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The Big Picture

Weeks 1–4: Small vocabulary ASR.
Weeks 5–8: Large vocabulary ASR.

Week 5: Language modeling (for large vocabularies).
Week 6: Pronunciation modeling — acoustic modeling
for large vocabularies.
Week 7, 8: Training, decoding for large vocabularies.

Weeks 9–13: Advanced topics.
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Outline

Part I: The LVCSR acoustic model.
Part II: Acoustic model training for LVCSR.
Part III: Decoding for LVCSR (inefficient).

Part IV: Introduction to finite-state transducers.
Part V: Search (Lecture 8).

Making decoding for LVCSR efficient.
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Part I

The LVCSR Acoustic Model
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What is LVCSR?

Large vocabulary.
Phone-based modeling vs. word-based modeling.

Continuous.
No pauses between words.
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The Fundamental Equation of ASR

class(x) = arg max
ω

P(ω|x)

= arg max
ω

P(ω)P(x|ω)

P(x)

= arg max
ω

P(ω)P(x|ω)

P(x|ω) — acoustic model.
P(ω) — language model.
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The Acoustic Model: Small Vocabulary

Pω(x) =
∑

A

Pω(x, A) =
∑

A

Pω(A)× Pω(x|A)

≈ max
A

Pω(A)× Pω(x|A)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]

P(~xt |at) =
M∑

m=1

λat ,m

D∏
dim d

N (xt ,d ; µat ,m,d , σat ,m,d)
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The Acoustic Model: Large Vocabulary

Pω(x) =
∑

A

Pω(x, A) =
∑

A

Pω(A)× Pω(x|A)

≈ max
A

Pω(A)× Pω(x|A)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]

P(~xt |at) =
M∑

m=1

λat ,m

D∏
dim d

N (xt ,d ; µat ,m,d , σat ,m,d)
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What Has Changed?

The HMM.
Each alignment A describes a path through an HMM.

Its parameterization.
In P(~xt |at), how many GMM’s to use? (Share between
HMM’s?)
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Describing the Underlying HMM

Fundamental concept: how to map a word (or baseform)
sequence to its HMM.

In training, map reference transcript to its HMM.
In decoding, glue together HMM’s for all allowable word
sequences.
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The HMM: Small Vocabulary

TEN FOUR

. . .

. . .
TEN FOUR

One HMM per word.
Glue together HMM for each word in word sequence.
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The HMM: Large Vocabulary

T EH N F AO R

. . .

. . .
T EH N F AO R

One HMM per phone.
Glue together HMM for each phone in phone sequence.

Map word sequence to phone sequence using
baseform dictionary.
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I Still Don’t See What’s Changed

HMM topology typically doesn’t change.
HMM parameterization changes.
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Parameterization

Small vocabulary.
One GMM per state (three states per phone).
No sharing between phones in different words.

Large vocabulary, context-independent (CI).
One GMM per state.
Tying between phones in different words.

Large vocabulary, context-dependent (CD).
Many GMM’s per state; GMM to use depends on
phonetic context.
Tying between phones in different words.
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Context-Dependent Parameterization

Each phone HMM state has its own decision tree.
Decision tree asks questions about phonetic context.
(Why?)
One GMM per leaf in the tree. (Up to 200+ leaves/tree.)

How will tree for first state of a phone tend to differ . . .
From tree for last state of a phone?

Terminology.
triphone model — ±1 phones of context.
quinphone model — ±2 phones of context.
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A Real-Life Tree

Tree for feneme AA_1:
node 0: quest-P 23[-1] --> true: node 1, false: node 2

quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S
SH T TD TH TS UW V W X Z ZH

node 1: quest-P 66[-1] --> true: node 3, false: node 4
quest: AO AXR ER IY L M N NG OW OY R UH UW W Y

node 2: quest-P 36[-2] --> true: node 5, false: node 6
quest: D$ X

node 3: quest-P 13[-1] --> true: node 7, false: node 8
quest: AXR ER R

node 4: quest-P 13[+1] --> true: node 9, false: node 10
quest: AXR ER R

node 5: leaf 0
node 6: quest-P 15[-1] --> true: node 11, false: node 12

quest: AXR ER L OW R UW W
node 7: quest-P 49[-2] --> true: node 13, false: node 14

quest: DX K P T
node 8: quest-P 20[-1] --> true: node 15, false: node 16

quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y
Z ZH

node 9: quest-P 43[-2] --> true: node 17, false: node 18
quest: CH DH F HH JH S SH TH TS V Z ZH

node 10: quest-P 49[-1] --> true: node 19, false: node 20
quest: DX K P T

node 11: leaf 1
node 12: quest-P 15[-2] --> true: node 21, false: node 22

quest: AXR ER L OW R UW W
node 13: leaf 2
node 14: leaf 3
...
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Pop Quiz

Pretend you are Keanu Reeves.
System description:

1000 words in lexicon; average word length = 5 phones.
There are 50 phones; each phone HMM has three
states.
Each decision tree contains 100 leaves on average.

How many GMM’s are there in:
A small vocabulary system (word models)?
A CI large vocabulary system?
A CD large vocabulary system?
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Any Questions?

T EH N F AO R

. . .

. . .
T EH N F AO R

Given a word sequence, you should understand how to . . .
Layout the corresponding HMM topology.
Determine which GMM to use at each state, for CI and
CD models.
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Context-Dependent Phone Models

Typical model sizes:
GMM’s/

type HMM state GMM’s Gaussians
word per word 1 10–500 100–10k
CI phone per phone 1 ∼150 1k–3k
CD phone per phone 1–200 1k–10k 10k–300k

39-dimensional feature vectors ⇒ ∼80
parameters/Gaussian.
Big models can have tens of millions of parameters.
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What About Transition Probabilities?

This slide only included for completeness.
Small vocabulary.

One set of transition probabilities per state.
No sharing between phones in different words.

Large vocabulary.
One set of transition probabilities per state.
Sharing between phones in different words.

What about context-dependent transition modeling?
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Recap

Main difference between small vocabulary and large
vocabulary:

Allocation of GMM’s.
Sharing GMM’s between words: needs less GMM’s.
Modeling context-dependence: needs more GMM’s.
Hybrid allocation is possible.

Training and decoding for LVCSR.
In theory, any reason why small vocabulary techniques
won’t work?
In practice, yikes!
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Points to Ponder

Why deterministic mapping?
DID YOU ⇒ D IH D JH UW
The area of pronunciation modeling.

Why decision trees?
Unsupervised clustering.
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Part II

Acoustic Model Training for LVCSR
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Small Vocabulary Training — Lab 2

Phase 1: Collect underpants.
Initialize all Gaussian means to 0, variances to 1.

Phase 2: Iterate over training data.
For each word, train associated word HMM . . .
On all samples of that word in the training data . . .
Using the Forward-Backward algorithm.

Phase 3: Profit!

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 24 / 142



IBM

Large Vocabulary Training

What’s changed going to LVCSR?
Same HMM topology; just more Gaussians and GMM’s.

Can we just use the same training algorithm as before?
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Flat or Random Start

Why does this work for small models?
We believe there’s a huge global minimum . . .
In the “middle” of the parameter search space.
With a neutral starting point, we’re apt to fall into it.
(Who knows if this is actually true.)

Why doesn’t this work for large models?
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Case Study: Training a Simple GMM

Front end from Lab 1; first two dimensions; 546 frames.
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Training a Mixture of Two 2-D Gaussians

Flat start?
Initialize mean of each Gaussian to 0, variance to 1.
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Training a Mixture of Two 2-D Gaussians

“At the Mr. O level, symmetry is everything.”
At the GMM level, symmetry is a bad idea.

-4

-2

 0

 2

 4

-10 -5  0  5  10

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 30 / 142



IBM

Training a Mixture of Two 2-D Gaussians

Random seeding?
Picked 8 random starting points ⇒ 3 different optima.
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Training Hidden Models

(MLE) training of models with hidden variables has local
minima.
What are the hidden variables in ASR?

i.e., what variables are in our model . . .
That are not observed.
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How To Spot Hidden Variables

Pω(x) =
∑

A

Pω(x, A) =
∑

APω(A)× Pω(x|A)

≈ max
A

Pω(A)× Pω(x|A)

= max
A

T∏
t=1

P(at)
T∏

t=1

P(~xt |at)

log Pω(x) = max
A

[
T∑

t=1

log P(at) +
T∑

t=1

log P(~xt |at)

]

P(~xt |at) =
∑

M
m=1λat ,m

D∏
dim d

N (xt ,d ; µat ,m,d , σat ,m,d)
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Gradient Descent and Local Minima

EM training does hill-climbing/gradient descent.
Finds “nearest” optimum to where you started.

lik
el

ih
oo

d

parameter values
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What To Do?

Insight: If we know the “correct” hidden values for a model:
e.g., which arc and which Gaussian for each frame . . .
Training is easy! (No local minima.)
Remember Viterbi training given fixed alignment in Lab
2.

Is there a way to guess the correct hidden values for a large
model?
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Bootstrapping Alignments

Recall that all of our acoustic models, from simple to
complex:

Generally use the same HMM topology!
(All that differs is how we assign GMM’s to each arc.)

Given an alignment (from arc/phone states to frames) for
simple model . . .

It is straightforward to compute analogous alignment for
complex model!
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Bootstrapping Big Models From Small

Recipe:
Start with model simple enough that flat start works.
Iteratively build more and more complex models . . .
By using last model to seed hidden values for next.

Need to come up with sequence of successively more
complex models . . .

With related hidden structure.
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How To Seed Next Model From Last

Directly via hidden values, e.g., alignment.
e.g., single-pass retraining.
Can be used between very different models.

Via parameters.
Seed parameters in complex model so that . . .
Initially, will yield same/similar alignment as in simple
model.
e.g., moving from CI to CD GMM’s.

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 38 / 142



IBM

Bootstrapping Big Models From Small

Recurring motif in acoustic model training.
The reason why state-of-the-art systems . . .

Require many, many training passes, as you will see.
Recipes handed down through the generations.

Discovered via sweat and tears.
Art, not science.
But no one believes these find global optima . . .
Even for small problems.
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Overview of Training Process

Build CI single Gaussian model from flat start.
Use CI single Gaussian model to seed CI GMM model.
Build phonetic decision tree (using CI GMM model to help).
Use CI GMM model to seed CD GMM model.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Case Study: Training a GMM

Recursive mixture splitting.
A sequence of successively more complex models.

k -means clustering.
Seed means in one shot.
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Gaussian Mixture Splitting

Start with single Gaussian per mixture (trained).
Split each Gaussian into two.

Perturb means in opposite directions; same variance.
Train.

Repeat until reach desired number of mixture components
(1, 2, 4, 8, . . . ).

(Discard Gaussians with insufficient counts.)
Assumption: c-component GMM gives good guidance . . .

On how to seed 2c-component GMM.
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Mixture Splitting Example

Train single Gaussian.
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Mixture Splitting Example

Split each Gaussian in two (±0.2× ~σ)
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Mixture Splitting Example

Train, yep.
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Mixture Splitting Example

Split each Gaussian in two (±0.2× ~σ)
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Mixture Splitting Example

Train, yep.
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Applying Mixture Splitting in ASR

Recipe:
Start with model with 1-component GMM’s (à la Lab 2).
Split Gaussians in each output distribution
simultaneously.
Do many iterations of FB.
Repeat.

Real-life numbers:
Five splits spread within 30 iterations of FB.
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Another Way: Automatic Clustering

Use unsupervised clustering algorithm to find clusters.
Given clusters . . .

Use cluster centers to seed Gaussian means.
FB training.
(Discard Gaussians with insufficient counts.)
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k -Means Clustering

Select desired number of clusters k .
Choose k data points randomly.

Use these as initial cluster centers.
“Assign” each data point to nearest cluster center.
Recompute each cluster center as . . .

Mean of data points “assigned” to it.
Repeat until convergence.
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k -Means Example

Pick random cluster centers; assign points to nearest
center.
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k -Means Example

Recompute cluster centers.
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k -Means Example

Assign each point to nearest center.
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k -Means Example

Repeat until convergence.
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k -Means Example

Use centers as means of Gaussians; train, yep.
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The Final Mixtures, Splitting vs. k -Means
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Technical Aside: k -Means Clustering

When using Euclidean distance . . .
k -means clustering is equivalent to . . .

Seeding Gaussian means with the k initial centers.
Doing Viterbi EM update, keeping variances constant.
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Applying k -Means Clustering in ASR

To train each GMM, use k -means clustering . . .
On what data? Which frames?

Huh?
How to decide which frames align to each GMM?

This issue is evaded for mixture splitting.
Can we avoid it here?
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Forced Alignment

Viterbi algorithm.
Finds most likely alignment of HMM to data.

P1(x)

P1(x)

P2(x)

P2(x)

P3(x)

P3(x)

P4(x)

P4(x)

P5(x)

P5(x)

P6(x)

P6(x)

frame 0 1 2 3 4 5 6 7 8 9 10 11 12
arc P1 P1 P1 P2 P3 P4 P4 P5 P5 P5 P5 P6 P6

Need existing model to create alignment. (Which?)
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Recap

You can use single Gaussian models to seed GMM models.

Mixture splitting: use c-component GMM to seed
2c-component GMM.
k -means: use single Gaussian model to find alignment.

Both of these techniques work about the same.
Nowadays, we primarily use mixture splitting.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 62 / 142



IBM

What Do We Need?

For each tree/phone state . . .
List of frames/feature vectors associated with that tree.
(This is the data we are optimizing the likelihood of.)
For each frame, the phonetic context.

A list of candidate questions about the phonetic context.
Ask about phonetic concepts; e.g., vowel or
consonant?
Expressed as list of phones in set.
Allow same questions to be asked about each phone
position.
Handed down through the generations.
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A Real-Life Tree

Tree for feneme AA_1:
node 0: quest-P 23[-1] --> true: node 1, false: node 2

quest: AX AXR B BD CH D DD DH DX D$ ER F G GD HH JH K KD M N NG P PD R S
SH T TD TH TS UW V W X Z ZH

node 1: quest-P 66[-1] --> true: node 3, false: node 4
quest: AO AXR ER IY L M N NG OW OY R UH UW W Y

node 2: quest-P 36[-2] --> true: node 5, false: node 6
quest: D$ X

node 3: quest-P 13[-1] --> true: node 7, false: node 8
quest: AXR ER R

node 4: quest-P 13[+1] --> true: node 9, false: node 10
quest: AXR ER R

node 5: leaf 0
node 6: quest-P 15[-1] --> true: node 11, false: node 12

quest: AXR ER L OW R UW W
node 7: quest-P 49[-2] --> true: node 13, false: node 14

quest: DX K P T
node 8: quest-P 20[-1] --> true: node 15, false: node 16

quest: B BD CH D DD DH F G GD IY JH K KD M N NG P PD S SH T TD TH TS V X Y
Z ZH

node 9: quest-P 43[-2] --> true: node 17, false: node 18
quest: CH DH F HH JH S SH TH TS V Z ZH

node 10: quest-P 49[-1] --> true: node 19, false: node 20
quest: DX K P T

node 11: leaf 1
node 12: quest-P 15[-2] --> true: node 21, false: node 22

quest: AXR ER L OW R UW W
node 13: leaf 2
node 14: leaf 3
...
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Training Data for Decision Trees

Forced alignment/Viterbi decoding!
Where do we get the model to align with?

Use CI phone model or other pre-existing model.

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2

frame 0 1 2 3 4 5 6 7 8 9 · · ·
arc DH1 DH2 AH1 AH2 D1 D1 D2 D2 D2 AO1 · · ·
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Building the Tree

A set of events {(~xi , pL, pR)} (possibly subsampled).
Given current tree:

Choose question of the form . . .
“Does the phone in position j belong to the set q?” . . .
That optimizes

∏
i P(~xi |leaf(pL, pR)) . . .

Where we model each leaf using a single Gaussian.
Can efficiently build whole level of tree in single pass.
See Lecture 6 slides and readings for the gory details.
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Seeding the Context-Dependent GMM’s

Context-independent GMM’s: one GMM per phone state.
Context-dependent GMM’s: l GMM’s per phone state.
How to seed context-dependent GMM’s?

e.g., so that initial alignment matches CI alignment?
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Where Are We?

4 Details
Maximum Likelihood Training?
Viterbi vs. Non-Viterbi Training
Graph Building
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The Original Story, Small Vocabulary

One HMM for each word; flat start.
Collect all examples of each word.

Run FB on those examples to do maximum likelihood
training of that HMM.
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The New Story

One HMM for each word sequence!?
But tie parameters across HMM’s!

Do complex multi-phase training.
Are we still doing anything resembling maximum likelihood
training?
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Maximum Likelihood Training?

Regular training iterations (FB, Viterbi EM).
Increase (Viterbi) likelihood of data.

Seeding last model from next model.
Mixture splitting.
CI ⇒ CD models.

(Decision-tree building.)
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Maximum Likelihood Training?

Just as LM’s need to be smoothed or regularized.
So do acoustic models.
Prevent extreme likelihood values (e.g., 0 or ∞).

ML training maximizes training data likelihood.
We actually want to optimize test data likelihood.
Let’s call the difference the overfitting penalty.

The overfitting penalty tends to increase as . . .
The number of parameters increase and/or . . .
Parameter magnitudes increase.
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Regularization/Capacity Control

Limit size of model.
Will training likelihood continue to increase as model
grows?
Limit components per GMM.
Limit number of leaves in decision tree, i.e., number of
GMM’s.

Variance flooring.
Don’t let variances go to 0 ⇒ infinite likelihood.
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Where Are We?

4 Details
Maximum Likelihood Training?
Viterbi vs. Non-Viterbi Training
Graph Building
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Two Types of Updates

“Full” EM.
Compute true posterior of each hidden configuration.

Viterbi EM.
Use Viterbi algorithm to find most likely hidden
configuration.
Assign posterior of 1 to this configuration.

Both are valid updates; instances of generalized EM.
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Examples

Training GMM’s.
Mixture splitting vs. k -means clustering.

Training HMM’s.
Forward-backward vs. Viterbi EM (Lab 2).

Everywhere you do a forced alignment.
Refining the reference transcript.
What is non-Viterbi version of decision-tree building?
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When To Use One or the Other?

Which version is more expensive computationally?
Optimization: need not realign every iteration.

Which version finds better minima?
If posteriors are very sharp, they do almost the same thing.

Remember example posteriors in Lab 2?
Rule of thumb:

When you’re first training a “new” model, use full EM.
Once you’re “locked in” to an optimum, Viterbi is fine.
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Where Are We?

4 Details
Maximum Likelihood Training?
Viterbi vs. Non-Viterbi Training
Graph Building
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Building HMM’s For Training

When doing Forward-Backward on an utterance . . .
We need the HMM corresponding to the reference
transcript.

Can we use the same techniques as for small vocabularies?
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Word Models

Reference transcript
THE DOG

Replace each word with its HMM

THE1 THE2 THE3 THE4 DOG1 DOG2 DOG3 DOG4 DOG5 DOG6
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Context-Independent Phone Models

Reference transcript
THE DOG

Pronunciation dictionary.
Maps each word to a sequence of phonemes.

DH AH D AO G

Replace each phone with its HMM

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2
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Context-Dependent Phone Models

THE DOG

DH AH D AO G

DH1 DH2 AH1 AH2 D1 D2 AO1 AO2 G1 G2

DH1,3 DH2,7 AH1,2 AH2,4 D1,3 D2,9 AO1,1 AO2,1 G1,2 G2,7
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The Pronunciation Dictionary

Need pronunciation of every word in training data.
Including pronunciation variants

THE(01) DH AH
THE(02) DH IY

Listen to data?
Use automatic spelling-to-sound models?

Why not consider multiple baseforms/word for word
models?
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But Wait, It’s More Complicated Than That!

Reference transcripts are created by humans . . .
Who, by their nature, are human (i.e., fallible)

Typical transcripts don’t contain everything an ASR system
wants.

Where silence occurred; noises like coughs, door
slams, etc.
Pronunciation information, e.g., was THE pronounced
as DH UH or DH IY?
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Pronunciation Variants, Silence, and Stuff

How can we produce a more “complete” reference
transcript?
Viterbi decoding!

Build HMM accepting all word (HMM) sequences
consistent with reference transcript.
Compute best path/word HMM sequence.
Where does this initial acoustic model come from?

~SIL(01)

THE(01)

THE(02)

~SIL(01)
DOG(01)

DOG(02)

DOG(03)

~SIL(01)

~SIL(01) THE(01) DOG(02) ~SIL(01)
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Another Way

Just use the whole expanded graph during training.
~SIL(01)

THE(01)

THE(02)

~SIL(01)
DOG(01)

DOG(02)

DOG(03)

~SIL(01)

The problem: how to do context-dependent phone
expansion?

Use same techniques as in building graphs for
decoding.
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Where Are We?

1 The Local Minima Problem

2 Training GMM’s

3 Building Phonetic Decision Trees

4 Details

5 The Final Recipe
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Prerequisites

Audio data with reference transcripts.
What two other things?
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The Training Recipe

Find/make baseforms for all words in reference transcripts.
Train single Gaussian models (flat start; many iters of FB).
Do mixture splitting, say.

Split each Gaussian in two; do many iterations of FB.
Repeat until desired number of Gaussians per mixture.

(Use initial system to refine reference transcripts.)
Select pronunciation variants, where silence occurs.
Do more FB training given refined transcripts.

Build phonetic decision tree.
Use CI model to align training data.

Seed CD model from CI; train using FB or Viterbi EM.
Possibly doing more mixture splitting.
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How Long Does Training Take?

It’s a secret.
We think in terms of real-time factor.

How many hours does it take to process one hour of
speech?
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Whew, That Was Pretty Complicated!

Adaptation (VTLN, fMLLR, mMLLR)
Discriminative training (LDA, MMI, MPE, fMPE)
Model combination (cross adaptation, ROVER)
Iteration.

Repeat steps using better model for seeding.
Alignment is only as good as model that created it.
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Things Can Get Pretty Hairy

ML-SAT-L

ML-AD-L

ROVER

Consensus

rescoring
100-best

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus Consensus Consensus

rescoring
100-best

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

4-gram
rescoring

Consensus Consensus Consensus

36.3%

MFCC

ML-SAT-L

VTLN

ML-AD-L

ML-SAT

ML-AD

MMI-SAT

MMI-AD

ML-SAT

ML-AD

MFCC-SI

PLP

VTLN

MMI-SAT

MMI-AD

Consensus

4-gram

100-best
rescoring

rescoring

38.4%                          Eval’01 WER

35.6%

31.6%

30.3%

30.1% 30.5%

31.0%

32.1%

29.9% 31.1% 30.2% 28.8% 28.7% 31.4% 29.2%

27.8%

29.2%

29.5% 30.1%

29.8%

30.9% 31.9%

34.3%
42.6%

45.9%                          Eval’98 WER (SWB only)

34.0%

41.6%

39.3%38.5% 37.7% 38.7%

38.1% 36.7%38.7%
30.8%
37.9%

38.1%37.1% 36.9%35.9%

35.2%

35.7%

36.5% 38.1% 37.2% 35.5% 37.7%
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Recap: Acoustic Model Training for LVCSR

Take-home messages.
Hidden model training is fraught with local minima.
Seeding more complex models with simpler models
helps avoid terrible local minima.
People have developed many recipes/heuristics to try
to improve the minimum you end up in.
Training is insanely complicated for state-of-the-art
research models.

The good news . . .
I just saved a bunch on money on my car insurance by
switching to GEICO.
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Part III

Decoding for LVCSR (Inefficient)
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Decoding for LVCSR (Inefficient)

class(x) = arg max
ω

P(ω|x)

= arg max
ω

P(ω)P(x|ω)

P(x)

= arg max
ω

P(ω)P(x|ω)

Now that we know how to build models for LVCSR . . .
CD acoustic models via complex recipes.
n-gram models via counting and smoothing.

How can we use them for decoding?
Let’s ignore memory and speed constraints for now.
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Decoding: Small Vocabulary

Take graph/WFSA representing language model
LIKE
UH

i.e., all allowable word sequences.
Expand to underlying HMM

LIKE

UH

Run the Viterbi algorithm!
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Issue 1: Are N-Gram Models WFSA’s?

Yup.
Invariants.

One state for each (n − 1)-gram history.
All paths ending in state for (n − 1)-gram ω . . .
Are labeled with word sequence ending in ω.
State for (n− 1)-gram ω has outgoing arc for each word
w . . .
With arc probability P(w |ω).
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Bigram, Trigram LM’s Over Two Word Vocab

h=w1

w1/P(w1|w1)

h=w2w2/P(w2|w1)

w1/P(w1|w2)

w2/P(w2|w2)

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)
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Pop Quiz

How many states in FSA representing n-gram model . . .
With vocabulary size |V |?

How many arcs?
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Issue 2: Graph Expansion

Word models.
Replace each word with its HMM.

CI phone models.
Replace each word with its phone sequence(s)
Replace each phone with its HMM.

h=LIKE

LIKE/P(LIKE|LIKE)

UH/P(UH|LIKE)

h=UH

LIKE/P(LIKE|UH)

UH/P(UH|UH)
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Context-Dependent Graph Expansion

DH

D

AH

AO

G

How can we do context-dependent expansion?
Handling branch points is tricky.

Other tricky cases.
Words consisting of a single phone.
Quinphone models.
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Triphone Graph Expansion Example

DH

D

AH

AO

G

G_D_AO D_AO_G

AO_G_D AO_G_DH G_DH_AH

DH_AH_DH

DH_AH_D

AH_DH_AH

AH_D_AO
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Word-Internal Acoustic Models

Simplify acoustic model to simplify graph expansion.
Word-internal models.

Don’t let decision trees ask questions across word
boundaries.
Pad contexts with the unknown phone.
Hurts performance (e.g., coarticulation across words).

As with word models, just replace each word with its HMM.
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Context-Dependent Graph Expansion

Is there some elegant theoretical framework . . .
That makes it easy to do this type of expansion . . .
And also makes it easy to do lots of other graph operations
useful in ASR?
⇒ Finite-state transducers (FST’s)! (Part IV)
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Recap: Decoding for LVCSR (Inefficient)

In theory, do same thing as we did for small vocabularies.
Start with LM represented as word graph.
Expand to underlying HMM.
Viterbi.

In practice, computation and memory issues abound.
How to do the graph expansion? FST’s (Part IV)
How to make decoding efficient? search (Part V)
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Part IV

Introduction to Finite-State Transducers
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Introduction to Finite-State Transducers

Overview
FST’s are closely related to finite-state automata (FSA).

An FSA is a graph.
An FST . . .
Takes an FSA as input . . .
And produces a new FSA.

Natural technology for graph expansion . . .
And much, much more.

FST’s for ASR pioneered by AT&T in late 1990’s
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Review: What is a Finite-State Acceptor?

It has states.
Exactly one initial state; one or more final states.

It has arcs.
Each arc has a label, which may be empty (ε).

Ignore probabilities for now.
Meaning: a (possibly infinite) list of strings.

1

2a

c

3

b

a

<epsilon>
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Review: Pop Quiz

What are the differences between the following:
HMM’s with discrete output distributions.
FSA’s with arc probabilities.
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What is a Finite-State Transducer?

It’s like a finite-state acceptor, except . . .
Each arc has two labels instead of one.

An input label (possibly empty)
An output label (possibly empty)

Meaning: a (possibly infinite) list of pairs of strings . . .
An input string and an output string.

1

2a:<epsilon>

c:c

3

b:a

a:a

<epsilon>:b
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Terminology

finite-state acceptor (FSA): one label on each arc.
finite-state transducer (FST): input and output label on each
arc.
finite-state machine (FSM): FSA or FST.

Also, finite-state automaton
Incidentally, an FSA can act like an FST.

Pretend input label is both input and output label.
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Transforming a Single String

Let’s say you have a string, e.g.,
THE DOG

Let’s say we want to apply a transformation.
e.g., map words to their baseforms.

DH AH D AO G

This is easy, e.g., use sed or perl or . . .
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Transforming Lots of Strings At Once

Let’s say you have a (possibly infinite) list of strings . . .
Expressed as an FSA, as this is compact.

Let’s say we want to apply a transformation.
e.g., map words to their baseforms.

On all of these strings.
And have the (possibly infinite) list of output strings . . .

Expressed as an FSA, as this is compact.
Efficiently.
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The Composition Operation

FSA: represents a list of strings {i1 · · · iN}.
FST: represents a list of strings pairs {(i1 · · · iN , o1 · · ·oM)}.

A compact way of representing string transformations.
Composing FSA A with FST T to get FSA A ◦ T .

If string i1 · · · iN ∈ A and . . .
Input/output string pair (i1 · · · iN , o1 · · ·oM) ∈ T , . . .
Then, string o1 · · ·oM ∈ A ◦ T .
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Rewriting a Single String

A 1 2a 3b 4d

T 1 2a:A 3b:B 4d:D

A ◦ T 1 2A 3B 4D
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Rewriting a Single String

A 1 2a 3b 4d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1 2A 3B 4D
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Rewriting Many Strings At Once

A 1

2c

d

6

b

3a

5

a

a

4

b

d

T
1

a:A
b:B
c:C
d:D

A ◦ T 1

3
B

2

C

D

4

A

A

5
A 6

D

B
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Rewriting A Single String Many Ways

A 1 2a 3b 4a

T
1

a:a
a:A
b:b
b:B

A ◦ T 1 2a
A

3b
B

4a
A
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Rewriting Some Strings Zero Ways

A 1

2a

d

6

b

3a

5

a

a

4

b

a

T 1

a:a

A ◦ T 1 2a
3a

4

a

5a
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And a Dessert Topping!

Composition seems pretty versatile.
Can it help us build decoding graphs?
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Example: Inserting Optional Silences

A 1 2C 3A 4B

T
1

<epsilon>:~SIL
A:A
B:B
C:C

A ◦ T
1

~SIL

2C

~SIL

3A

~SIL

4B

~SIL
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Example: Mapping Words To Phones

THE(01) DH AH
THE(02) DH IY

A 1 2THE 3DOG

T 1

2

THE:DH

3
DOG:D

<epsilon>:AH

<epsilon>:IY

4

<epsilon>:AO

<epsilon>:G

A ◦ T 1 2DH 3AH

IY
4D 5AO 6G
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Example: Rewriting CI Phones as HMM’s
A 1 2D 3AO 4G

T 1

2D:D1

4

AO:AO1

6

G:G1

<epsilon>:D1

3

<epsilon>:D2

<epsilon>:AO1 5<epsilon>:AO2

<epsilon>:G1

7

<epsilon>:G2

<epsilon>:<epsilon>

<epsilon>:D2

<epsilon>:<epsilon>
<epsilon>:AO2

<epsilon>:<epsilon>

<epsilon>:G2

A ◦ T 1 2D1

D1

3D2

D2

4AO1

AO1

5AO2

AO2

6G1

G1

7G2

G2
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Computing Composition

For now, pretend no ε-labels
For every state s ∈ A, t ∈ T , create state (s, t) ∈ A ◦ T
Create arc from (s1, t1) to (s2, t2) with label o iff . . .

There is an arc from s1 to s2 in A with label i
There is an arc from t1 to t2 in T with input label i and
output label o

(s, t) is initial iff s and t are initial; similarly for final states.
(Remove arcs and states that cannot reach both an initial
and final state.)
What is time complexity?
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Example: Computing Composition

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

Optimization: start from initial state, build outward.
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Another Example

A
1

2
a

3a

b

b

T 1 2

a:A

b:B

a:a

b:b

A ◦ T 1,1 3,2

A

2,2A

b

3,1b 1,2B

a
2,1a B
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Composition and ε-Transitions

Basic idea: can take ε-transition in one FSM without moving
in other FSM.

A little tricky to do exactly right.
Do the readings if you care: (Pereira, Riley, 1997)

A, T 1 2<epsilon>

A
3B 1 2<epsilon>:B

A:A
3B:B

A ◦ T

1,1

2,2

A

1,2

B

2,1
eps

3,3

B

eps

1,3 2,3
eps

B

3,1

3,2

B

EECS 6870: Speech Recognition LVCSR Training and FSM’s 20 October 2009 128 / 142



IBM

How to Express CD Expansion via FST’s?

Step 1: Rewrite each phone as a triphone.
Rewrite AX as DH_AX_R if DH to left, R to right.

Step 2: Rewrite each triphone with correct
context-dependent HMM for center phone.

Just like rewriting a CI phone as its HMM.
Need to precompute HMM for each possible triphone
(∼ 503).
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How to Express CD Expansion via FST’s?

A 1 2x 3y 4y 5x 6y

T

x_x

x:x_x_x

x_yx:x_x_y

y_y

y:x_y_y

y_x

y:x_y_x

y:y_y_y
y:y_y_x

x:y_x_x

x:y_x_y

A ◦ T 1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x
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How to Express CD Expansion via FST’s?

1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x

Point: composition automatically expands FSA to correctly
handle context!

Makes multiple copies of states in original FSA . . .
That can exist in different triphone contexts.
(And makes multiple copies of only these states.)
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Recap: Finite-State Transducers

Graph expansion can be expressed as series of
composition operations.

Need to build FST to represent each expansion step,
e.g.,
1 2 THE
2 3 DOG
3

With composition operation, we’re done!
Composition is efficient.
Context-dependent expansion can be handled effortlessly.
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What About Those Probability Thingies?

e.g., to hold language model probs, transition probs, etc.
FSM’s ⇒ weighted FSM’s

WFSA’s, WFST’s
Each arc has a score or cost.

So do final states.

1

2/1a/0.3

c/0.4

3/0.4

b/1.3

a/0.2

<epsilon>/0.6
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Arc Costs vs. Probabilities

Typically, we take costs to be negative log probabilities.
Costs can move back and forth along a path.
The cost of a path is sum of arc costs plus final cost.

1 2a/1 3/3b/2 1 2a/0 3/6b/0

If two paths have same labels, can be combined into one.
Typically, use min operator to compute new cost.

1 2

a/1

a/2

b/3
3/0c/0 1 2a/1

b/3
3/0c/0

Operations (+, min) form a semiring (the tropical semiring).
Other semirings are possible.
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The Meaning of Life

WFSA: a list of (unique) string and cost pairs {(i1 · · · iN , c)}.
WFST: a list of triples {(i1 · · · iN , o1 · · ·oM , c′)}.
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Which Is Different From the Others?

1 2/1a/0

1 2/0.5a/0.5

a/1

1 2<epsilon>/1 3/0a/0

1 2/-2a/3 3b/1

b/1
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Weighted Composition

Composing WFSA A with WFST T to get WFSA A ◦ T .
If (i1 · · · iN , c) ∈ A and . . .
(i1 · · · iN , o1 · · ·oM , c′) ∈ T , . . .
Then, (o1 · · ·oM , c + c′) ∈ A ◦ T .
Combine costs for all different ways to produce same
o1 · · ·oM .
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Weighted Composition

A 1 2a/1 3b/0 4/0d/2

T
1/1

a:A/2
b:B/1
c:C/0
d:D/0

A ◦ T 1 2A/3 3B/1 4/1D/2
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Weighted Graph Expansion

Start with weighted FSA representing language model.
Use composition to apply weighted FST for each level of
expansion.

Scores/logprobs will be accumulated.
Log probs may move around along paths.
All that matters for Viterbi is total score of paths.
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Recap: Composition

Like sed, but can operate on all paths in a lattice
simultaneously.
Rewrite symbols as other symbols.

e.g., rewrite words as phone sequences (or vice versa).
Context-dependent rewriting of symbols.

e.g., rewrite CI phones as their CD variants.
Add in new scores.

e.g., language model lattice rescoring.
Restrict the set of allowed paths/intersection.

e.g., find all paths in lattice containing word NOODGE.
Or all of the above at once.
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Road Map

Part I: The LVCSR acoustic model.
Part II: Acoustic model training for LVCSR.
Part III: Decoding for LVCSR (inefficient).

Part IV: Introduction to finite-state transducers.
Part V: Search (Lecture 8).

Making decoding for LVCSR efficient.
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Course Feedback

1 Was this lecture mostly clear or unclear? What was the
muddiest topic?

2 Other feedback (pace, content, atmosphere)?
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