Lecture 8 LVCSR Decoding

Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {bhuvana,picheny,stanchen}@us.ibm.com

27 October 2009

EECS 6870: Speech Recognition

Administrivia

- Main feedback from last lecture.
 - Mud: *k*-means clustering.
- Lab 2 handed back today.
 - Answers:

/user1/faculty/stanchen/e6870/lab2_ans/.

- Lab 3 due Thursday, 11:59pm.
- Next week: Election Day.
- Lab 4 out by then?

The Big Picture

- Weeks 1–4: Small vocabulary ASR.
- Weeks 5-8: Large vocabulary ASR.
 - Week 5: Language modeling.
 - Week 6: Pronunciation modeling ⇔ acoustic modeling for large vocabularies.
 - Week 7: Training for large vocabularies.
 - Week 8: Decoding for large vocabularies.
- Weeks 9–13: Advanced topics.

Outline

- Part I: Introduction to LVCSR decoding, *i.e.*, *search*.
- Part II: Finite-state transducers.
- Part III: Making decoding efficient.
- Part IV: Other decoding paradigms.

Part I

Introduction to LVCSR Decoding

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 5 / 138

Decoding for LVCSR

$$class(\mathbf{x}) = \arg \max_{\omega} P(\omega | \mathbf{x})$$
$$= \arg \max_{\omega} \frac{P(\omega) P(\mathbf{x} | \omega)}{P(\mathbf{x})}$$
$$= \arg \max_{\omega} P(\omega) P(\mathbf{x} | \omega)$$

- Now that we know how to build models for LVCSR
 - n-gram models via counting and smoothing.
 - CD acoustic models via complex recipes.
- How can we use them for decoding?

Decoding: Small Vocabulary

- Take graph/WFSA representing language model.
 - , all allowable word sequences.
- Expand to underlying HMM.

• Run the Viterbi algorithm!

Issue: Are N-Gram Models WFSA's?

- Yup.
- One state for each (n-1)-gram history ω .
- All paths ending in state $\omega \dots$
 - Are labeled with word sequence ending in $\omega.$
- State ω has outgoing arc for each word $w \dots$
 - With arc probability $P(w|\omega)$.

Bigram, Trigram LM's Over Two Word Vocab

イロン イロン イヨン イヨン

Pop Quiz

- How many states in FSA representing *n*-gram model ...
 - With vocabulary size |V|?
- How many arcs?

Issue: Graph Expansion

- Word models.
 - Replace each word with its HMM.
- CI phone models.
 - Replace each word with its phone sequence(s).
 - Replace each phone with its HMM.

Context-Dependent Graph Expansion

- How can we do context-dependent expansion?
 - Handling branch points is tricky.
- Other tricky cases.
 - Words consisting of a single phone.
 - Quinphone models.

Triphone Graph Expansion Example

EECS 6870: Speech Recognition

LVCSR Decoding

Aside: Word-Internal Acoustic Models

- Simplify acoustic model to simplify graph expansion.
- Word-internal models.
 - Don't let decision trees ask questions across word boundaries.
 - Pad contexts with the unknown phone.
 - Hurts performance (*e.g.*, coarticulation across words).
- As with word models, just replace each word with its HMM.

Issue: How Big The Graph?

- $|V|^3$ word arcs in FSA representation.
- Say words are \sim 4 phones = 12 states on average.
- If |V| = 50000, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- PC's have $\sim 10^9$ bytes of memory.

Issue: How Slow Decoding?

- In each frame, loop through every state in graph.
- If 100 frames/sec, 10¹⁵ states
 - How many cells to compute per second?
- PC's can do $\sim 10^{10}$ floating-point ops per second.

Recap: Small vs. Large Vocabulary Decoding

- In theory, can use the same exact techniques.
- In practice, three big problems:
 - (Context-dependent) graph expansion is complicated.
 - The decoding graph would be way too big.
 - Decoding would be way too slow.

Part II

Finite-State Transducers

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 18 / 138

3 x 4 3

A View of Graph Expansion

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into HMM.

B 5 4 B

A Framework for Rewriting Graphs

- A general way of representing graph transformations?
 - Finite-state transducers (FST's).
- A general operation for applying transformations to graphs?
 Composition.

12 N A 12

Where Are We?

What Is an FST?

- 2 Composition
- FST's, Composition, and ASR
- Weights

EECS 6870: Speech Recognition

Review: What is a Finite-State Acceptor?

- It has states.
 - Exactly one initial state; one or more final states.
- It has arcs.
 - Each arc has a label, which may be empty (ϵ).
- Ignore probabilities for now.

What Does an FSA Mean?

- The (possibly infinite) list of strings it accepts.
 - We need this in order to define composition.
- Things that *don't* affect meaning.
 - How labels are distributed along a path.
 - Invalid paths.
- Are these equivalent?

What is a Finite-State Transducer?

- It's like a finite-state acceptor, except ...
- Each arc has two labels instead of one.
 - An input label (possibly empty).
 - An output label (possibly empty).

What Does an FST Mean?

- A (possibly infinite) list of pairs of strings
 - An input string and an output string.
- The gist of *composition*.
 - If string $i_1 \cdots i_N$ occurs in input graph ...
 - And $(i_1 \cdots i_N, o_1 \cdots o_M)$ occurs in transducer, ...
 - Then string $o_1 \cdots o_M$ occurs in output graph.

モトイモト

Terminology

- Finite-state acceptor (FSA): one label on each arc.
- *Finite-state transducer* (FST): input and output label on each arc.
- Finite-state machine (FSM): FSA or FST.
 - Also, finite-state automaton.

Where Are We?

What Is an FST?

2 Composition

FST's, Composition, and ASR

Weights

EECS 6870: Speech Recognition

The Composition Operation

- A simple and efficient algorithm for computing ...
 - Result of applying a transducer to an acceptor.
- Composing FSA A with FST T to get FSA $A \circ T$.
 - If string $i_1 \cdots i_N \in A$ and ...
 - Input/output string pair $(i_1 \cdots i_N, o_1 \cdots o_M) \in T, \ldots$
 - Then string $o_1 \cdots o_M \in A \circ T$.

Rewriting a Single String A Single Way

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 29 / 138

イロト イヨト イヨト イヨト

Rewriting a Single String A Single Way

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 30 / 138

Transforming a Single String

- Let's say you have a string, *e.g.*, THE DOG
- Let's say we want to apply a one-to-one transformation.
 e.g., map words to their (single) baseforms.
 DH AH D AO G
- This is easy, *e.g.*, use sed or perl or ...

The Magic of FST's and Composition

- Let's say you have a (possibly infinite) list of strings
 - Expressed as an FSA, as this is compact.
- How to transform all strings in FSA in one go?
- How to do one-to-many or one-to-zero transformations?
- Can we have the (possibly infinite) list of output strings ...
 Expressed as an FSA, as this is compact?
- Fast?

Rewriting Many Strings At Once

Rewriting A Single String Many Ways

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 34 / 138

Rewriting Some Strings Zero Ways

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 35 / 138

Computing Composition: The Basic Idea

- For every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T \dots$
 - Corresponding to simultaneously being in states *s* and *t*.
- Make arcs in the intuitive way.

Example

• Optimization: start from initial state, build outward.

3 x 4 3

< A

Computing Composition: More Formally

- For now, pretend no ϵ -labels.
- For every state $s \in A$, $t \in T$, create state $(s, t) \in A \circ T$.
- Create arc from (s_1, t_1) to (s_2, t_2) with label o iff ...
 - There is an arc from s_1 to s_2 in A with label *i* and ...
 - There is an arc from t_1 to t_2 in T with input label i and output label o.
- (s, t) is initial iff s and t are initial; similarly for final states.
- (Remove arcs and states that cannot reach both an initial and final state.)
- What is time complexity?

Another Example

Composition and ϵ -Transitions

- Basic idea: can take *ϵ*-transition in one FSM without moving in other FSM.
 - A little tricky to do exactly right.
 - Do the readings if you care: (Pereira, Riley, 1997)

Recap: FST's and Composition

- Just as FSA's are a simple formalism that ...
 - Lets us express a large and interesting set of languages . . .
- FST's are a simple formalism that ...
 - Lets us express a large and interesting set of one-to-many string transformations ...
- And the operation of composition lets us efficiently ...
 - Apply an FST to all strings in an FSA in one go!

FSM Toolkits

- AT&T FSM toolkit \Rightarrow OpenFST; lots of others.
 - Packages up composition, lots of other finite-state operations.
- A syntax for specifying FSA's and FST's, e.g.,

12 N A 12

< 17 ▶

Where Are We?

- 2 Composition
- FST's, Composition, and ASR
- Weights

EECS 6870: Speech Recognition

Graph Expansion: Original View

- Step 1: Take word graph as input.
 - Convert into phone graph.
- Step 2: Take phone graph as input.
 - Convert into context-dependent phone graph.
- Step 3: Take context-dependent phone graph.
 - Convert into HMM.

12 N A 12

Graph Expansion: New View

- Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.
 - *L* = language model FSA.
 - $T_1 = FST$ mapping from words to CI phone sequences.
 - T₂ = FST mapping from CI phone sequences to CD phone sequences.
 - *T*₃ = FST mapping from CD phone sequences to GMM sequences.
- How to design T_1 , T_2 , T_3 ?

How To Design an FST?

- Design FSA accepting correct set of strings
 - Keeping track of necessary "state", *e.g.*, for CD expansion.
- Add in output tokens.
 - Creating additional states/arcs as necessary.

Example: Inserting Optional Silences

Example: Mapping Words To Phones

EECS 6870: Speech Recognition

LVCSR Decoding

Example: Rewriting CI Phones as HMM's

EECS 6870: Speech Recognition

How to Express CD Expansion via FST's?

- Step 1: Rewrite each phone as a triphone.
 - Rewrite AX as DH_AX_R if DH to left, R to right.
 - One strategy: delay output of each phone by one arc.
 - What information to store in each state? (Think *n*-gram models.)
- Step 2: Rewrite each triphone with correct context-dependent HMM.
 - Just like rewriting a CI phone as its HMM.
 - Need to precompute HMM for each possible triphone.
 - See previous slide.

How to Express CD Expansion via FST's?

EECS 6870: Speech Recognition

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

How to Express CD Expansion via FST's?

- Point: composition automatically expands FSA to correctly handle context!
 - Makes multiple copies of states in original FSA
 - That can exist in different triphone contexts.
 - (And makes multiple copies of only these states.)

Quinphones and Beyond?

- Step 1: Rewrite each phone as a quinphone?
 50⁵ ≈ 300*M* arcs.
- Observation: given a word vocabulary ...
 - Not all quinphones can occur (usually).
- Build FST's to only handle quinphones that can occur.

Recap: FST's and ASR

- Graph expansion can be framed as series of composition operations.
- Building the FST's for each step is pretty straightforward ...
 - Except for context-dependent phone expansion.
- Once you have the FST's, easy peasy.
 - Composition handles context-dependent expansion correctly.
- Handles graph expansion for training, too.

Where Are We?

- What Is an FST?
- 2 Composition
- FST's, Composition, and ASR

EECS 6870: Speech Recognition

What About Those Probability Thingies?

- *e.g.*, to hold language model probs, transition probs, etc.
- FSM's \Rightarrow weighted FSM's.
 - WFSA's, WFST's.
- Each arc has a score or *cost*.
 - So do final states.

What Does a Weighted FSA *Mean*?

- The (possibly infinite) list of strings it accepts ...
 - And for each string, a cost.
- Typically, we take costs to be negative log probabilities.
 - Cost of a path is sum of arc costs plus final cost.
 - (Total path log prob is sum of arc log probs.)
- Things that *don't* affect meaning.
 - How costs or labels are distributed along a path.
 - Invalid paths.
- Are these equivalent?

What If Two Paths With Same String?

- How to compute cost for this string?
- Use min operator to compute combined cost (Viterbi)?
 - Can combine paths with same labels without changing meaning.

- Operations (+, min) form a *semiring* (the *tropical* semiring).
 - Other semirings are possible.

Which Is Different From the Others?

EECS 6870: Speech Recognition

Weighted Composition

- If $(i_1 \cdots i_N, c)$ in input graph . . .
- And $(i_1 \cdots i_N, o_1 \cdots o_M, c')$ in transducer, ...
- Then $(o_1 \cdots o_M, c + c')$ in output graph.
- Combine costs for all different ways to produce same $o_1 \cdots o_M$.

A THE A THE

Weighted Composition and ASR

$$class(\mathbf{x}) = \arg \max_{\omega} P(\omega) P(\mathbf{x}|\omega)$$
$$P(\mathbf{x}|\omega) \approx \max_{A} \prod_{t=1}^{T} P(a_t) \prod_{t=1}^{T} P(\vec{x}_t|a_t)$$
$$P(\omega = w_1 \cdots w_l) = \prod_{i=1}^{l+1} P(w_i|w_{i-2}w_{i-1})$$

- Total log prob of path is sum over component log probs.
- In Viterbi, if multiple paths labeled with same string ...
- Only pay attention to path with highest log prob.

Weighted Composition and ASR

ASR decoding.

- Total log prob of path is sum over component log probs.
- In Viterbi, if multiple paths labeled with same string ...
- Only pay attention to path with highest log prob.
- Weighted FSM's; cost = negative log prob.
 - Total cost of path is sum of costs on arcs.
 - If multiple paths labeled with same string ...
 - Only pay attention to path with lowest cost.
 - Weighted composition sums costs from input machines.

12 N 4 12

The Bottom Line

- Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.
 - *L* = language model FSA.
 - $T_1 = FST$ mapping from words to CI phone sequences.
 - T₂ = FST mapping from CI phone sequences to CD phone sequences.
 - *T*₃ = FST mapping from CD phone sequences to GMM sequences.
- If put component LM, AM log probs in L, T_1 , T_2 , T_3 , ...
 - Then doing Viterbi decoding on $L \circ T_1 \circ T_2 \circ T_3 \ldots$
 - Will correctly compute:

$$\mathsf{class}(\mathbf{x}) = rg\max_{\omega} P(\omega) P(\mathbf{x}|\omega)$$

Weighted Graph Expansion

- Final decoding graph: $L \circ T_1 \circ T_2 \circ T_3$.
 - *L* = language model FSA (w/ LM costs).
 - T₁ = FST mapping from words to CI phone sequences (w/ pronunciation costs).
 - *T*₂ = FST mapping from CI phone sequences to CD phone sequences.
 - *T*₃ = FST mapping from CD phone sequences to GMM sequences (w/ HMM transition costs).
- In final graph, each path has correct "total" cost.

A B A A B A

Recap: Weighted FSM's and ASR

- Graph expansion can be framed as series of composition operations . . .
 - Even when you need to worry about probabilities.
- Weighted composition correctly combines scores from multiple WFSM's.
- Varying the semiring used can give you other behaviors.
 - *e.g.*, can we sum probs across paths rather than max?

Recap: FST's and Composition

- Like sed, but can operate on all paths in a lattice simultaneously.
- Rewrite symbols as other symbols.
 - *e.g.*, rewrite words as phone sequences (or vice versa).
- Context-dependent rewriting of symbols.
 - e.g., rewrite CI phones as their CD variants.
- Add in new scores.
 - e.g., language model lattice rescoring.
- Restrict the set of allowed paths/intersection.
 - e.g., find all paths in lattice containing word NOODGE.
- Or all of the above at once.

Part III

Making Decoding Efficient

EECS 6870: Speech Recognition

LVCSR Decoding

27 October 2009 68 / 138

3 > 4 3

The Problem

- Naive graph expansion, trigram LM.
 - If |V| = 50000, $50000^3 \times 12 \approx 10^{15}$ states in graph.
- Naive Viterbi on this graph.
 - 10^{15} states \times 100 frames/sec = 10^{17} cells/sec.
- Two main approaches.
 - Reduce states in graph: saves memory and time.
 - Don't process all cells in chart.

Where Are We?

- 6 Graph Optimization
- Pruning Search
- 8 Saving Memory

EECS 6870: Speech Recognition

Compactly Representing N-Gram Models

• For trigram model, $|V|^2$ states, $|V|^3$ arcs in naive representation.

- Only a small fraction of the possible |V|³ trigrams will occur in the training data.
 - Is it possible to keep arcs only for occurring trigrams?

A B b 4 B b

A D M A A A M M

Compactly Representing N-Gram Models

Can express smoothed *n*-gram models via backoff distributions

$$P_{\text{smooth}}(w_i|w_{i-1}) = \begin{cases} P_{\text{primary}}(w_i|w_{i-1}) & \text{if } \text{count}(w_{i-1}w_i) > 0\\ \alpha_{w_{i-1}}P_{\text{smooth}}(w_i) & \text{otherwise} \end{cases}$$

• e.g., Witten-Bell smoothing

$$egin{aligned} P_{\mathsf{WB}}(w_i|w_{i-1}) &= & rac{c_h(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\mathsf{MLE}}(w_i|w_{i-1}) + \ & & rac{N_{1+}(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\mathsf{WB}}(w_i) \end{aligned}$$

E N 4 E N

A D b 4 A b

Compactly Representing N-Gram Models

Compactly Representing N-Gram Models

- By introducing backoff states ...
 - Only need arcs for *n*-grams with nonzero count.
 - Compute probabilities for *n*-grams with zero count ...
 - By traversing backoff arcs.
- Does this representation introduce any error?
 - Hint: are there multiple paths with same label sequence?

Can We Make the LM Even Smaller?

- Sure, just remove some more arcs. Which?
- Count cutoffs.
 - e.g., remove all arcs corresponding to bigrams ...
 - Occurring fewer than *k* times in the training data.
- Likelihood/entropy-based pruning.
 - Choose those arcs which when removed, ...
 - Change the likelihood of the training data the least.
 - (Seymore and Rosenfeld, 1996), (Stolcke, 1998)

LM Pruning and Graph Sizes

- Original: trigram model, $|V|^3 = 50000^3 \approx 10^{14}$ word arcs.
- Backoff: >100M unique trigrams $\Rightarrow \sim$ 100M word arcs.
- Pruning: keep <5M *n*-grams $\Rightarrow \sim$ 5M word arcs.
 - 4 phones/word \Rightarrow 12 states/word \Rightarrow ~60M states?
- We're done?

What About Context-Dependent Expansion?

• With word-internal models, each word really is only ${\sim}12$ states

- With cross-word models, each word is hundreds of states?
 - 50 CD variants of first three states, last three states.

Where Are We?

- 6 Graph Optimization
- Pruning Search
- 8 Saving Memory

EECS 6870: Speech Recognition

イロト イヨト イヨト イヨト

Graph Optimization

- Can we modify the topology of a graph ...
 - Such that it's smaller (fewer arcs or states)
 - Yet retains the same *meaning*.
- The meaning of an WFSA:
 - The set of strings it accepts, and the cost of each string.
 - Don't care how costs or labels are distributed along a path.

Graph Compaction

- Consider word graph for isolated word recognition.
 - Expanded to phone level: 39 states, 38 arcs.

Determinization

• Share common prefixes: 29 states, 28 arcs.

Minimization

• Share common suffixes: 18 states, 23 arcs.

EECS 6870: Speech Recognition

LVCSR Decoding

(4) (3) (4) (4) (4)

< 17 ▶

Determinization and Minimization

- By sharing arcs between paths ...
 - We reduced size of graph by half ...
 - Without changing its meaning.
- determinization prefix sharing.
 - Produce deterministic version of an FSM.
- minimization suffix sharing.
 - Given a deterministic FSM, find equivalent FSM with minimal number of states.

What Is A Deterministic FSM?

- No two arcs exiting the same state have the same input label.
- No ϵ arcs.
- *i.e.*, for any input label sequence ...
 - At most one path from start state labeled with that sequence.

Determinization: The Basic Idea

- For an input label sequence ...
 - There is set of states you can reach from start state
 - Accepting exactly that input sequence.
- Collect all such state sets (over all input sequences).
 - Each such state set maps to a state in the output FSM.
- Make arcs in the logical way.

Determinization

- Start from start state.
- Keep list of state sets not yet expanded.
 - For each, find outgoing arcs, creating new state sets as needed.
- Must follow ϵ arcs when computing state sets.

Example 2

EECS 6870: Speech Recognition

LVCSR Decoding

イロト イヨト イヨト イヨト

Example 3

EECS 6870: Speech Recognition

27 October 2009 88 / 138

Example 3, Continued

Pop Quiz: Determinization

- Are all unweighted FSA's determinizable?
 - *i.e.*, will the determinization algorithm always terminate?
- For an FSA with *s* states, ...
 - What is the maximum number of states in its determinization?

Recap: Determinization

- Improves behavior of composition and search!
 - In composition, output states (s, t) created when?
- Whether reduces or increases number of states ...
 - Depends on nature of input FSM.
- Required for minimization algorithm.
- Can apply to weighted FSM's and transducers as well.

Minimization

- Given a deterministic FSM
 - Find equivalent deterministic FSM with minimal number of states.
- Number of arcs may be nowhere near minimal.
 - Minimizing number of arcs is NP-complete

Minimization: Acyclic Graphs

• Merge states with same following strings (*follow sets*).

states	following strings		
1	ABC, ABD, BC, BD		
2	BC, BD		
3, 6	C, D		
4,5,7,8	ϵ		

General Minimization: The Basic Idea

- Start with all states in single partition.
- Whenever find evidence that two states within partition
 - Have different follow sets ...
 - Split the partition.
- At end, collapse all states in same partition into single state.

Minimization

- Invariant: if two states are in different partitions
 - They have different follow sets.
 - Converse does not hold.
- First split: final and non-final states.
 - Final states have ϵ in their follow sets; non-final states do not.
- If two states in same partition have ...
 - Different number of outgoing arcs, or different arc labels . . .
 - Or arcs go to different partitions ...
 - The two states have different follow sets.

Minimization

action	evidence	partitioning
		{1,2,3,4,5,6}
split 3,6	final	{1,2,4,5}, {3,6}
split 1	has <i>a</i> arc	{1}, {2,4,5}, {3,6}
split 4	no <i>b</i> arc	$\{1\}, \{4\}, \{2,5\}, \{3,6\}$

EECS 6870: Speech Recognition

LVCSR Decoding

イロト イヨト イヨト イヨト

Recap: Minimization

- Minimizes states, not arcs, for deterministic FSM's.
- Does minimization always terminate?
- Not that expensive, can sometimes get something.
- Can apply to weighted FSM's and transducers as well.
 - Need to first apply *push* operation.
 - Normalizes locations of costs/labels along paths
 - So arcs that can be merged will have same cost/label.
- Determinization and minimization available in FSM toolkits.

Weighted Graph Expansion, Optimized

- Final decoding graph: $\min(\det(L \circ T_1 \circ T_2 \circ T_3))$.
 - *L* = pruned, backoff language model FSA.
 - $T_1 = FST$ mapping from words to CI phone sequences.
 - T₂ = FST mapping from CI phone sequences to CD phone sequences.
 - *T*₃ = FST mapping from CD phone sequences to GMM sequences.
- 10^{15} states \Rightarrow 10–20M states/arcs.
 - 2–4M *n*-grams kept in LM.

A B A A B A

Practical Considerations

- Final decoding graph: $\min(\det(L \circ T_1 \circ T_2 \circ T_3))$.
- Strategy: build big graph, then minimize at the end?
 - Problem: can't hold big graph in memory.
- Another strategy: minimize graph after each expansion step.
- A little bit of art involved.
 - Composition is associative.
 - Many existing recipes for graph expansion.

Historical Note

- In the old days (pre-AT&T):
 - People determinized their decoding graphs
 - And did the push operation for LM lookahead
 - Without calling it determinization or pushing.
 - ASR-specific implementations.
- Nowadays (late 1990's-)
 - FSM toolkits implementing general finite-state operations.
 - Can apply finite-state operations in many contexts in ASR.

Where Are We?

5 Shrinking *N*-Gram Models

- 6 Graph Optimization
- Pruning Search
- Saving Memory

EECS 6870: Speech Recognition

Real-Time Decoding

- Why is this desirable?
- Decoding time for Viterbi algorithm; 10M states in graph.
 - In each frame, loop through every state in graph.
 - 100 frames/sec \times 10M states \times ${\sim}100$ cycles/state \Rightarrow 10^{11} cycles/sec.
 - PC's do $\sim 10^9$ cycles/second (*e.g.*, 3GHz P4).
- We cannot afford to evaluate each state at each frame.
 - \Rightarrow Pruning!

Pruning

- At each frame, only evaluate states/cells with best Viterbi scores.
- Given active states/cells from last frame
 - Only examine states/cells in current frame
 - Reachable from active states in last frame.
 - Keep best to get active states in current frame.

Pruning

- When not considering every state at each frame
 - We may make *search errors*.
- The field of *search* in ASR.
 - Trying to minimize computation and search errors.

12 N A 12

How Many Active States To Keep?

- Goal: Try to prune paths ...
 - With no chance of ever becoming the *best* path.
- Beam pruning.
 - Keep only states with log probs within fixed distance ...
 - Of best log prob at that frame.
 - Why does this make sense? When could this be bad?
- Rank or histogram pruning.
 - Keep only *k* highest scoring states.
 - Why does this make sense? When could this be bad?
- Can we get the best of both worlds?

Pruning Visualized

- Active states are small fraction of total states (<1%)
- Tend to be localized in small regions in graph.

Pruning and Determinization

- Most uncertainty occurs at word starts.
- Determinization drastically reduces branching here.

Language Model Lookahead

- In practice, put word labels at word ends. (Why?)
- What's wrong with this picture? (Hint: think beam pruning.)

Language Model Lookahead

- Move LM scores as far ahead as possible.
- At each point, total cost \Leftrightarrow min LM cost of following words.
- *push* operation does this.

Recap: Efficient Viterbi Decoding

- Pruning is key.
- Pruning behavior improves immensely with ...
 - Determinization.
 - LM lookahead.
- Can process \sim 10000 states/frame in < 1x RT on a PC.
 - Can process ~1% of cells for 10M-state graph ...
 - And make very few search errors.
- Can go even faster with smaller LM's (or more search errors).

Where Are We?

- 5 Shrinking *N*-Gram Models
- 6 Graph Optimization
- Pruning Search
- 8 Saving Memory

EECS 6870: Speech Recognition

What's the Problemo?

- Naive implementation: store whole DP chart.
- If 10M-state decoding graph:
 - 10 second utterance \Rightarrow 1000 frames.
 - 1000 frames \times 10M states = 10 billion cells in DP chart.
- Each cell holds:
 - Viterbi log prob.
 - Backtrace pointer.

Optimization 1: Sparse Chart

- Use sparse representation of DP chart.
 - Only store cells for *active* states.
- 10M cells/frame \Rightarrow 10k cells/frame.

Optimization 2: Forgetting the Past

- Insight: the only reason we need to keep around cells from past frames ...
 - Is so we can do backtracing to recover the final word sequence.
- Can we store backtracing information in some other way?

Token Passing

- Maintain "word tree":
 - Compact encoding of a list of similar word sequences.
- Backtrace pointer points to node in tree ...
 - Holding word sequence labeling best path to cell.
- Set backtrace to same node as at best last state
 - Unless cross word boundary.

27 October 2009

115 / 138

Recap: Saving Memory in Viterbi Decoding

- Before:
 - Static decoding graph.
 - (# states) \times (# frames) cells.
- After:
 - Static decoding graph (shared memory) \leftarrow the biggie.
 - (# active states) \times (2 frames) cells.
 - Backtrace word tree.

16 N A 16 N

Part IV

Other Decoding Paradigms

EECS 6870: Speech Recognition

LVCSR Decoding

১ < ≣ ১ < ≣ ১ আ ≣ ২০ এ ে 27 October 2009 117 / 138

< 47 ▶

Where Are We?

- 10 Stack Search
- Two-Pass Decoding
- 12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition

My Graph Is Too Big

- One approach: static graph expansion.
 - Shrink the graph by ...
 - Using a simpler language model and ...
 - Statically optimizing the graph.
- Another approach: dynamic graph expansion.
 - Don't store the whole graph in memory.
 - Build the parts of the graph with active states on the fly.

A Tale of Two Decoding Styles

- Approach 1: Dynamic graph expansion.
 - Since late 1980's.
 - Can handle more complex language models.
 - Decoders are incredibly complex beasts.
 - e.g., cross-word CD expansion without FST's.
- Approach 2: Static graph expansion.
 - Pioneered by AT&T in late 1990's.
 - Enabled by optimization algorithms for WFSM's.
 - Static graph expansion is complex.
 - Decoding is relatively simple.

Dynamic Graph Expansion

- How can we store a really big graph such that ...
 - It doesn't take that much memory, but ...
 - Easy to expand any part of it that we need.
- Observation: composition is associative:

$$(\boldsymbol{A} \circ \boldsymbol{T}_1) \circ \boldsymbol{T}_2 = \boldsymbol{A} \circ (\boldsymbol{T}_1 \circ \boldsymbol{T}_2)$$

 Observation: decoding graph is composition of LM with a bunch of FST's:

$$\begin{array}{lcl} \mathcal{G}_{\mathsf{decode}} & = & \mathcal{A}_{\mathsf{LM}} \circ \mathcal{T}_{\mathsf{wd} \to \mathsf{pn}} \circ \mathcal{T}_{\mathsf{CI} \to \mathsf{CD}} \circ \mathcal{T}_{\mathsf{CD} \to \mathsf{HMM}} \\ & = & \mathcal{A}_{\mathsf{LM}} \circ (\mathcal{T}_{\mathsf{wd} \to \mathsf{pn}} \circ \mathcal{T}_{\mathsf{CI} \to \mathsf{CD}} \circ \mathcal{T}_{\mathsf{CD} \to \mathsf{HMM}}) \end{array}$$

Review: Composition

EECS 6870: Speech Recognition

LVCSR Decoding

On-the-Fly Composition

$$G_{ ext{decode}} = A_{ ext{LM}} \circ (T_{ ext{wd}
ightarrow ext{pn}} \circ T_{ ext{CI}
ightarrow ext{CD}} \circ T_{ ext{CD}
ightarrow ext{HMM}})$$

- Instead of storing one big graph G_{decode}, ...
 - Store two smaller graphs: A_{LM} and $T = T_{wd \rightarrow pn} \circ T_{Cl \rightarrow CD} \circ T_{CD \rightarrow HMM}$.
- Replace states with state pairs (s_A, s_T) .
 - Straightforward to compute outgoing arcs of (s_A, s_T) .

Notes: Dynamic Graph Expansion

- Really complicated to explain before FSM perspective.
- Other decompositions into component graphs are possible.
- Speed:
 - Statically optimize component graphs.
 - Try to approximate static optimization of composed graph . . .
 - Using on-the-fly techniques.

Where Are We?

Dynamic Graph Expansion

10 Stack Search

- Two-Pass Decoding
- 12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition

LVCSR Decoding

Synchronicity

- Synchronous search *e.g.*, Viterbi search.
 - Extend all paths and calculate all scores synchronously.
 - Expand states with mediocre scores in case improve later.
- Asynchronous search *e.g.*, stack search.
 - Pursue best-looking path first, regardless of length!
 - If lucky, expand very few states at each frame.

Stack Search

- Pioneered at IBM in mid-1980's; first real-time dictation system.
- May be competitive at low-resource operating points; low noise.
 - Difficult to tune (nonmonotonic behavior w.r.t. parameters).
 - Going out of fashion?

Stack Search

- Extend hypotheses word-by-word
- Use *fast match* to decide which word to extend best path with.
 - Decode single word with simpler acoustic model.

Stack Search

- Advantages.
 - If best path pans out, very little computation.
- Disadvantages.
 - Difficult to compare paths of different lengths.
 - May need to recompute the same values multiple times.

12 N A 12

Where Are We?

Dynamic Graph Expansion

- 10 Stack Search
- Two-Pass Decoding
- 12 Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition

LVCSR Decoding

Two-Pass Decoding

- What about my fuzzy logic 15-phone acoustic model and 7-gram neural net language model with SVM boosting?
- Some of the ASR models we develop in research are
 - Too expensive to implement in one-pass decoding.
- First-pass decoding: use simpler model ...
 - To find "likeliest" word sequences
 - As lattice (WFSA) or flat list of hypotheses (*N*-best list).
- Rescoring: use complex model ...
 - To find best word sequence from among first-pass hypotheses.

Lattice Generation and Rescoring

- In Viterbi, store *k*-best tracebacks at each word-end cell.
- To add in new LM scores to a lattice
 - What operation can we use?
- Lattices have other uses.
 - *e.g.*, confidence estimation, consensus decoding, lattice MLLR, etc.

N-Best List Rescoring

- For exotic models, even lattice rescoring may be too slow.
 - For some models, computation linear in number of hypotheses.
- Easy to generate *N*-best lists from lattices.
 - A* algorithm.
- N-best lists have other uses.
 - *e.g.*, confidence estimation, alternatives in interactive apps, etc.

Where Are We?

Dynamic Graph Expansion

- 00 Stack Search
- Two-Pass Decoding

Which Decoding Paradigm Should I Use?

EECS 6870: Speech Recognition

4 A N

Synchronous or Asynchronous?

- Stack search: lots of search errors in noise.
- Only consider if very low memory footprint.

3 x 4 3

Static or Dynamic? Two-Pass?

- If speed is a premium?
- If flexibility is a premium?
 - e.g., update LM vocabulary every night.
- If need a gigantic language model?
- If latency is a premium?
 - What can't we use?
- If accuracy is a premium (speed OK, no latency requirements)?
- If accuracy is a premium (all the time in the world)?
- If doing cutting-edge research?

The Road Ahead

- Weeks 1-4: Small vocabulary ASR.
- Weeks 5-8: Large vocabulary ASR.
- Weeks 9–12: Advanced topics.
 - Adaptation; robustness.
 - Advanced language modeling.
 - Discriminative training; ROVER; consensus.
 - Applications: ???.
- Week 13: Final presentations.

Course Feedback

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?

B 5 4 B