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The Big Picture

@ Weeks 1-4: Small vocabulary ASR.
@ Weeks 5-8: Large vocabulary ASR.

e Week 5: Language modeling (for large vocabularies).

e Week 6: Pronunciation modeling — acoustic modeling
for large vocabularies.

e Week 7, 8: Training, decoding for large vocabularies.
@ Weeks 9—-13: Advanced topics.
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@ Part I: The LVCSR acoustic model.
@ Part Il: Acoustic model training for LVCSR.
@ Part lll: Decoding for LVCSR (inefficient).
e Part IV: Introduction to finite-state transducers.
@ Part V: Search (Lecture 8).
e Making decoding for LVCSR efficient.
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Part |

The LVCSR Acoustic Model
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What is LVCSR?
@ Large vocabulary.
e Phone-based modeling vs. word-based modeling.
@ Continuous.

e No pauses between words.
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The Fundamental Equation of ASR

class(x) = argmax P(w|x)

= argmax w
= argmax P(w)P(x|w)

@ P(x|w) — acoustic model.
@ P(w) — language model.
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The Acoustic Model: Small Vocabulary

P.(x) EA:PW( ZP P.(x|A)
~ maxP,(A) x w(x|A)
max f[ P(a;) f[ P(Xi|a)
log P,,(x) max Z log P(a;) + Z log P(X|a;)
P(Xila) =

Z Aapm H N(Xt,d; Hap,m.d; Ua,,m,d)

m=1 dim d
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The Acoustic Model: Large Vocabulary

P..(x) > PL(x A ZP P.(x|A)
A
~ max P.(A) x w(x|A)
T T

max H P(a;) E P(X:|ar)

log P,,(x) max Z log P(a;) + Z log P(X|a;)
t=1
P(}t|at) = Z Aa,m H N(Xt,d; Hay,m,d> Ua,,m,d)
m=1 dim d
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What Has Changed?

@ The HMM.

e Each alignment A describes a path through an HMM.
@ Its parameterization.

e In P(X:|a;), how many GMM’s to use? (Share between
HMM’s?)
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Describing the Underlying HMM
@ Fundamental concept: how to map a word (or baseform)
sequence to its HMM.

e In training, map reference transcript to its HMM.
e In decoding, glue together HMM's for all allowable word
sequences.
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The HMM: Small Vocabulary

@ One HMM per word.

@ Glue together HMM for each word in word sequence.
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The HMM: Large Vocabulary

SRR U SR LV S L AR B A ) )
—O—~0O—0=0—0
@ One HMM per phone.
@ Glue together HMM for each phone in phone sequence.

e Map word sequence to phone sequence using
baseform dictionary.
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| Still Don’t See What’s Changed

@ HMM topology typically doesn’t change.
@ HMM parameterization changes.
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Parameterization

@ Small vocabulary.

e One GMM per state (three states per phone).

e No sharing between phones in different words.
@ Large vocabulary, context-independent (Cl).
e One GMM per state.

e Tying between phones in different words.
@ Large vocabulary, context-dependent (CD).

e Many GMM’s per state; GMM to use depends on
phonetic context.

e Tying between phones in different words.
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Context-Dependent Parameterization

@ Each phone HMM state has its own decision tree.
e Decision tree asks questions about phonetic context.
(Why?)
e One GMM per leaf in the tree. (Up to 200+ leaves/tree.)

@ How will tree for first state of a phone tend to differ . ..

e From tree for last state of a phone?
@ Terminology.

e triphone model — +1 phones of context.
e quinphone model — +2 phones of context.

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 15/142



A Real-Life Tree

Tree for feneme AA_1:

node 0: quest-P 23[-1] --> true: node 1, false: node 2
quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S

SH TTD TH TS UW V W X Z ZH

node 1: quest-P 66[-1] --> true: node 3, false: node 4
quest: AO AXR ER IY L M N NG OW OY R UH UW W Y

node 2: quest-P 36[-2] --> true: node 5, false: node 6
quest: D$ X

node 3: quest-P 13[-1] --> true: node 7, false: node 8
quest: AXR ER R

node 4: quest-P 13[+1] --> true: node 9, false: node 10
quest: AXR ER R

node 5: leaf 0

node 6: quest-P 15[-1] --> true: node 11, false: node 12
quest: AXR ER L OW R UW W

node 7: quest-P 49[-2] --> true: node 13, false: node 14
quest: DX K P T

node 8: quest-P 20[-1] --> true: node 15, false: node 16
quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y

Zz ZH

node 9: quest-P 43[-2] --> true: node 17, false: node 18
quest: CH DH F HH JH S SH TH TS V Z ZH

node 10: quest-P 49[-1] --> true: node 19, false: node 20
quest: DX K P T

node 11: leaf 1

node 12: quest-P 15[-2] --> true: node 21, false: node 22
quest: AXR ER L OW R UW W

node 13: leaf 2

node 14: leaf 3
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@ Pretend you are Keanu Reeves.
@ System description:

e 1000 words in lexicon; average word length = 5 phones.
e There are 50 phones; each phone HMM has three
states.

e Each decision tree contains 100 leaves on average.
@ How many GMM’s are there in:

e A small vocabulary system (word models)?
e A Cl large vocabulary system?

e A CD large vocabulary system?

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 17 /142



Any Questions?

SR R R0 R R R R S B S R A
OO0 0-0-0-0-0-0
@ Given a word sequence, you should understand how to ...
e Layout the corresponding HMM topology.
e Determine which GMM to use at each state, for Cl and
CD models.
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Context-Dependent Phone Models
@ Typical model sizes:

GMM’s/
type HMM state | GMM’s | Gaussians
word per word 1 10-500 | 10010k
Cl phone | per phone 1 ~150 1k—3k
CD phone || per phone | 1—200 | 1k—10k | 10k—300k
@ 39-dimensional feature vectors = ~80
parameters/Gaussian.

@ Big models can have tens of millions of parameters.
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What About Transition Probabilities?

@ This slide only included for completeness.
@ Small vocabulary.

e One set of transition probabilities per state.

e No sharing between phones in different words
@ Large vocabulary.

e One set of transition probabilities per state.
e Sharing between phones in different words.

@ What about context-dependent transition modeling?
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@ Main difference between small vocabulary and large
vocabulary:

e Allocation of GMM’s.

e Sharing GMM’s between words: needs less GMM’s.

e Modeling context-dependence: needs more GMM’s.
e Hybrid allocation is possible.

@ Training and decoding for LVCSR.

e In theory, any reason why small vocabulary techniques
won’t work?

e In practice, yikes!
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Points to Ponder

@ Why deterministic mapping?
e DID YOU = D IH D JH UW

e The area of pronunciation modeling.
@ Why decision trees?

e Unsupervised clustering.
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Part Il

Acoustic Model Training for LVCSR
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Small Vocabulary Training — Lab 2

@ Phase 1: Collect underpants.

e Initialize all Gaussian means to 0, variances to 1
@ Phase 2: lterate over training data.

e For each word, train associated word HMM . ..
e On all samples of that word in the training data ..

e Using the Forward-Backward algorithm.
@ Phase 3: Profit!
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Large Vocabulary Training

@ What’s changed going to LVCSR?

e Same HMM topology; just more Gaussians and GMM’s
@ Can we just use the same training algorithm as before?
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Where Are We?

6 The Local Minima Problem
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Flat or Random Start

@ Why does this work for small models?

e We believe there’s a huge global minimum ...

e In the “middle” of the parameter search space.

e With a neutral starting point, we're apt to fall into it.
e (Who knows if this is actually true.)

@ Why doesn’t this work for large models?
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Case Study: Training a Simple GMM

@ Front end from Lab 1; first two dimensions; 546 frames.

-10 -5 0 5 10
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Training a Mixture of Two 2-D Gaussians

@ Flat start?
e Initialize mean of each Gaussian to 0, variance to 1.
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Training a Mixture of Two 2-D Gaussians

@ “Atthe Mr. O level, symmetry is everything.”
e Atthe GMM level, symmetry is a bad idea.
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Training a Mixture of Two 2-D Gaussians

@ Random seeding?
e Picked 8 random starting points = 3 different optima.

-10 -5 0 5 10
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Training Hidden Models

@ (MLE) training of models with hidden variables has local
minima.
@ What are the hidden variables in ASR?

e j.e., what variables are in our model ...
e That are not observed.
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How To Spot Hidden Variables

= pr( ZAP

P.(x|A)
~ max P.(A) x P,(x|A)
T T
= max [IP@) ] P¥lar)
t=1 t=1
T T
log P.(x) = max > log P(ar) + > log P(Xi|a)
t=1 t=1
D
P(}t|at) = 2%21 /\a,,m H N(Xt,d; Ha;,m,ds Oa;,m d)
dim d
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Gradient Descent and Local Minima

@ EM training does hill-climbing/gradient descent.

e Finds “nearest” optimum to where you started.

likelihood

\ |
\/
parameter values
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What To Do?

@ Insight: If we know the “correct” hidden values for a model:

e e.g., which arc and which Gaussian for each frame . ..
e Training is easy! (No local minima.)

e Remember Viterbi training given fixed alignment in Lab
2.

@ Is there a way to guess the correct hidden values for a large
model?
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Bootstrapping Alignments

@ Recall that all of our acoustic models, from simple to
complex:

e Generally use the same HMM topology!
o (All that differs is how we assign GMM’s to each arc.)
@ Given an alignment (from arc/phone states to frames) for
simple model . ..

e ltis straightforward to compute analogous alignment for
complex model!
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Bootstrapping Big Models From Small

@ Recipe:

e Start with model simple enough that flat start works.
e lteratively build more and more complex models ...

e By using last model to seed hidden values for next.
@ Need to come up with sequence of successively more
complex models ...

o With related hidden structure.
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How To Seed Next Model From Last

@ Directly via hidden values, e.g., alignment.
e e.g., single-pass retraining.

e Can be used between very different models.
@ Via parameters.

e Seed parameters in complex model so that ...
o Initially, will yield same/similar alignment as in simple
model.

e e.g., moving from Cl to CD GMM’s.
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Bootstrapping Big Models From Small

@ Recurring motif in acoustic model training.
@ The reason why state-of-the-art systems ...

e Require many, many training passes, as you will see.
@ Recipes handed down through the generations.

e Discovered via sweat and tears.
e Art, not science.

e But no one believes these find global optima . ..
e Even for small problems.
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Overview of Training Process

@ Build Cl single Gaussian model from flat start.
@ Use ClI single Gaussian model to seed CI GMM model.

@ Build phonetic decision tree (using Cl GMM model to help).
@ Use Cl GMM model to seed CD GMM model.
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© Training GMM's
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Case Study: Training a GMM

@ Recursive mixture splitting.

e A sequence of successively more complex models.
@ k-means clustering.

e Seed means in one shot.

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 42/142



Gaussian Mixture Splitting

@ Start with single Gaussian per mixture (trained).
@ Split each Gaussian into two.

e Perturb means in opposite directions; same variance.
e Train.
@ Repeat until reach desired number of mixture components
(1,2,4,8,...).
e (Discard Gaussians with insufficient counts.)

@ Assumption: c-component GMM gives good guidance ...
e On how to seed 2c-component GMM.
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Mixture Splitting Example

@ Train single Gaussian.
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Mixture Splitting Example

@ Split each Gaussian in two (+0.2 x 7)

4 X
><>@< X
X s ><>%O<
X
21 e ok
S X BN
0r ™7 3 - . >
XXX
S
_2 L X XXX
4 | .
10 5 0 5 10

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 45/142



Mixture Splitting Example

@ Train, yep.

4
o
1
o
o
(&)
—
o
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Mixture Splitting Example

@ Split each Gaussian in two (£0.2 x ¢)

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 47 /142



Mixture Splitting Example

@ Train, yep.

4
o
1
o
o
(&)
—
o
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Applying Mixture Splitting in ASR

@ Recipe:

e Start with model with 1-component GMM’s (& la Lab 2).

e Split Gaussians in each output distribution
simultaneously.

e Do many iterations of FB.
o Repeat.

@ Real-life numbers:

e Five splits spread within 30 iterations of FB.
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Another Way: Automatic Clustering

@ Use unsupervised clustering algorithm to find clusters.
@ Given clusters ...

e Use cluster centers to seed Gaussian means.
e FB training.

e (Discard Gaussians with insufficient counts.)
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k-Means Clustering

@ Select desired number of clusters k.
@ Choose k data points randomly.

o Use these as initial cluster centers.

@ “Assign” each data point to nearest cluster center.
@ Recompute each cluster center as ...

e Mean of data points “assigned” to it.
@ Repeat until convergence.
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k-Means Example

@ Pick random cluster centers; assign points to nearest
center.
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k-Means Example

@ Recompute cluster centers.
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k-Means Example

@ Assign each point to nearest center.

-10
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k-Means Example

@ Repeat until convergence.

-10 -5 0 5 10
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k-Means Example

@ Use centers as means of Gaussians; train, yep.

-10 -5 0 5 10
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The Final Mixtures, Splitting vs. k-Means

o
—
1

< Al o a <||' < (aV} o N v
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Technical Aside: k-Means Clustering

@ When using Euclidean distance . ..

@ k-means clustering is equivalent to ...

e Seeding Gaussian means with the k initial centers.
e Doing Viterbi EM update, keeping variances constant
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Applying k-Means Clustering in ASR

@ To train each GMM, use k-means clustering . ..

e On what data? Which frames?
@ Huh?

e How to decide which frames align to each GMM?
@ This issue is evaded for mixture splitting.

e Can we avoid it here?
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Forced Alignment
@ Viterbi algorithm.

e Finds most likely alignment of HMM to data.
P1(x)

P2(x) P3(x) P4(x) P5(x) P6(x)

P1(x) P2(x) P3(x) P4(x) P5(x) P6(x) Q
frame || O 1 2 /3|45 ,6|7]8|9/|10]11 |12
arc P1 P1 P1 P2 P3 P4 P4 P5 P5

Ps | Ps | Ps | Ps
@ Need existing model to create alignment. (Which?)
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@ You can use single Gaussian models to seed GMM models.
e Mixture splitting: use c-component GMM to seed
2c-component GMM.
e k-means: use single Gaussian model to find alignment.
@ Both of these techniques work about the same.

e Nowadays, we primarily use mixture splitting.
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Where Are We?

e Building Phonetic Decision Trees
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What Do We Need?

@ For each tree/phone state . ..

e List of frames/feature vectors associated with that tree.
e (This is the data we are optimizing the likelihood of.)
e For each frame, the phonetic context.

@ A list of candidate questions about the phonetic context.

e Ask about phonetic concepts; e.g., vowel or
consonant?

e Expressed as list of phones in set.

e Allow same questions to be asked about each phone
position.

e Handed down through the generations.
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A Real-Life Tree

Tree for feneme AA_1:

node 0: quest-P 23[-1] --> true: node 1, false: node 2
quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S

SH TTD TH TS UW V W X Z ZH

node 1: quest-P 66[-1] --> true: node 3, false: node 4
quest: AO AXR ER IY L M N NG OW OY R UH UW W Y

node 2: quest-P 36[-2] --> true: node 5, false: node 6
quest: D$ X

node 3: quest-P 13[-1] --> true: node 7, false: node 8
quest: AXR ER R

node 4: quest-P 13[+1] --> true: node 9, false: node 10
quest: AXR ER R

node 5: leaf 0

node 6: quest-P 15[-1] --> true: node 11, false: node 12
quest: AXR ER L OW R UW W

node 7: quest-P 49[-2] --> true: node 13, false: node 14
quest: DX K P T

node 8: quest-P 20[-1] --> true: node 15, false: node 16
quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y

Zz ZH

node 9: quest-P 43[-2] --> true: node 17, false: node 18
quest: CH DH F HH JH S SH TH TS V Z ZH

node 10: quest-P 49[-1] --> true: node 19, false: node 20
quest: DX K P T

node 11: leaf 1

node 12: quest-P 15[-2] --> true: node 21, false: node 22
quest: AXR ER L OW R UW W

node 13: leaf 2

node 14: leaf 3
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Training Data for Decision Trees

@ Forced alignment/Viterbi decoding!
@ Where do we get the model to align with?

e Use Cl phone model or other pre-existing model.
N Y XD

frame 0 1
arc DHq4

2 3 | 4|5]|6
DHs | AH4 | AHo

7181 9
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Building the Tree

@ A set of events {(X;, p., pr)} (possibly subsampled).
@ Given current tree:
e Choose question of the form . ..

e “Does the phone in position j belong to the set q?” .
e That optimizes []; P(Xi|leaf(p., pr)) ...

e Where we model each leaf using a single Gaussian.
@ Can efficiently build whole level of tree in single pass.

@ See Lecture 6 slides and readings for the gory details.

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 66 /142



Seeding the Context-Dependent GMM’s

@ Context-independent GMM’s: one GMM per phone state.
@ Context-dependent GMM’s: | GMM’s per phone state.
@ How to seed context-dependent GMM’s?

e e.g., so that initial alignment matches Cl alignment?
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© Details
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Where Are We?

@ Maximum Likelihood Training?
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The Original Story, Small Vocabulary

@ One HMM for each word; flat start.
@ Collect all examples of each word.

e Run FB on those examples to do maximum likelihood
training of that HMM.
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The New Story

@ One HMM for each word sequence!?

e But tie parameters across HMM’s!
@ Do complex multi-phase training.

@ Are we still doing anything resembling maximum likelihood
training?
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Maximum Likelihood Training?

@ Regular training iterations (FB, Viterbi EM).

e Increase (Viterbi) likelihood of data.
@ Seeding last model from next model.
e Mixture splitting.

e Cl = CD models.

@ (Decision-tree building.)
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Maximum Likelihood Training?

@ Just as LM’s need to be smoothed or regularized.
e So do acoustic models.

e Prevent extreme likelihood values (e.g., 0 or c0).
@ ML training maximizes training data likelihood.

e We actually want to optimize test data likelihood.

e Let’s call the difference the overfitting penalty.
@ The overfitting penalty tends to increase as ...

e The number of parameters increase and/or ...
e Parameter magnitudes increase.
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Regularization/Capacity Control

@ Limit size of model.
e Will training likelihood continue to increase as model
grows?

e Limit components per GMM.
e Limit number of leaves in decision tree, i.e., number of
GMM’s.

@ Variance flooring.

e Don't let variances go to 0 = infinite likelihood.

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 747142



Where Are We?

@ Viterbi vs. Non-Viterbi Training
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Two Types of Updates

@ “Full” EM.
e Compute true posterior of each hidden configuration.
@ Viterbi EM.
e Use Viterbi algorithm to find most likely hidden
configuration.

e Assign posterior of 1 to this configuration.

@ Both are valid updates; instances of generalized EM.
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@ Training GMM’s.

e Mixture splitting vs. k-means clustering.
@ Training HMM’s.

e Forward-backward vs. Viterbi EM (Lab 2).
@ Everywhere you do a forced alignment.

e Refining the reference transcript.

e What is non-Viterbi version of decision-tree building?
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When To Use One or the Other?

@ Which version is more expensive computationally?
e Optimization: need not realign every iteration.
@ Which version finds better minima?
@ If posteriors are very sharp, they do almost the same thing.
e Remember example posteriors in Lab 27
@ Rule of thumb:

e When you're first training a “new” model, use full EM.
e Once you're “locked in” to an optimum, Viterbi is fine.
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@ Graph Building
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Building HMM'’s For Training

@ When doing Forward-Backward on an utterance ...

e We need the HMM corresponding to the reference
transcript.

@ Can we use the same techniques as for small vocabularies?
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Word Models

@ Reference transcript
THE /" \ DOG
OO0
@ Replace each word with its HMM

e e e S e S s S s S S S S

DOG2 DOG3 DOG4 DOGS

DOG6 O
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Context-Independent Phone Models

@ Reference transcript

Q THE O DOG @

@ Pronunciation dictionary.

e Maps each word to a sequence of phonemes.
Q DH /" AH N\ D 7\ A0 T\ G @
_/ _/ _/ _/

@ Replace each phone with its HMM
A R A

(1 A A N A A
OO0 OZ0SCROR0
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Context-Dependent Phone Models

O THE O DOG @

@Sj

O DHI3

|I©
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The Pronunciation Dictionary

@ Need pronunciation of every word in training data.

e Including pronunciation variants
THE(O01)

THE(02) DH 1IY
e Listen to data?

DH AH

e Use automatic spelling-to-sound models?
@ Why not consider multiple baseforms/word for word
models?
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But Wait, It's More Complicated Than That!

@ Reference transcripts are created by humans ...

e Who, by their nature, are human (i.e., fallible)
@ Typical transcripts don’t contain everything an ASR system
wants.

e Where silence occurred; noises like coughs, door
slams, etc.

e Pronunciation information, e.g., was THE pronounced
asDH UHOrDH IY?
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Pronunciation Variants, Silence, and Stuff

@ How can we produce a more “complete” reference
transcript?

@ Viterbi decoding!

e Build HMM accepting all word (HMM) sequences
consistent with reference transcript.

e Compute best path/word HMM sequence.

~SIL(01) ~SILOT
DOG(01)
THE(01) DOG(02)
THE(02)

DOG(03) Q
Q ~SILO1) _/~ \ THEOD _/ \ DOG©02 _/ Y\ -SILOI)
N _/
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Another Way

@ Just use the whole expanded graph during training.

SIL(01) ~SIL(01) DOG(O) ~SIL(OT.

THE(O1) _ DOG(02) ;O
THE(02) DOG(03)
@ The problem: how to do context-dependent phone
expansion?

e Use same techniques as in building graphs for
decoding.
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Where Are We?

© The Final Recipe
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@ Audio data with reference transcripts.
@ What two other things?
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The Training Recipe

@ Find/make baseforms for all words in reference transcripts.
@ Train single Gaussian models (flat start; many iters of FB).
@ Do mixture splitting, say.

e Split each Gaussian in two; do many iterations of FB.
e Repeat until desired number of Gaussians per mixture
@ (Use initial system to refine reference transcripts.)

e Select pronunciation variants, where silence occurs.

e Do more FB training given refined transcripts.
@ Build phonetic decision tree.

e Use Cl model to align training data.

@ Seed CD model from ClI; train using FB or Viterbi EM.
e Possibly doing more mixture splitting.
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How Long Does Training Take?

@ It's a secret.
@ We think in terms of real-time factor.

e How many hours does it take to process one hour of
speech?
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Whew, That Was Pretty Complicated!

@ Adaptation (VTLN, fMLLR, mMLLR)

@ Discriminative training (LDA, MMI, MPE, fMPE)
@ Model combination (cross adaptation, ROVER)
@ lteration.

o Repeat steps using better model for seeding.
e Alignment is only as good as model that created it.
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Things Can Get Pretty Hairy

Eval’98 WER (SWB only)
Eval’01 WER

41.6%
34.3%
38.5% 39.3%) 37.7% 38.7 %)
MMI-SAT ML-SAT-L ML-SAT MMI-SAT ML-SAT-L ML-SAT
‘ ‘31.6% ‘ l ‘ 32.1%) J ‘ ‘ J 30.9% ‘ ‘ 31.9%) l ‘
‘MMI-AD ‘38'1% ‘ML-AD-L BI% ML-AD ‘ ‘MMI-AD 36.7% ‘ML»AD-L ‘ 379% ML-AD ‘
30.3% 31.0%) 29.8% 30.8%)|
100-best | 37.1% 100-best | 38.1%) 100-best | 35.9% 100-best | 36.9%|
rescoring J 30.1%)| rescoring | 30.5%)| rescoring | 29.5%)| rescoring J 30.1%
4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram 4-gram
rescoring rescoring rescoring rescoring rescoring rescoring rescoring rescoring rescoring rescoring
35.7%
29.2%
Free] v ] v, e fve] e
36.5% 38.1% 37.2% 35.5% 352% 37.7% 36.3%
29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%
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Recap: Acoustic Model Training for LVCSR

@ Take-home messages.

e Hidden model training is fraught with local minima.

e Seeding more complex models with simpler models
helps avoid terrible local minima.

e People have developed many recipes/heuristics to try
to improve the minimum you end up in.

e Training is insanely complicated for state-of-the-art
research models.

@ The good news ...

e | just saved a bunch on money on my car insurance by
switching to GEICO.
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Part

Decoding for LVCSR (Inefficient)
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Decoding for LVCSR (Inefficient)

class(x) = argmax P(w|x)

= argmax w

= argmax P(w)P(x|w)

@ Now that we know how to build models for LVCSR ...
e CD acoustic models via complex recipes.
e n-gram models via counting and smoothing.
@ How can we use them for decoding?
o Let’s ignore memory and speed constraints for now:=
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Decoding: Small Vocabulary

UH

@ Take graph/WFSA representing language model %

e I.e., all allowable word sequences. @
@ Expand to underlying HMM

5 5-8-8-8.4

@ Run the Viterbi algorithm!
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Issue 1: Are N-Gram Models WFSA’s?

@ Yup.
@ Invariants.
e One state for each (n — 1)-gram history.
e All paths ending in state for (n —1)-gramw ...
e Are labeled with word sequence ending in w.
e State for (n — 1)-gram w has outgoing arc for each word
w...
e With arc probability P(w|w).
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Bigram, Trigram LM’s Over Two Word Vocab

wl/P(wllwl) w2/P(w2lw2)

w2/P(w2lwl)

wl/P(wllwl,w2)

W2/P(W2Iw2,w2)

w2/P(w2lw1,w2)

w1/P(wllw2,w2)
wl/P(wllwl,wl)

W2/P(w2lwl,wl)

wl/P(wllw2,wl)
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@ How many states in FSA representing n-gram model . ..
e With vocabulary size |V/|?
@ How many arcs?

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 100/ 142



Issue 2: Graph Expansion

@ Word models.

e Replace each word with its HMM.
@ Cl phone models.

e Replace each word with its phone sequence(s)
e Replace each phone with its HMM.
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Context-Dependent Graph Expansion

@ How can we do context-dependent expansion?

e Handling branch points is tricky.
@ Other tricky cases.

e Words consisting of a single phone.
e Quinphone models.
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Triphone Graph Expansion Example
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Word-Internal Acoustic Models

@ Simplify acoustic model to simplify graph expansion.
@ Word-internal models.

e Don't let decision trees ask questions across word
boundaries.
e Pad contexts with the unknown phone.

e Hurts performance (e.g., coarticulation across words).
@ As with word models, just replace each word with its HMM.
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Context-Dependent Graph Expansion

@ Is there some elegant theoretical framework ...
@ That makes it easy to do this type of expansion ...

@ And also makes it easy to do lots of other graph operations
useful in ASR?

@ = Finite-state transducers (FST’s)! (Part IV)
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Recap: Decoding for LVCSR (Inefficient)

@ In theory, do same thing as we did for small vocabularies
e Start with LM represented as word graph.

e Expand to underlying HMM.
e Viterbi.

@ In practice, computation and memory issues abound.
@ How to do the graph expansion? FST’s (Part IV)
@ How to make decoding efficient? search (Part V)
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Part IV

Introduction to Finite-State Transducers
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Introduction to Finite-State Transducers

Overview

@ FST’s are closely related to finite-state automata (FSA)

e An FSA is a graph.
e AnFST ...

e Takes an FSA as input ...
e And produces a new FSA.

@ Natural technology for graph expansion ...
e And much, much more.

@ FST’s for ASR pioneered by AT&T in late 1990’s
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Review: What is a Finite-State Acceptor?
@ |t has states.

e Exactly one initial state; one or more final states.
@ It has arcs.

e Each arc has a label, which may be empty (e).
@ Ignore probabilities for now.

@ Meaning: a (possibly infinite) list of strings.

C
A
AF==0
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Review: Pop Quiz

@ What are the differences between the following:

e HMM’s with discrete output distributions.
e FSA’s with arc probabilities.
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What is a Finite-State Transducer?

@ It’s like a finite-state acceptor, except ...
@ Each arc has two labels instead of one.

e An input label (possibly empty)
e An output label (possibly empty)

@ Meaning: a (possibly infinite) list of pairs of strings
e An input string and an output string.

a:<epsilon>

cic
. b:a
@@
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Terminology

@ finite-state acceptor (FSA): one label on each arc.

@ finite-state transducer (FST): input and output label on each
arc.

@ finite-state machine (FSM): FSA or FST.
e Also, finite-state automaton
@ Incidentally, an FSA can act like an FST.

e Pretend input label is both input and output label.
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Transforming a Single String

@ Let’s say you have a string, e.g.,
THE DOG

@ Let’s say we want to apply a transformation.

e e.g., map words to their baseforms.
DHAHD AO G

@ This is easy, e.g., use sed Or perl Or...
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Transforming Lots of Strings At Once

@ Let’s say you have a (possibly infinite) list of strings ...

e Expressed as an FSA, as this is compact.

@ Let’s say we want to apply a transformation.
e e.g., map words to their baseforms.
@ On all of these strings.

@ And have the (possibly infinite) list of output strings ...

e Expressed as an FSA, as this is compact.
@ Efficiently.
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The Composition Operation

@ FSA: represents a list of strings {i; - - - in}.

@ FST: represents a list of strings pairs {(/y - - in, 01 - - - O0m)}

e A compact way of representing string transformations
@ Composing FSA A with FST T to get FSA Ao T
o Ifstringi;---iy€ Aand...

e Input/output string pair (i1 - - - iy, 01---0n) € T,
e Then, string oy---oy € Ao T.
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Rewriting a Single String

A @ambo

\2J ud@
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Rewriting a Single String

A @a@b@d@
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Rewriting Many Strings At Once
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Rewriting A Single String Many Ways
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Rewriting Some Strings Zero Ways
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And a Dessert Topping!

@ Composition seems pretty versatile.
@ Can it help us build decoding graphs?
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Example: Inserting Optional Silences

A @C@A@B@
c.c

T @/
Ao T a
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Example: Mapping Words To Phones

THE(O1) DH AH
THE(02) DH IY

<epsilon>:AH

@ <epsilon>:TY

<epsilon>:G

<epsilon>:AO
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Example: Rewriting Cl Phones as HMM’s

A

<epsilon>:D1

<epsilon>
<epsilon>:D2

<epsilon>:<epsilon>

<epsilon>:,
<epsilon>:<epsilon>

<epsilon>:AO1 <epsilon>:A02

<epsilon>
<epsilon>:G2

<epsilon>:<epsilon>

DI D2 A0l AO02 Gl
Ao T . DI e D2 ° AOI c A02 e Gl a G2 ‘
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Computing Composition

@ For now, pretend no e-labels

@ Forevery state s€ A, t € T, create state (s,t) € Ao T
@ Create arc from (sq, t) to (s, o) with label o iff . ..

e There is an arc from s; to s, in A with label i
e Thereis an arc from t; to &, in T with input label / and
output label o
@ (s,t)is initial iff s and t are initial; similarly for final states.
@ (Remove arcs and states that cannot reach both an initial
and final state.)

@ What is time complexity?
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Example: Computing Composition

A OO0
T@m@m@
® ® O

AoT (1) () (»)
ONONO

@ Optimization: start from initial state, build outward.
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Another Example
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Composition and e-Transitions
@ Basic idea: can take e-transition in one FSM without moving

in other FSM.
o A little tricky to do exactly right.
e Do the readings if you care: (Pereira, Riley, 1997)
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How to Express CD Expansion via FST’s?

@ Step 1: Rewrite each phone as a triphone.

o Rewrite Ax as DH_AX_R if DH to left, R to right.
@ Step 2: Rewrite each triphone with correct
context-dependent HMM for center phone.

e Just like rewriting a Cl phone as its HMM.
e Need to precompute HMM for each possible triphone
(~ 503).
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How to Express CD Expansion via FST’s?
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How to Express CD Expansion via FST’s?

| xxy () Xyy /3\
y_ Xy U

yoyx O vxy
N

Xy y

X_y_X @

@ Point: composition automatically expands FSA to correctly
handle context!

e Makes multiple copies of states in original FSA ...
e That can exist in different triphone contexts.

e (And makes multiple copies of only these states.)
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Recap: Finite-State Transducers

@ Graph expansion can be expressed as series of
composition operations.

e.g.,
1 2 THE

2 3 DOG
3

e Need to build FST to represent each expansion step,

e With composition operation, we're done!
@ Composition is efficient.

@ Context-dependent expansion can be handled effortlessly.
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What About Those Probability Thingies?

@ e.g., to hold language model probs, transition probs, etc
@ FSM’s = weighted FSM’s

o WFSA’s, WFST’s
@ Each arc has a score or cost.
e So do final states.
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Arc Costs vs. Probabilities

@ Typically, we take costs to be negative log probabilities
e Costs can move back and forth along a path.
e The cost of a path is sum of arc costs plus final cost

@a/l@b/z@ @alo@blo

@ If two paths have same labels, can be combined into one
e Typically, use min operator to compute new cost
a/l

@ Operations (+, min) form a semiring (the tropical semiring).
e Other semirings are possible.
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The Meaning of Life

@ WFSA: a list of (unique) string and cost pairs {(i; - - - in, C)}
@ WFST: a list of triples {(/y - - - in, 01 - - - Om, C) }.
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Which Is Different From the Others?

o

Q <epsilon>/1 2 a/0
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Weighted Composition

@ Composing WFSA A with WFST T to get WFSA Ao T.
@ If(ij---in,c)e Aand ...

@ (fj---in,O1---0m,C)ET, ...

@ Then, (01---om,c+ )€ Ao T

@ Combine costs for all different ways to produce same
O1---0puy.

EECS 6870: Speech Recognition

LVCSR Training and FSM’s

20 October 2009 137 /142



Weighted Composition

AoT A3
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Weighted Graph Expansion

@ Start with weighted FSA representing language model.
@ Use composition to apply weighted FST for each level of
expansion.
e Scores/logprobs will be accumulated.

e Log probs may move around along paths.
o All that matters for Viterbi is total score of paths.
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Recap: Composition

@ Like sed, but can operate on all paths in a lattice
simultaneously.

@ Rewrite symbols as other symbols.
e e.g., rewrite words as phone sequences (or vice versa).
@ Context-dependent rewriting of symbols.
e e.g., rewrite Cl phones as their CD variants.
@ Add in new scores.
e e.g., language model lattice rescoring.
@ Restrict the set of allowed paths/intersection.
e e.g., find all paths in lattice containing word NOODGE.
@ Or all of the above at once.
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Road Map

@ Part I: The LVCSR acoustic model.

@ Part Il: Acoustic model training for LVCSR.
@ Part lll: Decoding for LVCSR (inefficient).

e Part IV: Introduction to finite-state transducers.
@ |Part V: Search (Lecture 8).

e Making decoding for LVCSR efficient.
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Course Feedback

@ Was this lecture mostly clear or unclear? What was the
muddiest topic?

@ Other feedback (pace, content, atmosphere)?
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