# LVCSR Training and Decoding (Part A)

#### Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {bhuvana,picheny,stanchen}@us.ibm.com

#### 20 October 2009



EECS 6870: Speech Recognition

# The Big Picture

- Weeks 1–4: Small vocabulary ASR.
- Weeks 5–8: Large vocabulary ASR.
  - Week 5: Language modeling (for large vocabularies).
  - Week 6: Pronunciation modeling acoustic modeling for large vocabularies.
  - Week 7, 8: Training, decoding for large vocabularies.
- Weeks 9–13: Advanced topics.



The Sec. 74

#### Outline

- Part I: The LVCSR acoustic model.
- Part II: Acoustic model training for LVCSR.
- Part III: Decoding for LVCSR (inefficient).
  - Part IV: Introduction to finite-state transducers.
- Part V: Search (Lecture 8).
  - Making decoding for LVCSR efficient.



#### Part I

#### The LVCSR Acoustic Model



EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009 4 / 142

4 3 > 4 3

< 4 →

# What is LVCSR?

- Large vocabulary.
  - Phone-based modeling vs. word-based modeling.
- Continuous.
  - No pauses between words.



\_\_\_\_ ▶

# The Fundamental Equation of ASR

$$class(\mathbf{x}) = \arg \max_{\omega} P(\omega | \mathbf{x})$$
$$= \arg \max_{\omega} \frac{P(\omega)P(\mathbf{x} | \omega)}{P(\mathbf{x})}$$
$$= \arg \max_{\omega} P(\omega)P(\mathbf{x} | \omega)$$



3 > 4 3

A D M A A A M M

#### The Acoustic Model: Small Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$\approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t})$$
  

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right]$$
  

$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d})$$

#### The Acoustic Model: Large Vocabulary

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$\approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t})$$
  

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right]$$
  

$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d})$$

< 17 ▶

# What Has Changed?

- The HMM.
  - Each alignment A describes a path through an HMM.
- Its parameterization.
  - In P(x<sub>t</sub>|a<sub>t</sub>), how many GMM's to use? (Share between HMM's?)



12 N 4 12

# Describing the Underlying HMM

- Fundamental concept: how to map a word (or baseform) sequence to its HMM.
  - In training, map reference transcript to its HMM.
  - In decoding, glue together HMM's for all allowable word sequences.



**E N 4 E N** 

## The HMM: Small Vocabulary



- One HMM per word.
- Glue together HMM for each word in word sequence.



# The HMM: Large Vocabulary



- One HMM per phone.
- Glue together HMM for each phone in phone sequence.
  - Map word sequence to phone sequence using baseform dictionary.



# I Still Don't See What's Changed

- HMM topology typically doesn't change.
- HMM parameterization changes.



EECS 6870: Speech Recognition

3 x 4 3

- A - N

#### Parameterization

- Small vocabulary.
  - One GMM per state (three states per phone).
  - No sharing between phones in different words.
- Large vocabulary, context-independent (CI).
  - One GMM per state.
  - *Tying* between phones in different words.
- Large vocabulary, context-dependent (CD).
  - Many GMM's per state; GMM to use depends on phonetic context.
  - Tying between phones in different words.



#### **Context-Dependent Parameterization**

- Each phone HMM state has its own decision tree.
  - Decision tree asks questions about phonetic context. (Why?)
  - One GMM per leaf in the tree. (Up to 200+ leaves/tree.)
- How will tree for first state of a phone tend to differ ...
  - From tree for last state of a phone?
- Terminology.
  - *triphone* model  $\pm 1$  phones of context.
  - quinphone model  $\pm 2$  phones of context.



#### A Real-Life Tree

```
Tree for feneme AA 1:
node 0: quest-P 23[-1] --> true: node 1, false: node 2
 quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S
   SH T TO TH TS UW V W X Z ZH
node 1: guest-P 66[-1] --> true: node 3, false: node
                                                       4
 quest: AO AXR ER IY L M N NG OW OY R UH UW W Y
node 2: guest-P 36[-2] --> true: node 5, false: node
                                                       6
 quest: D$ X
node 3: guest-P 13[-1] --> true: node 7, false: node
                                                       8
 quest: AXR ER R
node 4: quest-P 13[+1] --> true: node 9, false: node 10
 quest: AXR ER R
node 5: leaf 0
node 6: guest-P 15[-1] --> true: node 11, false: node 12
 quest: AXR ER L OW R UW W
node 7: guest-P 49[-2] --> true: node 13, false: node 14
 quest: DX K P T
node 8: guest-P 20[-1] --> true: node 15, false: node 16
 quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y
   7. 7.H
node 9: guest-P 43[-2] --> true: node 17, false: node 18
 quest: CH DH F HH JH S SH TH TS V Z ZH
node 10: guest-P 49[-1] --> true: node 19, false: node 20
 quest: DX K P T
node 11: leaf
node 12: guest-P 15[-2] --> true: node 21, false: node 22
 quest: AXR ER L OW R UW W
node 13: leaf 2
node 14: leaf 3
```



# Pop Quiz

- Pretend you are Keanu Reeves.
- System description:
  - 1000 words in lexicon; average word length = 5 phones.
  - There are 50 phones; each phone HMM has three states.
  - Each decision tree contains 100 leaves on average.
- How many GMM's are there in:
  - A small vocabulary system (word models)?
  - A CI large vocabulary system?
  - A CD large vocabulary system?



# Any Questions?



• Given a word sequence, you should understand how to ...

- Layout the corresponding HMM topology.
- Determine which GMM to use at each state, for CI and CD models.



## **Context-Dependent Phone Models**

#### • Typical model sizes:

|          |           | GMM's/ |               |           |
|----------|-----------|--------|---------------|-----------|
| type     | HMM       | state  | GMM's         | Gaussians |
| word     | per word  | 1      | 10–500        | 100–10k   |
| CI phone | per phone | 1      | $\sim \! 150$ | 1k–3k     |
| CD phone | per phone | 1–200  | 1k–10k        | 10k–300k  |

- 39-dimensional feature vectors  $\Rightarrow \sim 80$  parameters/Gaussian.
- Big models can have tens of millions of parameters.



B 5 4 B

### What About Transition Probabilities?

- This slide only included for completeness.
- Small vocabulary.
  - One set of transition probabilities per state.
  - No sharing between phones in different words.
- Large vocabulary.
  - One set of transition probabilities per state.
  - Sharing between phones in different words.
- What about context-dependent transition modeling?



# Recap

- Main difference between small vocabulary and large vocabulary:
  - Allocation of GMM's.
  - Sharing GMM's between words: needs less GMM's.
  - Modeling context-dependence: needs more GMM's.
  - Hybrid allocation is possible.
- Training and decoding for LVCSR.
  - In theory, any reason why small vocabulary techniques won't work?
  - In practice, yikes!



### Points to Ponder

- Why deterministic mapping?
  - DID YOU  $\Rightarrow$  D IH D JH UW
  - The area of pronunciation modeling.
- Why decision trees?
  - Unsupervised clustering.

12 N A 12

# Part II

#### Acoustic Model Training for LVCSR



EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009 23 / 142

A .

#### Small Vocabulary Training — Lab 2

- Phase 1: Collect underpants.
  - Initialize all Gaussian means to 0, variances to 1.
- Phase 2: Iterate over training data.
  - For each word, train associated word HMM ...
  - On all samples of that word in the training data ...
  - Using the Forward-Backward algorithm.
- Phase 3: Profit!



# Large Vocabulary Training

- What's changed going to LVCSR?
  - Same HMM topology; just more Gaussians and GMM's.
- Can we just use the same training algorithm as before?



The Sec. 74

# Where Are We?



- 2 Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- 5 The Final Recipe



EECS 6870: Speech Recognition

< 回 > < 三 > < 三 >

## Flat or Random Start

- Why does this work for small models?
  - We believe there's a huge global minimum ...
  - In the "middle" of the parameter search space.
  - With a neutral starting point, we're apt to fall into it.
  - (Who knows if this is actually true.)
- Why doesn't this work for large models?



#### Case Study: Training a Simple GMM

• Front end from Lab 1; first two dimensions; 546 frames.





#### Training a Mixture of Two 2-D Gaussians

- Flat start?
  - Initialize mean of each Gaussian to 0, variance to 1.



#### Training a Mixture of Two 2-D Gaussians

- "At the Mr. O level, symmetry is everything."
  - At the GMM level, symmetry is a bad idea.



#### Training a Mixture of Two 2-D Gaussians

#### • Random seeding?

• Picked 8 random starting points  $\Rightarrow$  3 different optima.



# Training Hidden Models

- (MLE) training of models with hidden variables has local minima.
- What are the hidden variables in ASR?
  - *i.e.*, what variables are in our model ...
  - That are not observed.



#### How To Spot Hidden Variables

$$P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A) = \sum_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$\approx \max_{A} P_{\omega}(A) \times P_{\omega}(\mathbf{x}|A)$$
  

$$= \max_{A} \prod_{t=1}^{T} P(a_{t}) \prod_{t=1}^{T} P(\vec{x}_{t}|a_{t})$$
  

$$\log P_{\omega}(\mathbf{x}) = \max_{A} \left[ \sum_{t=1}^{T} \log P(a_{t}) + \sum_{t=1}^{T} \log P(\vec{x}_{t}|a_{t}) \right]$$
  

$$P(\vec{x}_{t}|a_{t}) = \sum_{m=1}^{M} \lambda_{a_{t},m} \prod_{\dim d}^{D} \mathcal{N}(x_{t,d}; \mu_{a_{t},m,d}, \sigma_{a_{t},m,d})$$

EECS 6870: Speech Recognition

3 x 4 3

< 4 →

#### Gradient Descent and Local Minima

- EM training does hill-climbing/gradient descent.
  - Finds "nearest" optimum to where you started.



EECS 6870: Speech Recognition

LVCSR Training and FSM's

# What To Do?

- Insight: If we know the "correct" hidden values for a model:
  - e.g., which arc and which Gaussian for each frame ...
  - Training is easy! (No local minima.)
  - Remember Viterbi training given fixed alignment in Lab 2.
- Is there a way to guess the correct hidden values for a large model?



3 x 4 3

### **Bootstrapping Alignments**

- Recall that all of our acoustic models, from simple to complex:
  - Generally use the same HMM topology!
  - (All that differs is how we assign GMM's to each arc.)
- Given an alignment (from arc/phone states to frames) for simple model . . .
  - It is straightforward to compute analogous alignment for complex model!


# Bootstrapping Big Models From Small

- Recipe:
  - Start with model simple enough that flat start works.
  - Iteratively build more and more complex models ...
  - By using last model to seed hidden values for next.
- Need to come up with sequence of successively more complex models ...
  - With related hidden structure.



#### How To Seed Next Model From Last

- Directly via hidden values, *e.g.*, alignment.
  - e.g., single-pass retraining.
  - Can be used between very different models.
- Via parameters.
  - Seed parameters in complex model so that ...
  - Initially, will yield same/similar alignment as in simple model.
  - e.g., moving from CI to CD GMM's.

# Bootstrapping Big Models From Small

- Recurring motif in acoustic model training.
- The reason why state-of-the-art systems ....
  - Require many, many training passes, as you will see.
- Recipes handed down through the generations.
  - Discovered via sweat and tears.
  - Art, not science.
  - But no one believes these find global optima ...
  - Even for small problems.



# **Overview of Training Process**

- Build CI single Gaussian model from flat start.
- Use CI single Gaussian model to seed CI GMM model.
- Build phonetic decision tree (using CI GMM model to help).
- Use CI GMM model to seed CD GMM model.



# Where Are We?



#### 2 Training GMM's

3 Building Phonetic Decision Trees

#### 4 Details

#### 5 The Final Recipe



EECS 6870: Speech Recognition

A B F A B F

< 4 →

# Case Study: Training a GMM

- Recursive mixture splitting.
  - A sequence of successively more complex models.
- k-means clustering.
  - Seed means in one shot.



- ( E

# Gaussian Mixture Splitting

- Start with single Gaussian per mixture (trained).
- Split each Gaussian into two.
  - Perturb means in opposite directions; same variance.

Train.

- Repeat until reach desired number of mixture components (1, 2, 4, 8, ...).
  - (Discard Gaussians with insufficient counts.)
- Assumption: c-component GMM gives good guidance ...
  - On how to seed 2*c*-component GMM.



• Train single Gaussian.





< 4 →

**H** 5

#### • Split each Gaussian in two ( $\pm 0.2 \times \vec{\sigma}$ )





• Train, yep.





(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

#### • Split each Gaussian in two ( $\pm 0.2 \times \vec{\sigma}$ )





• Train, yep.





# Applying Mixture Splitting in ASR

- Recipe:
  - Start with model with 1-component GMM's (à la Lab 2).
  - Split Gaussians in each output distribution simultaneously.
  - Do many iterations of FB.
  - Repeat.
- Real-life numbers:
  - Five splits spread within 30 iterations of FB.



# Another Way: Automatic Clustering

- Use unsupervised clustering algorithm to find clusters.
- Given clusters ...
  - Use cluster centers to seed Gaussian means.
  - FB training.
  - (Discard Gaussians with insufficient counts.)



## k-Means Clustering

- Select desired number of clusters k.
- Choose *k* data points randomly.
  - Use these as initial cluster centers.
- "Assign" each data point to nearest cluster center.
- Recompute each cluster center as ...
  - Mean of data points "assigned" to it.
- Repeat until convergence.



• Pick random cluster centers; assign points to nearest center.



• Recompute cluster centers.





< 17 ▶

#### • Assign each point to nearest center.





EECS 6870: Speech Recognition

• Repeat until convergence.





**H N** 

< 17 ▶

• Use centers as means of Gaussians; train, yep.





### The Final Mixtures, Splitting vs. k-Means



# Technical Aside: k-Means Clustering

- When using Euclidean distance ...
- k-means clustering is equivalent to ...
  - Seeding Gaussian means with the k initial centers.
  - Doing Viterbi EM update, keeping variances constant.



# Applying *k*-Means Clustering in ASR

- To train each GMM, use k-means clustering ...
  - On what data? Which frames?
- Huh?
  - How to decide which frames align to each GMM?
- This issue is evaded for mixture splitting.
  - Can we avoid it here?



# **Forced Alignment**

- Viterbi algorithm.
  - Finds most likely alignment of HMM to data.



| frame | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| arc   | $P_1$ | $P_1$ | $P_1$ | $P_2$ | $P_3$ | $P_4$ | $P_4$ | $P_5$ | $P_5$ | $P_5$ | $P_5$ | $P_6$ | $P_6$ |

• Need existing model to create alignment. (Which?)



## Recap

- You can use single Gaussian models to seed GMM models.
  - Mixture splitting: use *c*-component GMM to seed 2*c*-component GMM.
  - k-means: use single Gaussian model to find alignment.
- Both of these techniques work about the same.
  - Nowadays, we primarily use mixture splitting.



# Where Are We?

- The Local Minima Problem
- 2 Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- 5 The Final Recipe



EECS 6870: Speech Recognition

< 47 ▶

#### What Do We Need?

- For each tree/phone state ...
  - List of frames/feature vectors associated with that tree.
  - (This is the data we are optimizing the likelihood of.)
  - For each frame, the phonetic context.
- A list of candidate questions about the phonetic context.
  - Ask about phonetic concepts; *e.g.*, vowel or consonant?
  - Expressed as list of phones in set.
  - Allow same questions to be asked about each phone position.
  - Handed down through the generations.



#### A Real-Life Tree

```
Tree for feneme AA 1:
node 0: quest-P 23[-1] --> true: node 1, false: node 2
 quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S
   SH T TO TH TS UW V W X Z ZH
node 1: guest-P 66[-1] --> true: node 3, false: node
                                                      4
 quest: AO AXR ER IY L M N NG OW OY R UH UW W Y
node 2: guest-P 36[-2] --> true: node 5, false: node
                                                       6
 quest: D$ X
node 3: guest-P 13[-1] --> true: node 7, false: node
                                                       8
 quest: AXR ER R
node 4: quest-P 13[+1] --> true: node 9, false: node 10
 quest: AXR ER R
node 5: leaf 0
node 6: guest-P 15[-1] --> true: node 11, false: node 12
 quest: AXR ER L OW R UW W
node 7: guest-P 49[-2] --> true: node 13, false: node 14
 quest: DX K P T
node 8: guest-P 20[-1] --> true: node 15, false: node 16
 quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y
   7. 7.H
node 9: guest-P 43[-2] --> true: node 17, false: node 18
 quest: CH DH F HH JH S SH TH TS V Z ZH
node 10: guest-P 49[-1] --> true: node 19, false: node 20
 quest: DX K P T
node 11: leaf 1
node 12: guest-P 15[-2] --> true: node 21, false: node 22
 quest: AXR ER L OW R UW W
node 13: leaf 2
node 14: leaf 3
```



## Training Data for Decision Trees

- Forced alignment/Viterbi decoding!
- Where do we get the model to align with?
  - Use CI phone model or other pre-existing model.

| frame | 0   | 1               | 2               | 3               | 4  | 5          | 6  | 7  | 8  | 9               |  |
|-------|-----|-----------------|-----------------|-----------------|----|------------|----|----|----|-----------------|--|
| arc   | DH1 | DH <sub>2</sub> | AH <sub>1</sub> | AH <sub>2</sub> | D1 | D <b>1</b> | D2 | D2 | D2 | AO <sub>1</sub> |  |



3 x 4 3

# **Building the Tree**

- A set of events  $\{(\vec{x}_i, p_L, p_R)\}$  (possibly subsampled).
- Given current tree:
  - Choose question of the form ...
  - "Does the phone in position j belong to the set q?" ...
  - That optimizes  $\prod_i P(\vec{x}_i | \text{leaf}(p_L, p_R)) \dots$
  - Where we model each leaf using a single Gaussian.
- Can efficiently build whole level of tree in single pass.
- See Lecture 6 slides and readings for the gory details.



# Seeding the Context-Dependent GMM's

- Context-independent GMM's: one GMM per phone state.
- Context-dependent GMM's: / GMM's per phone state.
- How to seed context-dependent GMM's?
  - e.g., so that initial alignment matches CI alignment?



# Where Are We?

- The Local Minima Problem
- 2 Training GMM's
- Building Phonetic Decision Trees



5 The Final Recipe



< 回 > < 三 > < 三 >

## Where Are We?

#### 4 Details

#### Maximum Likelihood Training?

- Viterbi vs. Non-Viterbi Training
- Graph Building



# The Original Story, Small Vocabulary

- One HMM for each word; flat start.
- Collect all examples of each word.
  - Run FB on those examples to do maximum likelihood training of that HMM.



12 N A 12

# The New Story

- One HMM for each word sequence!?
  - But tie parameters across HMM's!
- Do complex multi-phase training.
- Are we still doing anything resembling maximum likelihood training?



12 N A 12

# Maximum Likelihood Training?

- Regular training iterations (FB, Viterbi EM).
  - Increase (Viterbi) likelihood of data.
- Seeding last model from next model.
  - Mixture splitting.
  - $CI \Rightarrow CD$  models.
- (Decision-tree building.)



12 N A 12
## Maximum Likelihood Training?

- Just as LM's need to be smoothed or *regularized*.
  - So do acoustic models.
  - Prevent extreme likelihood values (*e.g.*, 0 or  $\infty$ ).
- ML training maximizes training data likelihood.
  - We actually want to optimize test data likelihood.
  - Let's call the difference the *overfitting penalty*.
- The overfitting penalty tends to increase as ...
  - The number of parameters increase and/or ...
  - Parameter magnitudes increase.



## **Regularization/Capacity Control**

- Limit size of model.
  - Will training likelihood continue to increase as model grows?
  - Limit components per GMM.
  - Limit number of leaves in decision tree, *i.e.*, number of GMM's.
- Variance flooring.
  - Don't let variances go to  $0 \Rightarrow$  infinite likelihood.



## Where Are We?

#### 4 Details

Maximum Likelihood Training?

#### • Viterbi vs. Non-Viterbi Training

Graph Building



< 回 > < 回 > < 回 >

## Two Types of Updates

- "Full" EM.
  - Compute true posterior of each hidden configuration.
- Viterbi EM.
  - Use Viterbi algorithm to find most likely hidden configuration.
  - Assign posterior of 1 to this configuration.
- Both are valid updates; instances of generalized EM.



3 x 4 3

#### Examples

- Training GMM's.
  - Mixture splitting vs. k-means clustering.
- Training HMM's.
  - Forward-backward vs. Viterbi EM (Lab 2).
- Everywhere you do a forced alignment.
  - Refining the reference transcript.
  - What is non-Viterbi version of decision-tree building?



## When To Use One or the Other?

- Which version is more expensive computationally?
  - Optimization: need not realign every iteration.
- Which version finds better minima?
- If posteriors are very sharp, they do almost the same thing.
  - Remember example posteriors in Lab 2?
- Rule of thumb:
  - When you're first training a "new" model, use full EM.
  - Once you're "locked in" to an optimum, Viterbi is fine.

## Where Are We?

#### Details

- Maximum Likelihood Training?
- Viterbi vs. Non-Viterbi Training

#### Graph Building



< 回 > < 回 > < 回 >

# Building HMM's For Training

- When doing Forward-Backward on an utterance ...
  - We need the HMM corresponding to the reference transcript.
- Can we use the same techniques as for small vocabularies?



## Word Models

Reference transcript



• Replace each word with its HMM





EECS 6870: Speech Recognition

< 17 ▶

#### **Context-Independent Phone Models**

Reference transcript



- Pronunciation dictionary.
  - Maps each word to a sequence of phonemes.



• Replace each phone with its HMM





#### **Context-Dependent Phone Models**



EECS 6870: Speech Recognition

## The Pronunciation Dictionary

- Need pronunciation of *every* word in training data.
  - Including pronunciation variants

| тне(01) | DH | AH |
|---------|----|----|
| тне(02) | DH | ΙY |

- Listen to data?
- Use automatic spelling-to-sound models?
- Why not consider multiple baseforms/word for word models?



## But Wait, It's More Complicated Than That!

- Reference transcripts are created by humans ...
  - Who, by their nature, are *human* (*i.e.*, fallible)
- Typical transcripts don't contain everything an ASR system wants.
  - Where silence occurred; noises like coughs, door slams, etc.
  - Pronunciation information, *e.g.*, was THE pronounced as DH UH or DH IY?



#### Pronunciation Variants, Silence, and Stuff

- How can we produce a more "complete" reference transcript?
- Viterbi decoding!
  - Build HMM accepting all word (HMM) sequences consistent with reference transcript.
  - Compute best path/word HMM sequence.
  - Where does this initial acoustic model come from?



## Another Way

• Just use the whole expanded graph during training.



- The problem: how to do context-dependent phone expansion?
  - Use same techniques as in building graphs for decoding.



12 N A 12

- A - N

## Where Are We?

- The Local Minima Problem
- 2 Training GMM's
- Building Phonetic Decision Trees
- 4 Details
- 5 The Final Recipe



< 回 > < 三 > < 三 >

#### Prerequisites

- Audio data with reference transcripts.
- What two other things?



3 > 4 3

< 47 ▶

## The Training Recipe

- Find/make baseforms for all words in reference transcripts.
- Train single Gaussian models (flat start; many iters of FB).
- Do mixture splitting, say.
  - Split each Gaussian in two; do many iterations of FB.
  - Repeat until desired number of Gaussians per mixture.
- (Use initial system to refine reference transcripts.)
  - Select pronunciation variants, where silence occurs.
  - Do more FB training given refined transcripts.
- Build phonetic decision tree.
  - Use CI model to align training data.
- Seed CD model from CI; train using FB or Viterbi EM.
  - Possibly doing more mixture splitting.



## How Long Does Training Take?

- It's a secret.
- We think in terms of *real-time factor*.
  - How many hours does it take to process one hour of speech?



12 N A 12

A .

### Whew, That Was Pretty Complicated!

- Adaptation (VTLN, fMLLR, mMLLR)
- Discriminative training (LDA, MMI, MPE, fMPE)
- Model combination (cross adaptation, ROVER)
- Iteration.
  - Repeat steps using better model for seeding.
  - Alignment is only as good as model that created it.

## Things Can Get Pretty Hairy





## Recap: Acoustic Model Training for LVCSR

- Take-home messages.
  - Hidden model training is fraught with local minima.
  - Seeding more complex models with simpler models helps avoid terrible local minima.
  - People have developed many recipes/heuristics to try to improve the minimum you end up in.
  - Training is insanely complicated for state-of-the-art research models.
- The good news ...
  - I just saved a bunch on money on my car insurance by switching to GEICO.



## Part III

#### Decoding for LVCSR (Inefficient)



EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009 95 / 142

3 > 4 3

A D M A A A M M

# Decoding for LVCSR (Inefficient)

$$class(\mathbf{x}) = \arg \max_{\omega} P(\omega | \mathbf{x})$$
$$= \arg \max_{\omega} \frac{P(\omega)P(\mathbf{x} | \omega)}{P(\mathbf{x})}$$
$$= \arg \max_{\omega} P(\omega)P(\mathbf{x} | \omega)$$

- Now that we know how to build models for LVCSR ....
  - CD acoustic models via complex recipes.
  - n-gram models via counting and smoothing.
- How can we use them for decoding?
  - Let's ignore memory and speed constraints for now

## Decoding: Small Vocabulary

- Take graph/WFSA representing language model
  - *i.e.*, all allowable word sequences.
- Expand to underlying HMM



• Run the Viterbi algorithm!

UH

## Issue 1: Are N-Gram Models WFSA's?

- Yup.
- Invariants.
  - One state for each (n-1)-gram history.
  - All paths ending in state for (n-1)-gram  $\omega \ldots$
  - Are labeled with word sequence ending in  $\omega$ .
  - State for (n 1)-gram ω has outgoing arc for each word
    w . . .
  - With arc probability  $P(w|\omega)$ .



## Bigram, Trigram LM's Over Two Word Vocab



## Pop Quiz

- How many states in FSA representing *n*-gram model ...
  - With vocabulary size |V|?
- How many arcs?



### Issue 2: Graph Expansion

- Word models.
  - Replace each word with its HMM.
- CI phone models.
  - Replace each word with its phone sequence(s)
  - Replace each phone with its HMM.



## **Context-Dependent Graph Expansion**



- How can we do context-dependent expansion?
  - Handling branch points is tricky.
- Other tricky cases.
  - Words consisting of a single phone.
  - Quinphone models.



# Triphone Graph Expansion Example







EECS 6870: Speech Recognition

LVCSR Training and FSM's

イロト イヨト イヨト イヨト

## Word-Internal Acoustic Models

- Simplify acoustic model to simplify graph expansion.
- Word-internal models.
  - Don't let decision trees ask questions across word boundaries.
  - Pad contexts with the unknown phone.
  - Hurts performance (*e.g.*, coarticulation across words).
- As with word models, just replace each word with its HMM.



## **Context-Dependent Graph Expansion**

- Is there some elegant theoretical framework ...
- That makes it easy to do this type of expansion ....
- And also makes it easy to do lots of other graph operations useful in ASR?
- $\Rightarrow$  Finite-state transducers (FST's)! (Part IV)



# Recap: Decoding for LVCSR (Inefficient)

- In theory, do same thing as we did for small vocabularies.
  - Start with LM represented as word graph.
  - Expand to underlying HMM.
  - Viterbi.
- In practice, computation and memory issues abound.
- How to do the graph expansion? FST's (Part IV)
- How to make decoding efficient? search (Part V)



16 N A 16 N

# Part IV

#### Introduction to Finite-State Transducers



107 / 142

EECS 6870: Speech Recognition

LVCSR Training and FSM's

> < ≧ > < ≧ > 20 October 2009

## Introduction to Finite-State Transducers

Overview

- FST's are closely related to finite-state automata (FSA).
  - An FSA is a graph.
  - An FST ...
  - Takes an FSA as input ...
  - And produces a new FSA.
- Natural technology for graph expansion ...
  - And much, much more.
- FST's for ASR pioneered by AT&T in late 1990's


### Review: What is a Finite-State Acceptor?

- It has states.
  - Exactly one initial state; one or more final states.
- It has arcs.
  - Each arc has a label, which may be empty ( $\epsilon$ ).
- Ignore probabilities for now.
- Meaning: a (possibly infinite) list of strings.





### **Review: Pop Quiz**

- What are the differences between the following:
  - HMM's with discrete output distributions.
  - FSA's with arc probabilities.



### What is a Finite-State Transducer?

- It's like a finite-state acceptor, except ...
- Each arc has two labels instead of one.
  - An input label (possibly empty)
  - An output label (possibly empty)
- Meaning: a (possibly infinite) list of pairs of strings ....
  - An input string and an output string.





# Terminology

- *finite-state acceptor* (FSA): one label on each arc.
- finite-state transducer (FST): input and output label on each arc.
- finite-state machine (FSM): FSA or FST.
  - Also, finite-state automaton
- Incidentally, an FSA can act like an FST.
  - Pretend input label is both input and output label.

# Transforming a Single String

- Let's say you have a string, *e.g.*, THE DOG
- Let's say we want to apply a transformation.
  *e.g.*, map words to their baseforms.
  DH AH D AO G
- This is easy, e.g., use sed or perl or ...



## Transforming Lots of Strings At Once

- Let's say you have a (possibly infinite) list of strings ....
  - Expressed as an FSA, as this is compact.
- Let's say we want to apply a transformation.
  - e.g., map words to their baseforms.
- On all of these strings.
- And have the (possibly infinite) list of output strings ....
  - Expressed as an FSA, as this is compact.
- Efficiently.



# The Composition Operation

- FSA: represents a list of strings  $\{i_1 \cdots i_N\}$ .
- FST: represents a list of strings pairs  $\{(i_1 \cdots i_N, o_1 \cdots o_M)\}$ .
  - A compact way of representing string transformations.
- Composing FSA A with FST T to get FSA  $A \circ T$ .
  - If string  $i_1 \cdots i_N \in A$  and ...
  - Input/output string pair  $(i_1 \cdots i_N, o_1 \cdots o_M) \in T, \ldots$
  - Then, string  $o_1 \cdots o_M \in A \circ T$ .



# Rewriting a Single String







116/142

EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009

# Rewriting a Single String









117/142

EECS 6870: Speech Recognition

LVCSR Training and FSM's

## **Rewriting Many Strings At Once**



# Rewriting A Single String Many Ways





EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009 119 / 142

### **Rewriting Some Strings Zero Ways**



120 / 142

### And a Dessert Topping!

- Composition seems pretty versatile.
- Can it help us build decoding graphs?



## Example: Inserting Optional Silences



> < ≣ > < ≣ > Ξ → ⊙ < ⊂ 20 October 2009 122 / 142

### Example: Mapping Words To Phones



EECS 6870: Speech Recognition

### Example: Rewriting CI Phones as HMM's



EECS 6870: Speech Recognition

# **Computing Composition**

- For now, pretend no  $\epsilon$ -labels
- For every state  $s \in A$ ,  $t \in T$ , create state  $(s, t) \in A \circ T$
- Create arc from  $(s_1, t_1)$  to  $(s_2, t_2)$  with label o iff ...
  - There is an arc from  $s_1$  to  $s_2$  in A with label i
  - There is an arc from t<sub>1</sub> to t<sub>2</sub> in T with input label i and output label o
- (s, t) is initial iff s and t are initial; similarly for final states.
- (Remove arcs and states that cannot reach both an initial and final state.)
- What is time complexity?



# Example: Computing Composition



• Optimization: start from initial state, build outward.



126 / 142

#### Another Example



### Composition and $\epsilon$ -Transitions

- Basic idea: can take *ϵ*-transition in one FSM without moving in other FSM.
  - A little tricky to do exactly right.
  - Do the readings if you care: (Pereira, Riley, 1997)



## How to Express CD Expansion via FST's?

- Step 1: Rewrite each phone as a triphone.
  - Rewrite AX as DH\_AX\_R if DH to left, R to right.
- Step 2: Rewrite each triphone with correct context-dependent HMM for center phone.
  - Just like rewriting a CI phone as its HMM.
  - Need to precompute HMM for each possible triphone ( $\sim 50^3).$



**EN 4 EN** 

# How to Express CD Expansion via FST's?







130 / 142

# How to Express CD Expansion via FST's?



- Point: composition automatically expands FSA to correctly handle context!
  - Makes multiple copies of states in original FSA ...
  - That can exist in different triphone contexts.
  - (And makes multiple copies of only these states.)



## Recap: Finite-State Transducers

- Graph expansion can be expressed as series of composition operations.
  - Need to build FST to represent each expansion step, *e.g.*,
    - 1 2 THE 2 3 DOG 3
  - With composition operation, we're done!
- Composition is efficient.
- Context-dependent expansion can be handled effortlessly.

## What About Those Probability Thingies?

- *e.g.*, to hold language model probs, transition probs, etc.
- FSM's  $\Rightarrow$  weighted FSM's
  - WFSA's, WFST's
- Each arc has a score or cost.
  - So do final states.





### Arc Costs vs. Probabilities

- Typically, we take costs to be negative log probabilities.
  - Costs can move back and forth along a path.
  - The cost of a path is sum of arc costs plus final cost.



- If two paths have same labels, can be combined into one.
  - Typically, use min operator to compute new cost.



- Operations (+, min) form a *semiring* (the *tropical* semiring).
  - Other semirings are possible.

# The Meaning of Life

- WFSA: a list of (unique) string and cost pairs  $\{(i_1 \cdots i_N, c)\}$ .
- WFST: a list of triples  $\{(i_1 \cdots i_N, o_1 \cdots o_M, c')\}$ .



#### Which Is Different From the Others?











136 / 142

EECS 6870: Speech Recognition

LVCSR Training and FSM's

20 October 2009

### Weighted Composition

- Composing WFSA A with WFST T to get WFSA  $A \circ T$ .
- If  $(i_1 \cdots i_N, c) \in A$  and ...
- $(i_1 \cdots i_N, o_1 \cdots o_M, c') \in T, \ldots$
- Then,  $(o_1 \cdots o_M, c + c') \in A \circ T$ .
- Combine costs for all different ways to produce same *o*<sub>1</sub> · · · *o*<sub>M</sub>.

A B A A B A





## Weighted Graph Expansion

- Start with weighted FSA representing language model.
- Use composition to apply weighted FST for each level of expansion.
  - Scores/logprobs will be accumulated.
  - Log probs may move around along paths.
  - All that matters for Viterbi is total score of paths.

12 N A 12

## **Recap: Composition**

- Like sed, but can operate on all paths in a lattice simultaneously.
- Rewrite symbols as other symbols.
  - *e.g.*, rewrite words as phone sequences (or vice versa).
- Context-dependent rewriting of symbols.
  - e.g., rewrite CI phones as their CD variants.
- Add in new scores.
  - *e.g.*, language model lattice rescoring.
- Restrict the set of allowed paths/intersection.
  - e.g., find all paths in lattice containing word NOODGE.
- Or all of the above at once.

# Road Map

- Part I: The LVCSR acoustic model.
- Part II: Acoustic model training for LVCSR.
- Part III: Decoding for LVCSR (inefficient).
  - Part IV: Introduction to finite-state transducers.
- Part V: Search (Lecture 8).
  - Making decoding for LVCSR efficient.



#### **Course Feedback**

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?



3 x 4 3