
Administrivia

n main feedback from last lecture
l E E s: S p eed ok

l C S s: H ard to follow

n R emedy : O nly one more lecture w ill h av e serious sig nal

p rocessing content so don’t w orry !

n L ab 1 due S ep t 3 0 (don’t w ait until th e last minute!)
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Where are We?

n Can extract feature vectors over time - LPC, MFCC, or PLPs

- that characterize the information in a speech signal in a

relatively compact form.

n Can perform simple speech recognition b y
l B uild ing templates consisting of seq uences of feature vectors

extracted from a set of w ord s

l Comparing the feature vectors for a new utterance against

all the templates using D T W and pick ing the b est scoring

template

n Learned ab out some b asic concepts (e.g., graphs, d istance

measures, shortest paths) that w ill appear over and over again

throughout the course
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Outline of Today’s Lecture

n Recap

n G au s s ian M ix tu re M o d els - A

n G au s s ian M ix tu re M o d els - B

n In tro d u ctio n to H id d en M ark o v M o d els
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Cons

n Distance measures completely heuristic.
l W hy E uclid ean? A re all d imensions of the feature v ector

created eq ual?

n W arping paths heuristic
l T oo much freed om is not alw ays a g ood thing for rob ustness

l A llow ab le path mov es all hand -d eriv ed

n N o g uarantees of optimality or conv erg ence
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What are the Pros and Cons of DTW
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How can we Do Better?

n Key insight 1: Learn as much as possible from data - Distance

measure, weights on graph, even graph structure itself (future

research)

n Key insight 2 : U se well-described theories and models from

probability, statistics, and computer science to describe the

data rather than developing new heuristics with ill-defi ned

mathematical properties

n S tart by modeling the behavior of the distribution of feature

vectors associated with different speech sounds leading to a

particular set of models called G aussian M ix ture M odels - a

formalism of the concept of the distance measure.

n T hen derive models for describing the time evolution of feature

vectors for speech sounds and words, called H idden M ark ov

M odels, a generaliz ation of the template idea in DT W .
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Pros

n Easy to implement and compute

n L ots of freedom - can model arb itrary time w arping s
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Data Models
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Gaussian Mixture Model Overview

n Motivation for using Gaussians

n U nivariate Gaussians

n Multivariate Gaussians

n E stim ating p aram e te rs for Gaussian D istrib utions

n N e e d for Mix ture s of Gaussians

n E stim ating p aram e te rs for Gaussian Mix ture s

n Initializ ation Issue s

n H ow m any Gaussians?
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The Gaussian Distribution

A lot of different types of data are distributed like a “bell-shaped
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How do we Capture Variability?
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Gaussians in Two Dimensions
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curve”. Mathematically we can represent this by what is called a

Gaussian or Normal distribution:

N (µ, σ) =
1√
2π σ

e
−

(O−µ)2

2σ2

µ is called the mean and σ2 is called the variance. T he value at

a particular point O is called the lik e lih ood . T he integ ral of the

above distribution is 1:

∫
∞

−∞

1√
2π σ

e
−

(O−µ)2

2σ2 d O = 1

It is often easier to work with the log arithm of the above:

− ln
√

2π σ − (O − µ)2

2σ2

which look s suspiciously lik e a weig hted E uclidean distance!
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N (µ1, µ2, σ1, σ2) =
1

2π σ1σ2

√
1− r2

e

−

1
2(1−r2)

(

(O1−µ1)2

σ2
1

−

2rO1O2
σ1σ2

+
(O2−µ2)2

σ2
2

)

If r = 0 can write the above as

1√
2π σ1

e

−

(O1−µ1)2

2σ2
1

1√
2π σ2

e

−

(O2−µ2)2

2σ2
2
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Advantages of Gaussian Distributions

n Central Limit Theorem: Sums of large numbers of identically

distributed random variables tend to Gaussian

n The sums and differences of Gaussian random variables are

also Gaussian

n If X is distributed as N (µ, σ) then aX + b is distributed as

N (aµ + b, (aσ)2)
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Estimating Gaussians

Given a set of observations O1,O2, . . . ,ON it can be shown that

µ and Σ can be estimated as:

µ =
1

N

N∑

i= 1

Oi

and

Σ =
1

N

N∑

i= 1

(Oi − µ)T (Oi − µ)

H ow do we actu ally derive these formu las?
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If we write the following matrix:

Σ =

∣

∣

∣

∣

σ2
1 rσ1σ2

rσ1σ2 σ2
2

∣

∣

∣

∣

using the notation of linear algebra, we can write

N (µ,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2(O−µ)T

Σ
−1(O−µ)

where O = (O1, O2) and µ = (µ1, µ2). M ore generally , µ and

Σ can hav e arbitrary numbers of comp onents, in which case the

abov e is called a multivariate G aussian.

W e can write the logarithm of the multiv ariate lik elihood of the

G aussian as:

−
n

2
ln (2π)−

1

2
ln |Σ| −

1

2
(O− µ)T

Σ
−1(O− µ)
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Maximum-Likelihood Estimation

For simplicity, we will assume a univariate Gaussian. We can write

the likelihood of a string of observations ON
1 = O1, O2, . . . , ON as

the product of the individual likelihoods:

L(ON
1 |µ, σ) =

N∏

i=1

1√
2π σ

e
−

(Oi−µ)2

2σ2

It is much easier to work with L = ln L:

L(ON
1 |µ, σ) = −N

2
ln 2π σ2 − 1

2

N∑

i=1

(Oi − µ)2

σ2

T o fi nd µ and σ we can take the partial derivatives of the above
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For most problems we will encounter in speech recognition, we

will assume that Σ is diagonal so we may write the above as:

−

n

2
ln(2π)−

n∑

i=1

ln σi −

1

2

n∑

i=1

(Oi − µi)
2/ σ2

i

A gain, note the similarity to a weighted E uclidean distance.
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More generally, we can use an arbitrary number of Gaussians:

∑

i

pi

1
√

2π σ i

e

−

(O−µi)
2

2σ2
i

th is is generally referred to as a Mixture of Gaussians or a

Gaussian Mixture Model or GMM. E ssentially any d istribution of

interest can be mod eled with GMMs.
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expressions:

∂L(ON

1
|µ, σ)

∂µ
=

N∑

i= 1

(Oi − µ)

σ2
(1 )

∂L(ON

1
|µ, σ)

∂σ2
= −

N

2σ2
+

N∑

i= 1

(Oi − µ)2

σ4
(2 )

B y setting th e a b ov e term s eq u a l to z ero a nd solv ing for µ

a nd σ w e ob ta in th e c la ssic form u la s for estim a ting th e m ea ns

a nd v a ria nc es. S inc e w e a re setting th e pa ra m eters b a sed on

m a xim iz ing th e lik elih ood of th e ob serv a tions, th is proc ess is

c a lled Maximum-Likelihood E stim a tion, or ju st ML estim a tion.
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Issues with ML Estimation of GMMs

How many Gaussians? (to be discussed later....)

Infinite solutions: For the two-mixture case above, we can write

the overall log likelihood of the data as:

N
∑

i=1

ln



p1
1

√
2π σ1

e
−

(Oi−µ1)2

2σ2
1 + p2

1
√

2π σ2

e
−

(Oi−µ2)2

2σ2
2





S ay we set µ1 = O1. W e can then write the above as

ln





1

2
√

2π σ1

+
1

2
√

2π σ2

e
1
2
(O1−µ2)2

σ2
2



 +

N
∑

i=2

. . .

which clearly goes to ∞ as σ1 → 0. E mp irically we can restrict

our attention to the finite local maxima of the likelihood function.
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Problems with Gaussian Assumption

What can we do? Well, in this case, we can try modeling this with

two Gaussians:

L(O) = p1
1√

2π σ 1

e
−

(O−µ1)2

2σ2
1 + p2

1√
2π σ 2

e
−

(O−µ2)2

2σ2
2

where p1 + p2 = 1.
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n Second, divvy up the data point using the following formula

C(i, j) =



pj

1√
2π σj

e
−

(Oi−µj)2

2σ2
j



 /L(Oi)

O b serve that this will b e a numb er b etween 0 and 1. T his is

called the a posteriori probability of G aussian j producing Oi.

In speech recognition literature, this is also called the Count.

n T his prob ab ility is a measure of how much a data point can

b e assumed to “b elong” to a particular G aussian given a set of

parameter values for the means and covariances.

n W e then estimate µ and σ using a modifi ed version of the

G aussian estimation eq uations presented earlier:

µj =
1

C(j)

N
∑

i= 1

OiC(i, j)
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This can be done by such techniques as flooring the variance and

eliminating solutions in which µ is estimated from essentially a

single data point.

Solving the equations: Very ugly. Unlike single Gaussian case, a

closed form solution does not exist.

What are some methods you could imagine?
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and

σj =
1

C(j)

N∑

i=1

(Oi − µj)
2C(i, j)

w h e re C(j) =
∑

i C(i, j).

n U s e th e s e e s tim ate s and re p e at th e p ro c e s s s e v e ral tim e s .

n A ty p ic al s to p p ing c rite ria is to c o m p u te th e lo g lik e lih o o d o f

th e data afte r e ac h ite ratio n and c o m p are it to th e v alu e o n th e

p re v io u s ite ratio n.

n T h e b e au ty o f th is e s tim atio n p ro c e s s is th at it c an b e

s h o w n th at th is no t o nly inc re as e s th e lik e lih o o d b u t e v e ntu ally

c o nv e rg e s to a lo c al m inim u m (E -M A lg o ritm , m o re de tails in a

late r le c tu re ).
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Estimating Mixtures of Gaussians - Intuition

Can we break down the problem? (Let’s focus on the two

Gaussian case for now).

n F or each data point Oi, if we knew which Gaussian it belong ed

to, we could just compute µ1, the mean of the fi rst Gaussian, as

µ1 =
1

N1

∑

Oi∈G1

Oi

where G1 is the fi rst Gaussian. S imilar formulas follow for the

other parameters.

n W ell, we don’t know which one it belong s to. S o let’s dev ise a

scheme to div v y each data point across the Gaussians.

n F irst, make some initial reasonable g uesses about the

parameter v alues (more on this later)
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Since p1 + p2 = 1 we can write

−
1

λ
(C(1) + C(2 )) = 1 ⇒ λ = −

1

C(1) + C(2 )

and

p1 = C(1)/(C(1) + C(2 ));p2 = C(2 )/(C(1) + C(2 ))

Sim ilarly ,
∂

∂µ 1
:

N∑

i= 1

C(i,1)(Oi − µ1) = 0

im p lies th at

µ1 =
N∑

i= 1

C(i,1)Oi/C(1)
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Two-mixture GMM Solution

The log-likelihood of the two mixture case is

N
∑

i=1

ln



p1
1

√

2π σ 1

e
−

(Oi−µ1)2

2σ2
1 + p2

1
√

2π σ 2

e
−

(Oi−µ2)2

2σ2
2





W e can use L agran ge multip lers to satisfy the con strain t

that p1 + p2 = 1. W e take the deriv ativ e with resp ect

to each p arameter an d set the result eq ual to z ero:

∂
∂p1

:

N
∑

i=1

1
√

2π σ1
e
−

(Oi−µ1)2

2σ2
1

p1√

2π σ1
e
−

(Oi−µ1)2

2σ2
1 +

p2√

2π σ2
e
−

(Oi−µ2)2

2σ2
2

+ λ = 0
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and with similar manipulation,

σ1 =

N∑

i=1

C(i, 1)(Oi − µ1)
2/C(1)

The n-dimensional case is derived in the handout from Duda and

Hart.
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Define

C(i, j) =

pj
√

2π σj
e
−

(Oi−µj)2

2σ2
j

p1√

2π σ1
e
−

(Oi−µ1)2

2σ2
1 + p2√

2π σ2
e
−

(Oi−µ2)2

2σ2
2

T h e a b o v e eq u a tio n is th en:

N∑

i= 1

C(i, 1 )/ p1 + λ = 0

S o w e c a n w rite

p1 = −

1
λ

∑
i C(i, 1 ) = −

1
λ
C(1 )

p2 = −

1
λ

∑
i C(i, 2 ) = −

1
λ
C(2 )
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Number of Gaussians

Method 1 (most common): Guess!

Method 2: Penalize the likelihood by the number of parameters

(Bayesian Information Criterion (BIC)[1]):

w here k is the number of clusters, ni the number of data points

in cluster i, N the total number of data points, and d the

dimensionality of the parameter v ector.

S uch penalty terms can be deriv ed by v iew ing a GMM as a w ay
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Initialization

How do we come up with initial values of the parameters? One

solution:

n set all the pis to 1/N

n pick N data points at random and use them to seed the initial

values of µi

n set all the initial σs to an arb itrary value, or the g lob al variance

of the data.

S imilar solution: T ry multiple starting points, pick the one with the

hig hest overall lik elihood (why would one do this?)

S plitting :

n Initial: C ompute g lob al mean and variance

n R epeat: P erturb each mean b y ±ε (doub ling the numb er of

G aussians)
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of coding data by transmitting the id of the closest Gaussian. In

such a case, the number of bits required for transmission of the

data also includes the cost of transmitting the model itself; the

bigger the model, the larger the cost.
�� �
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n Run several iterations of the GMM parameter mixture

estimation algorithm.

Have never seen a comprehensive comparison of the above two

schemes!
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Another Issue with Dynamic Time Warping

Weights are completely heuristic!

Maybe we can learn the weights from data?

n T ak e many utterances

n F or each node in the D P path, count number of times mov e up
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↑ right → and diagonally ↗.

n N orm aliz e nu m b e r of tim e s e ac h dire c tion tak e n b y the total

nu m b e r of tim e s the node w as ac tu ally v is ite d.

n T ak e s om e c ons tant tim e s the re c ip roc al as the w e ight.

F or e x am p le , if a p artic u lar node w as v is ite d 1 0 0 tim e s , and afte r

alignm e nt, the diagonal p ath w as tak e n 5 0 tim e s , and the “u p ” and

“right” p aths 2 5 tim e s e ac h, the w e ights c ou ld b e s e t to 2 , 4 , and

4 , re s p e c tiv e ly, or (m ore c om m only) 1 , 2 and 2 .

P oint is that it s e e m s to m ak e s e ns e that if you ob s e rv e ou t of a

giv e n node , a p artic u lar dire c tion is fav ore d, the w e ight dis trib u tion

s hou ld re fl e c t it.

T he re is no re al s olu tion to w e ight e s tim ation in D T W b u t

s om e thing c alle d a Hidden Markov Model trie s to p u t the w e ight

e s tim ation ide as and the G M M c onc e p ts in a s ingle c ons is te nt

p rob ab ilis tic fram e w ork .
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Introduction to Hidden Markov Models

n The issue of weights in DTW

n Interp reta tion of DTW grid a s Direc ted G ra p h

n A d d ing Tra nsition a nd O utp ut P rob a b ilities to the G ra p h giv es

us a n H M M !

n The three m a in H M M op era tions
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the resultant directed graphs can get quite bizarre looking....
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DTW and Directed Graphs

Take the following Dynamic Time Warping setup:

L et’s look at a compact representation of this as a d irected graph:
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Path Probabilities

Let us now assign probabilities to the transitions in the directed

graph:

W here aij is the transition probability going from state i to state

j. N ote that
∑

j aij = 1. W e can com pute the probability P of an

indiv idual path just using the transition probabilities aij.
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Another common DTW structure:

a nd a d irected g ra p h:

O ne ca n rep resent ev en more comp lex DTW structures thoug h
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The output and transition probilities define what is called a Hidden

Markov Model or HMM. Since the probabilities of moving from

state to state only depend on the current and previous state, the

model is Markov. Since we only see the observations and have to

� � �

E E C S E 6 8 7 0 : A dvanced Speech R ecognition 4 6

It is also common (just to be confusing!) to reorient the typical

DTW picture:

The abov e only d escribes the path probability associated w ith the

transition. We also need to includ e the lik elihood s associated w ith
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infer the states after the fact, we add the term Hidden

One may consider an HMM to be a generative model of speech.

One starts at the upper left corner of the trellis, and generates

observations according to the permissible transitions and output

probabilities.

Note also that one can not only compute the likelihood of a single

path through the HMM but one can also compute the overall

likelihood of producing a string of observations from the HMM

as the sum of the likelihoods of the individual paths through the

HMM.
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the observations.

As in the GMM discussion, previously, let us define the likelihood,

of producing observation Oi from state j as

bj(Oi) =
∑

m

cjm
1

(2 π)n /2|Σjm|1/2
e
−

1
2(Oi−µjm)T

Σ
−1
jm(Oi−µjm)

w here cjm are the mix ture w eights associated w ith state j. T his

state likelihood is also called the output probability associated

w ith the state. In this case the likelihood of the entire path can

be w ritten as:
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HMM-The Three Main Tasks

Given the above formulation, the three main computations

associated with an HMM are:

n C ompute the lik elihood of g enerating a string of observations

from the HMM (the Forward alg orithm)

n C ompute the best path from the HMM (the V ite rb i alg orithm)

n L earn the parameters (output and transition probabilities) of the

HMM from data (the B au m -W e lc h a.k .a. Forward-B ac k ward

alg orithm)
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the

muddiest topic?

n O ther feedb ack (pace, content, atmosphere)?
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