omega\) has outgoing arc for each word \(w\) . . .
 - With arc probability \(P(w|\omega)\).
Bigram, Trigram LM’s Over Two Word Vocab

h=w1
h=w2
h=w1,w1
h=w1,w2
h=w2,w1
h=w2,w2

w1/P(w1|w1)
w1/P(w1|w2)
w2/P(w2|w1)
w2/P(w2|w2)
w1/P(w1|w1,w1)
w1/P(w1|w1,w2)
w2/P(w2|w1,w1)
w2/P(w2|w2,w1)
w1/P(w1|w2,w1)
w2/P(w2|w2,w2)

w1/P(w1|w2)
w2/P(w2|w1)
w1/P(w1|w2,w1)
w2/P(w2|w2,w2)
Pop Quiz

- How many states in FSA representing n-gram model . . .
 - With vocabulary size $|V|$?
- How many arcs?
Issue: Graph Expansion

- Word models.
 - Replace each word with its HMM.
- CI phone models.
 - Replace each word with its phone sequence(s).
 - Replace each phone with its HMM.

h=LIKE
LIKE/P(LIKE|LIKE)
UH/P(UH|LIKE)

h=UH
LIKE/P(LIKE|UH)
UH/P(UH|UH)
How can we do context-dependent expansion?
- Handling branch points is tricky.
- Other tricky cases.
 - Words consisting of a single phone.
 - Quinphone models.
Triphone Graph Expansion Example

- DH
- AH
- D
- AO
- G

Graph:

- G_D_AO
- D_AO_G
- AO_G_D
- AO_G_DH
- G_DH_AH
- DH_AH_DH
- DH_AH_D
- AH_DH_AH
- AH_D_AO
- AH_D_DH
Aside: Word-Internal Acoustic Models

- Simplify acoustic model to simplify graph expansion.
- *Word-internal* models.
 - Don’t let decision trees ask questions across word boundaries.
 - Pad contexts with the *unknown phone*.
 - Hurts performance (e.g., coarticulation across words).
- As with word models, just replace each word with its HMM.
Issue: How Big The Graph?

- Trigram model (e.g., vocabulary size $|V| = 2$)

- $|V|^3$ word arcs in FSA representation.
- Say words are ~ 4 phones = 12 states on average.
- If $|V| = 50000$, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- PC's have $\sim 10^9$ bytes of memory.
Issue: How Slow Decoding?

- In each frame, loop through every state in graph.
- If 100 frames/sec, 10^{15} states . . .
 - How many cells to compute per second?
- PC’s can do $\sim 10^{10}$ floating-point ops per second.
Recap: Small vs. Large Vocabulary Decoding

- In theory, can use the same exact techniques.
- In practice, three big problems:
 - (Context-dependent) graph expansion is complicated.
 - The decoding graph would be way too big.
 - Decoding would be way too slow.
Part II

Finite-State Transducers
A View of Graph Expansion

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into HMM.
A Framework for Rewriting Graphs

- A general way of representing graph transformations?
 - Finite-state transducers (FST’s).
- A general operation for applying transformations to graphs?
 - Composition.
Where Are We?

1. What Is an FST?
2. Composition
3. FST’s, Composition, and ASR
4. Weights
Review: What is a Finite-State Acceptor?

- It has states.
 - Exactly one initial state; one or more final states.
- It has arcs.
 - Each arc has a label, which may be empty (ϵ).
- Ignore probabilities for now.

![Diagram of a finite-state acceptor](image_url)

1. It has states.
2. Exactly one initial state; one or more final states.
3. It has arcs.
4. Each arc has a label, which may be empty (ϵ).
5. Ignore probabilities for now.
What Does an FSA Mean?

- The (possibly infinite) list of strings it accepts.
 - We need this in order to define composition.
- Things that *don’t* affect meaning.
 - How labels are distributed along a path.
 - Invalid paths.
- Are these equivalent?

![Diagram of FSA transitions](image-url)
What is a Finite-State Transducer?

- It’s like a finite-state acceptor, except . . .
- Each arc has two labels instead of one.
 - An *input* label (possibly empty).
 - An *output* label (possibly empty).
What Does an FST Mean?

- A (possibly infinite) list of pairs of strings . . .
 - An input string and an output string.
- The gist of *composition*.
 - If string $i_1 \cdots i_N$ occurs in input graph . . .
 - And $(i_1 \cdots i_N, o_1 \cdots o_M)$ occurs in transducer, . . .
 - Then string $o_1 \cdots o_M$ occurs in output graph.
Terminology

- *Finite-state acceptor* (FSA): one label on each arc.
- *Finite-state transducer* (FST): input and output label on each arc.
- *Finite-state machine* (FSM): FSA or FST.
 - Also, *finite-state automaton*.
Where Are We?

1. What Is an FST?
2. Composition
3. FST’s, Composition, and ASR
4. Weights
The Composition Operation

- A simple and efficient algorithm for computing . . .
 - Result of applying a transducer to an acceptor.
- Composing FSA A with FST T to get FSA $A \circ T$.
 - If string $i_1 \cdots i_N \in A$ and . . .
 - Input/output string pair $(i_1 \cdots i_N, o_1 \cdots o_M) \in T$, . . .
 - Then string $o_1 \cdots o_M \in A \circ T$.
Rewriting a Single String A Single Way

\[A \]

\[T \]

\[A \circ T \]
Rewriting a Single String A Single Way

\[A \]

\[T \]

\[A \circ T \]
Transforming a Single String

- Let’s say you have a string, e.g.,
 THE DOG
- Let’s say we want to apply a one-to-one transformation.
 - e.g., map words to their (single) baseforms.
 DH AH D AO G
- This is easy, e.g., use `sed` or `perl` or ...
The Magic of FST’s and Composition

- Let’s say you have a (possibly infinite) list of strings . . .
 - Expressed as an FSA, as this is compact.
- How to transform all strings in FSA in one go?
- How to do one-to-many or one-to-zero transformations?
- Can we have the (possibly infinite) list of output strings . . .
 - Expressed as an FSA, as this is compact?
- Fast?
Rewriting Many Strings At Once

\[A \circ T \]

\[T \]

\[A \]

\[A \circ T \]
Rewriting A Single String Many Ways

\[A \circ T \]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
A \\
\end{array}
\]

\[
\begin{array}{c}
b:B \\
b:b \\
a:A \\
a:a \\
a:a \\
\end{array}
\]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
A \\
\end{array}
\]

\[
\begin{array}{c}
a \\
b \\
a \\
A \\
\end{array}
\]
Rewriting Some Strings Zero Ways

\[A \circ T \]

\[\begin{align*}
A & \quad 1 \\
& \quad \downarrow \\
& \quad 2 \\
& \quad \downarrow \\
& \quad 3 \\
& \quad \downarrow \\
& \quad 4 \\
& \quad \downarrow \\
& \quad 5 \\
& \quad \downarrow \\
& \quad 6 \\
& \quad b \\
& \quad a \\
& \quad b \\
& \quad d \\
& \quad a \\
T & \quad 1 \\
A \circ T & \quad 1 \\
& \quad \downarrow \\
& \quad 2 \\
& \quad \downarrow \\
& \quad 3 \\
& \quad \downarrow \\
& \quad 5 \\
& \quad \downarrow \\
& \quad 4 \\
& \quad a \\
& \quad a \\
& \quad a \\
& \quad a \\
\end{align*} \]
For every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T$. . .

 Corresponding to simultaneously being in states s and t.

 Make arcs in the intuitive way.
Example

Optimization: start from initial state, build outward.
For now, pretend no \(\epsilon \)-labels.
For every state \(s \in A \), \(t \in T \), create state \((s, t) \in A \circ T \).
Create arc from \((s_1, t_1) \) to \((s_2, t_2) \) with label \(o \) iff
 - There is an arc from \(s_1 \) to \(s_2 \) in \(A \) with label \(i \) and . . .
 - There is an arc from \(t_1 \) to \(t_2 \) in \(T \) with input label \(i \) and output label \(o \).
\((s, t) \) is initial iff \(s \) and \(t \) are initial; similarly for final states.
(Remove arcs and states that cannot reach both an initial and final state.)
What is time complexity?
Another Example
Composión y ϵ-Transiciones

- Idea básica: se puede tomar una transición ϵ en uno de los FSM sin moverse en otros FSM.
- Un poco complicado hacerlo exactamente correctamente.
- Háganse las lecturas si les importa: (Pereira, Riley, 1997)

A, T

$A \circ T$
Recap: FST’s and Composition

- Just as FSA’s are a simple formalism that . . .
 - Lets us express a large and interesting set of languages . . .
- FST’s are a simple formalism that . . .
 - Lets us express a large and interesting set of one-to-many string transformations . . .
- And the operation of composition lets us efficiently . . .
 - Apply an FST to all strings in an FSA in one go!
FSM Toolkits

- AT&T FSM toolkit \Rightarrow OpenFST; lots of others.
 - Packages up composition, lots of other finite-state operations.
- A syntax for specifying FSA’s and FST’s, e.g.,

 1 2 C
 2 3 A
 3 4 B
 4

```
1 → 2 C
2 → 3 A
3 → 4 B
```
Where Are We?

1. What Is an FST?
2. Composition
3. FST’s, Composition, and ASR
4. Weights
Graph Expansion: Original View

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into HMM.
Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.

- $L =$ language model FSA.
- $T_1 =$ FST mapping from words to CI phone sequences.
- $T_2 =$ FST mapping from CI phone sequences to CD phone sequences.
- $T_3 =$ FST mapping from CD phone sequences to GMM sequences.

How to design T_1, T_2, T_3?
How To Design an FST?

- Design FSA accepting correct set of strings . . .
 - Keeping track of necessary “state”, e.g., for CD expansion.
- Add in output tokens.
 - Creating additional states/arcs as necessary.
Example: Inserting Optional Silences

A

1 → 2 → 3 → 4

C → A → B

C:C
B:B
A:A
<epsilon>:~SIL

T

1

<epsilon>:~SIL

A:~SIL
B:~SIL
C:~SIL
D:~SIL

A ◦ T

1 → 2 → 3 → 4

C ← A ← B

~SIL

EECS 6870: Speech Recognition
LVCSR Decoding
27 October 2009
Example: Mapping Words To Phones

THE(01) DH AH
THE(02) DH IY

A

1 THE 2 DOG 3

T

1 THE:DH 2 <epsilon>:AH 3 DOG:D 4 <epsilon>:AO
 <epsilon>:IY

A ∘ T

1 DH 2 AH 3 D 4 AO 5 G 6
Example: Rewriting CI Phones as HMM's

\[A \circ T \]

\[A \]

1 \rightarrow D \rightarrow 2 \rightarrow AO \rightarrow 3 \rightarrow G \rightarrow 4

\[T \]

1 \rightarrow AO:AO1 \rightarrow 2 \rightarrow D:D1 \rightarrow 3 \rightarrow G:G1 \rightarrow 4

\[A \circ T \]

1 \rightarrow D1 \rightarrow 2 \rightarrow D2 \rightarrow AO:AO1 \rightarrow 3 \rightarrow AO1 \rightarrow 4 \rightarrow AO2 \rightarrow 5 \rightarrow G1 \rightarrow 6 \rightarrow G2 \rightarrow 7
How to Express CD Expansion via FST’s?

- **Step 1:** Rewrite each phone as a triphone.
 - Rewrite AX as DH_AX_R if DH to left, R to right.
 - One strategy: delay output of each phone by one arc.
 - What information to store in each state? (Think n-gram models.)

- **Step 2:** Rewrite each triphone with correct context-dependent HMM.
 - Just like rewriting a CI phone as its HMM.
 - Need to precompute HMM for each possible triphone.
 - See previous slide.
How to Express CD Expansion via FST’s?

A

1 \(\xrightarrow{x} \) 2 \(\xrightarrow{y} \) 3 \(\xrightarrow{y} \) 4 \(\xrightarrow{x} \) 5 \(\xrightarrow{y} \) 6

T

\[\begin{align*}
T_{1,2} & = x_{x_x} \\
T_{2,3} & = x_{x_x} \\
T_{3,4} & = x_{x_x} \\
T_{4,5} & = x_{x_x} \\
T_{5,6} & = x_{x_x} \\
T_{6,1} & = x_{x_x} \\
\end{align*} \]

A \circ T

1 \(\xrightarrow{x_{x_x} y} \) 2 \(\xrightarrow{x_y y} \) 3 \(\xrightarrow{y_y x} \) 4 \(\xrightarrow{y_x y} \) 5 \(\xrightarrow{x_y y} \) 6
How to Express CD Expansion via FST’s?

Point: composition automatically expands FSA to correctly handle context!

- Makes multiple copies of states in original FSA . . .
- That can exist in different triphone contexts.
- (And makes multiple copies of only these states.)
Step 1: Rewrite each phone as a quinphone?
 \[50^5 \approx 300M \text{ arcs.} \]

Observation: given a word vocabulary . . .
 Not all quinphones can occur (usually).

Build FST’s to only handle quinphones that can occur.
Graph expansion can be framed as series of composition operations.

Building the FST’s for each step is pretty straightforward . . .
- Except for context-dependent phone expansion.

Once you have the FST’s, easy peasy.
- Composition handles context-dependent expansion correctly.

Handles graph expansion for training, too.
Where Are We?

1. What Is an FST?
2. Composition
3. FST’s, Composition, and ASR
4. Weights
What About Those Probability Thingies?

- *e.g.*, to hold language model probs, transition probs, etc.
- FSM’s ⇒ *weighted* FSM’s.
 - WFSA’s, WFST’s.
- Each arc has a score or *cost*.
 - So do final states.

```
1
a/0.3 c/0.4 b/1.3

2/1

3/0.4
a/0.2 <epsilon>/0.6
```
What Does a Weighted FSA Mean?

- The (possibly infinite) list of strings it accepts . . .
 - And for each string, a cost.
- Typically, we take costs to be negative log probabilities.
 - Cost of a path is sum of arc costs plus final cost.
 - (Total path log prob is sum of arc log probs.)
- Things that don’t affect meaning.
 - How costs or labels are distributed along a path.
 - Invalid paths.
- Are these equivalent?
What If Two Paths With Same String?

- How to compute cost for this string?
- Use min operator to compute combined cost (Viterbi)?
 - Can combine paths with same labels without changing meaning.

Operations (+, min) form a semiring (the tropical semiring).
- Other semirings are possible.
Which Is Different From the Others?

1. $1 \rightarrow a/0 \rightarrow 2/1$

2. $1 \rightarrow a/0.5 \rightarrow 2/0.5$
 $1 \rightarrow a/1$

3. $1 \rightarrow <\epsilon>/1 \rightarrow 2 \rightarrow a/0 \rightarrow 3/0$

4. $1 \rightarrow a/3 \rightarrow 2/-2 \rightarrow b/1 \rightarrow 3$

EECS 6870: Speech Recognition
LVCSR Decoding
27 October 2009 59 / 138
Weighted Composition

- If \((i_1 \cdots i_N, c)\) in input graph \ldots
- And \((i_1 \cdots i_N, o_1 \cdots o_M, c')\) in transducer, \ldots
- Then \((o_1 \cdots o_M, c + c')\) in output graph.
- Combine costs for all different ways to produce same \(o_1 \cdots o_M\).
Weighted Composition

\(A\)

\(T\)

\(A \circ T\)
Weighted Composition and ASR

\[
\text{class}(\mathbf{x}) = \arg \max_{\omega} P(\omega)P(\mathbf{x}|\omega)
\]

\[
P(\mathbf{x}|\omega) \approx \max_{A} \prod_{t=1}^{T} P(a_t) \prod_{t=1}^{T} P(\vec{x}_t|a_t)
\]

\[
P(\omega = w_1 \cdots w_l) = \prod_{i=1}^{l+1} P(w_i|w_{i-2}w_{i-1})
\]

- Total log prob of path is sum over component log probs.
- In Viterbi, if multiple paths labeled with same string . . .
- Only pay attention to path with highest log prob.
Weighted Composition and ASR

- ASR decoding.
 - Total log prob of path is sum over component log probs.
 - In Viterbi, if multiple paths labeled with same string . . .
 - Only pay attention to path with highest log prob.

- Weighted FSM’s; cost = negative log prob.
 - Total cost of path is sum of costs on arcs.
 - If multiple paths labeled with same string . . .
 - Only pay attention to path with lowest cost.
 - Weighted composition sums costs from input machines.
The Bottom Line

- Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.
 - $L =$ language model FSA.
 - $T_1 =$ FST mapping from words to CI phone sequences.
 - $T_2 =$ FST mapping from CI phone sequences to CD phone sequences.
 - $T_3 =$ FST mapping from CD phone sequences to GMM sequences.
- If put component LM, AM log probs in L, T_1, T_2, T_3, \ldots
- Then doing Viterbi decoding on $L \circ T_1 \circ T_2 \circ T_3 \ldots$
- Will correctly compute:

$$\text{class}(x) = \arg \max_\omega P(\omega)P(x|\omega)$$
Weighted Graph Expansion

- Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.
 - $L =$ language model FSA (w/ LM costs).
 - $T_1 =$ FST mapping from words to CI phone sequences (w/ pronunciation costs).
 - $T_2 =$ FST mapping from CI phone sequences to CD phone sequences.
 - $T_3 =$ FST mapping from CD phone sequences to GMM sequences (w/ HMM transition costs).
- In final graph, each path has correct “total” cost.
Recap: Weighted FSM’s and ASR

- Graph expansion can be framed as series of composition operations . . .
 - Even when you need to worry about probabilities.
- Weighted composition correctly combines scores from multiple WFSM’s.
- Varying the semiring used can give you other behaviors.
 - *e.g.*, can we sum probs across paths rather than max?
Recap: FST’s and Composition

- Like `sed`, but can operate on all paths in a lattice simultaneously.
- Rewrite symbols as other symbols.
 - *e.g.*, rewrite words as phone sequences (or vice versa).
- Context-dependent rewriting of symbols.
 - *e.g.*, rewrite CI phones as their CD variants.
- Add in new scores.
 - *e.g.*, language model lattice rescoring.
- Restrict the set of allowed paths/intersection.
 - *e.g.*, find all paths in lattice containing word NOODGE.
- Or all of the above at once.
Part III

Making Decoding Efficient
The Problem

- Naive graph expansion, trigram LM.
 - If $|V| = 50000$, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- Naive Viterbi on this graph.
 - 10^{15} states \times 100 frames/sec $= 10^{17}$ cells/sec.
- Two main approaches.
 - Reduce states in graph: saves memory and time.
 - Don’t process all cells in chart.
Where Are We?

5. Shrinking N-Gram Models

6. Graph Optimization

7. Pruning Search

8. Saving Memory
Compactly Representing N-Gram Models

- For trigram model, $|V|^2$ states, $|V|^3$ arcs in naive representation.

- Only a small fraction of the possible $|V|^3$ trigrams will occur in the training data.
 - Is it possible to keep arcs only for occurring trigrams?
Compactly Representing N-Gram Models

- Can express smoothed n-gram models via backoff distributions

$$P_{\text{smooth}}(w_i \mid w_{i-1}) = \begin{cases} P_{\text{primary}}(w_i \mid w_{i-1}) & \text{if count}(w_{i-1}w_i) > 0 \\ \alpha_w_{i-1} P_{\text{smooth}}(w_i) & \text{otherwise} \end{cases}$$

- e.g., Witten-Bell smoothing

$$P_{\text{WB}}(w_i \mid w_{i-1}) = \frac{c_{h}(w_{i-1})}{c_{h}(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{MLE}}(w_i \mid w_{i-1}) + \frac{N_{1+}(w_{i-1})}{c_{h}(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{WB}}(w_i)$$
Compactly Representing N-Gram Models

\[
P_{\text{smooth}}(w_i|w_{i-1}) = \begin{cases}
 P_{\text{primary}}(w_i|w_{i-1}) & \text{if count}(w_{i-1}w_i) > 0 \\
 \alpha_{w_{i-1}} P_{\text{smooth}}(w_i) & \text{otherwise}
\end{cases}
\]
By introducing backoff states . . .

- Only need arcs for n-grams with nonzero count.
- Compute probabilities for n-grams with zero count . . .
- By traversing backoff arcs.

Does this representation introduce any error?

- Hint: are there multiple paths with same label sequence?
Can We Make the LM Even Smaller?

- Sure, just remove some more arcs. Which?
- Count cutoffs.
 - *e.g.*, remove all arcs corresponding to bigrams . . .
 - Occurring fewer than k times in the training data.
- Likelihood/entropy-based pruning.
 - Choose those arcs which when removed, . . .
 - Change the likelihood of the training data the least.
 - (Seymore and Rosenfeld, 1996), (Stolcke, 1998)
LM Pruning and Graph Sizes

- Original: trigram model, $|V|^3 = 50000^3 \approx 10^{14}$ word arcs.
- Backoff: $>100M$ unique trigrams $\Rightarrow \sim 100M$ word arcs.
- Pruning: keep $<5M$ n-grams $\Rightarrow \sim 5M$ word arcs.
 - 4 phones/word $\Rightarrow 12$ states/word $\Rightarrow \sim 60M$ states?
- We’re done?
What About Context-Dependent Expansion?

- With word-internal models, each word really is only ~ 12 states.

- With cross-word models, each word is hundreds of states?
 - 50 CD variants of first three states, last three states.

![Diagram of word models](image_url)
Where Are We?

- Shrinking N-Gram Models
- Graph Optimization
- Pruning Search
- Saving Memory
Graph Optimization

- Can we modify the topology of a graph . . .
 - Such that it’s smaller (fewer arcs or states) . . .
 - Yet retains the same *meaning*.
- The meaning of an WFSA:
 - The set of strings it accepts, and the cost of each string.
 - Don’t care how costs or labels are distributed along a path.
Graph Compaction

- Consider word graph for isolated word recognition.
- Expanded to phone level: 39 states, 38 arcs.
Determinization

- Share common prefixes: 29 states, 28 arcs.
Minimization

- Share common suffixes: 18 states, 23 arcs.
Determinization and Minimization

- By sharing arcs between paths . . .
 - We reduced size of graph by half . . .
 - Without changing its meaning.

- \textit{determinization} — prefix sharing.
 - Produce \textit{deterministic} version of an FSM.

- \textit{minimization} — suffix sharing.
 - Given a \textit{deterministic} FSM, find equivalent FSM with minimal number of \textit{states}.
What Is A Deterministic FSM?

- No two arcs exiting the same state have the same input label.
- No ε arcs.
- *i.e.*, for any input label sequence . . .
 - At most one path from start state labeled with that sequence.
Determinization: The Basic Idea

- For an input label sequence...
 - There is set of states you can reach from start state...
 - Accepting exactly that input sequence.
- Collect all such state sets (over all input sequences).
 - Each such state set maps to a state in the output FSM.
- Make arcs in the logical way.
Determinization

- Start from start state.
- Keep list of state sets not yet expanded.
 - For each, find outgoing arcs, creating new state sets as needed.
- Must follow ϵ arcs when computing state sets.
Example 2

Diagram of a sequence model with transitions labeled by symbols a and b.
Example 3
Example 3, Continued
Pop Quiz: Determinization

- Are all unweighted FSA’s determinizable?
 - *i.e.*, will the determinization algorithm always terminate?

- For an FSA with *s* states, …
 - What is the maximum number of states in its determinization?
Recap: Determinization

- Improves behavior of composition and search!
 - In composition, output states \((s, t)\) created when?
- Whether reduces or increases number of states . . .
 - Depends on nature of input FSM.
- Required for minimization algorithm.
- Can apply to weighted FSM’s and transducers as well.
Minimization

- Given a **deterministic** FSM . . .
 - Find equivalent deterministic FSM with minimal number of states.
- Number of arcs may be nowhere near minimal.
 - Minimizing number of arcs is NP-complete
Minimization: Acyclic Graphs

- Merge states with same following strings (follow sets).

![Diagram of acyclic graph with states and transitions]

<table>
<thead>
<tr>
<th>states</th>
<th>following strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABC, ABD, BC, BD</td>
</tr>
<tr>
<td>2</td>
<td>BC, BD</td>
</tr>
<tr>
<td>3, 6</td>
<td>BC, BD</td>
</tr>
<tr>
<td>4, 5, 7, 8</td>
<td>C, D</td>
</tr>
<tr>
<td></td>
<td>ϵ</td>
</tr>
</tbody>
</table>
General Minimization: The Basic Idea

- Start with all states in single partition.
- Whenever find evidence that two states within partition . . .
 - Have different follow sets . . .
 - Split the partition.
- At end, collapse all states in same partition into single state.
Minimization

- Invariant: if two states are in different partitions...
 - They have different follow sets.
 - Converse does not hold.

- First split: final and non-final states.
 - Final states have ϵ in their follow sets; non-final states do not.

- If two states in same partition have...
 - Different number of outgoing arcs, or different arc labels...
 - Or arcs go to different partitions...
 - The two states have different follow sets.
Minimization

<table>
<thead>
<tr>
<th>action</th>
<th>evidence</th>
<th>partitioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>split 3,6</td>
<td>final</td>
<td>{1,2,3,4,5,6}</td>
</tr>
<tr>
<td>split 1</td>
<td>has a arc</td>
<td>{1,2,4,5}, {3,6}</td>
</tr>
<tr>
<td>split 4</td>
<td>no b arc</td>
<td>{1}, {2,4,5}, {3,6}</td>
</tr>
</tbody>
</table>

EECS 6870: Speech Recognition
LVCSR Decoding
27 October 2009 96 / 138
Recap: Minimization

- Minimizes states, not arcs, for deterministic FSM’s.
- Does minimization always terminate?
- Not that expensive, can sometimes get something.
- Can apply to weighted FSM’s and transducers as well.
 - Need to first apply push operation.
 - Normalizes locations of costs/labels along paths . . .
 - So arcs that can be merged will have same cost/label.
- Determinization and minimization available in FSM toolkits.
Final decoding graph: \(\min(\det(L \circ T_1 \circ T_2 \circ T_3)) \).

- \(L = \text{pruned, backoff} \) language model FSA.
- \(T_1 = \) FST mapping from words to CI phone sequences.
- \(T_2 = \) FST mapping from CI phone sequences to CD phone sequences.
- \(T_3 = \) FST mapping from CD phone sequences to GMM sequences.

\(10^{15} \) states \(\Rightarrow \) 10–20M states/arcs.

- 2–4M \(n \)-grams kept in LM.
Final decoding graph: \(\min(\det(L \circ T_1 \circ T_2 \circ T_3)) \).

Strategy: build big graph, then minimize at the end?
- Problem: can’t hold big graph in memory.

Another strategy: minimize graph after each expansion step.

A little bit of art involved.
- Composition is associative.
- Many existing recipes for graph expansion.
Historical Note

- In the old days (pre-AT&T):
 - People determinized their decoding graphs . . .
 - And did the push operation for LM lookahead . . .
 - Without calling it determinization or pushing.
 - ASR-specific implementations.

- Nowadays (late 1990’s–)
 - FSM toolkits implementing general finite-state operations.
 - Can apply finite-state operations in many contexts in ASR.
Where Are We?

5 Shrink N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory
Real-Time Decoding

- Why is this desirable?
- Decoding time for Viterbi algorithm; 10M states in graph.
 - In each frame, loop through every state in graph.
 - 100 frames/sec × 10M states × ~100 cycles/state ⇒ 10^{11} cycles/sec.
 - PC’s do ~ 10^9 cycles/second (e.g., 3GHz P4).
- We cannot afford to evaluate each state at each frame.
 - ⇒ Pruning!
Pruning

- At each frame, only evaluate states/cells with best Viterbi scores.

- Given *active* states/cells from last frame . . .
 - Only examine states/cells in current frame . . .
 - Reachable from active states in last frame.
 - Keep best to get active states in current frame.
Pruning

- When not considering every state at each frame . . .
 - We may make search errors.
- The field of search in ASR.
 - Trying to minimize computation and search errors.
How Many Active States To Keep?

- Goal: Try to prune paths . . .
 - With no chance of ever becoming the best path.
- Beam pruning.
 - Keep only states with log probs within fixed distance . . .
 - Of best log prob at that frame.
 - Why does this make sense? When could this be bad?
- Rank or histogram pruning.
 - Keep only k highest scoring states.
 - Why does this make sense? When could this be bad?
- Can we get the best of both worlds?
Pruning Visualized

- Active states are small fraction of total states (<1%)
- Tend to be localized in small regions in graph.
Pruning and Determinization

- Most uncertainty occurs at word starts.
- Determinization drastically reduces branching here.
Language Model Lookahead

- In practice, put word labels at word ends. (Why?)
- What’s wrong with this picture? (Hint: think beam pruning.)
Language Model Lookahead

- Move LM scores as far ahead as possible.
- At each point, total cost \equiv min LM cost of following words.
- *push* operation does this.
Recap: Efficient Viterbi Decoding

- Pruning is key.
- Pruning behavior improves immensely with...
 - Determinization.
 - LM lookahead.
- Can process ~ 10000 states/frame in $< 1x$ RT on a PC.
 - Can process $\sim 1\%$ of cells for 10M-state graph...
 - And make very few search errors.
- Can go even faster with smaller LM's (or more search errors).
Where Are We?

5 Shrinking N-Gram Models

6 Graph Optimization

7 Pruning Search

8 Saving Memory
What’s the Problemo?

- Naive implementation: store whole DP chart.
- If 10M-state decoding graph:
 - 10 second utterance \Rightarrow 1000 frames.
 - 1000 frames \times 10M states = 10 billion cells in DP chart.
- Each cell holds:
 - Viterbi log prob.
 - Backtrace pointer.
Optimization 1: Sparse Chart

- Use sparse representation of DP chart.
 - Only store cells for *active* states.
- 10M cells/frame \Rightarrow 10k cells/frame.
Insight: the only reason we need to keep around cells from past frames . . .

- Is so we can do backtracing to recover the final word sequence.

Can we store backtracing information in some other way?
Token Passing

- Maintain “word tree”:
 - Compact encoding of a list of similar word sequences.
 - Backtrace pointer points to node in tree . . .
 - Holding word sequence labeling best path to cell.
 - Set backtrace to same node as at best last state . . .
 - Unless cross word boundary.
Recap: Saving Memory in Viterbi Decoding

- Before:
 - Static decoding graph.
 - \((\# \text{ states}) \times (\# \text{ frames})\) cells.

- After:
 - Static decoding graph (shared memory) \(\Leftarrow\) the biggie.
 - \((\# \text{ active states}) \times (2 \text{ frames})\) cells.
 - Backtrace word tree.
Where Are We?

9 Dynamic Graph Expansion

10 Stack Search

11 Two-Pass Decoding

12 Which Decoding Paradigm Should I Use?
My Graph Is Too Big

- One approach: *static graph expansion*.
 - Shrink the graph by . . .
 - Using a simpler language model and . . .
 - Statically optimizing the graph.

- Another approach: *dynamic graph expansion*.
 - Don’t store the whole graph in memory.
 - Build the parts of the graph with active states on the fly.
A Tale of Two Decoding Styles

Approach 1: Dynamic graph expansion.
- Since late 1980’s.
- Can handle more complex language models.
- Decoders are incredibly complex beasts.
- e.g., cross-word CD expansion without FST’s.

Approach 2: Static graph expansion.
- Pioneered by AT&T in late 1990’s.
- Enabled by optimization algorithms for WFSM’s.
- Static graph expansion is complex.
- Decoding is relatively simple.
Dynamic Graph Expansion

- How can we store a really big graph such that . . .
 - It doesn’t take that much memory, but . . .
 - Easy to expand any part of it that we need.

- Observation: composition is associative:

\[(A \circ T_1) \circ T_2 = A \circ (T_1 \circ T_2)\]

- Observation: decoding graph is composition of LM with a bunch of FST’s:

\[
G_{\text{decode}} = A_{\text{LM}} \circ T_{\text{wd\rightarrow pn}} \circ T_{\text{CI\rightarrow CD}} \circ T_{\text{CD\rightarrow HMM}}
\]

\[
= A_{\text{LM}} \circ (T_{\text{wd\rightarrow pn}} \circ T_{\text{CI\rightarrow CD}} \circ T_{\text{CD\rightarrow HMM}})
\]
Review: Composition

A

1 \rightarrow 2 \rightarrow 3

T

1 \rightarrow 2 \rightarrow 3

A \circ T

1,1 \rightarrow 2,1 \rightarrow 3,1

1,2 \rightarrow 2,2 \rightarrow 3,2

1,3 \rightarrow 2,3 \rightarrow 3,3
On-the-Fly Composition

\[G_{\text{decode}} = A_{LM} \circ (T_{\text{wd} \rightarrow \text{pn}} \circ T_{\text{Cl} \rightarrow \text{CD}} \circ T_{\text{CD} \rightarrow \text{HMM}}) \]

- Instead of storing one big graph \(G_{\text{decode}} \), ...
 - Store two smaller graphs: \(A_{LM} \) and \(T = T_{\text{wd} \rightarrow \text{pn}} \circ T_{\text{Cl} \rightarrow \text{CD}} \circ T_{\text{CD} \rightarrow \text{HMM}} \).

- Replace states with state *pairs* \((s_A, s_T) \).
 - Straightforward to compute outgoing arcs of \((s_A, s_T) \).
Notes: Dynamic Graph Expansion

- Really complicated to explain before FSM perspective.
- Other decompositions into component graphs are possible.
- Speed:
 - Statically optimize component graphs.
 - Try to approximate static optimization of composed graph . . .
 - Using on-the-fly techniques.
Where Are We?

9 Dynamic Graph Expansion
10 Stack Search
11 Two-Pass Decoding
12 Which Decoding Paradigm Should I Use?
Synchronicity

- Synchronous search — e.g., Viterbi search.
 - Extend all paths and calculate all scores synchronously.
 - Expand states with mediocre scores in case improve later.

- Asynchronous search — e.g., stack search.
 - Pursue best-looking path first, regardless of length!
 - If lucky, expand very few states at each frame.
Stack Search

- Pioneered at IBM in mid-1980’s; first real-time dictation system.
- May be competitive at low-resource operating points; low noise.
 - Difficult to tune (nonmonotonic behavior w.r.t. parameters).
 - Going out of fashion?
Stack Search

- Extend hypotheses word-by-word
- Use *fast match* to decide which word to extend best path with.

- Decode single word with simpler acoustic model.
Stack Search

Advantages.
- If best path pans out, very little computation.

Disadvantages.
- Difficult to compare paths of different lengths.
- May need to recompute the same values multiple times.
Where Are We?

9. Dynamic Graph Expansion
10. Stack Search
11. Two-Pass Decoding
12. Which Decoding Paradigm Should I Use?
Two-Pass Decoding

- What about my fuzzy logic 15-phone acoustic model and 7-gram neural net language model with SVM boosting?
- Some of the ASR models we develop in research are . . .
 - Too expensive to implement in one-pass decoding.
- First-pass decoding: use simpler model . . .
 - To find “likeliest” word sequences . . .
 - As lattice (WFSA) or flat list of hypotheses (N-best list).
- Rescoring: use complex model . . .
 - To find best word sequence from among first-pass hypotheses.
In Viterbi, store k-best tracebacks at each word-end cell.

To add in new LM scores to a lattice ...
- What operation can we use?

Lattices have other uses.
- e.g., confidence estimation, consensus decoding, lattice MLLR, etc.
N-Best List Rescoring

- For exotic models, even lattice rescoring may be too slow.
 - For some models, computation linear in number of hypotheses.
- Easy to generate N-best lists from lattices.
 - A* algorithm.
- N-best lists have other uses.
 - e.g., confidence estimation, alternatives in interactive apps, etc.
Where Are We?

- Dynamic Graph Expansion
- Stack Search
- Two-Pass Decoding
- Which Decoding Paradigm Should I Use?
Synchronous or Asynchronous?

- Stack search: lots of search errors in noise.
- Only consider if very low memory footprint.
Static or Dynamic? Two-Pass?

- If speed is a premium?
- If flexibility is a premium?
 - e.g., update LM vocabulary every night.
- If need a gigantic language model?
- If latency is a premium?
 - What can’t we use?
- If accuracy is a premium (speed OK, no latency requirements)?
- If accuracy is a premium (all the time in the world)?
- If doing cutting-edge research?
The Road Ahead

- Weeks 1–4: Small vocabulary ASR.
- Weeks 5–8: Large vocabulary ASR.
- **Weeks 9–12: Advanced topics.**
 - Adaptation; robustness.
 - Advanced language modeling.
 - Discriminative training; ROVER; consensus.
 - Applications: ???.
- Week 13: Final presentations.
Course Feedback

1. Was this lecture mostly clear or unclear? What was the muddiest topic?

2. Other feedback (pace, content, atmosphere)?