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Outline of Today’s Lecture

n Recap
n Gaussian Mixture Models - A
n Gaussian Mixture Models - B
n Introduction to Hidden Markov Models
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Administrivia

n main feedback from last lecture
l EEs: Speed ok
l CSs: Hard to follow

n Remedy: Only one more lecture will have serious signal
processing content so don’t worry!

n Lab 1 due Sept 30 (don’t wait until the last minute!)
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Where are We?

n Can extract feature vectors over time - LPC, MFCC, or PLPs
- that characterize the information in a speech signal in a
relatively compact form.

n Can perform simple speech recognition by
l Building templates consisting of sequences of feature vectors

extracted from a set of words
l Comparing the feature vectors for a new utterance against

all the templates using DTW and picking the best scoring
template

n Learned about some basic concepts (e.g., graphs, distance
measures, shortest paths) that will appear over and over again
throughout the course
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What are the Pros and Cons of DTW
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Pros

n Easy to implement and compute
n Lots of freedom - can model arbitrary time warpings
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Cons

n Distance measures completely heuristic.
l Why Euclidean? Are all dimensions of the feature vector

created equal?
n Warping paths heuristic

l Too much freedom is not always a good thing for robustness
l Allowable path moves all hand-derived

n No guarantees of optimality or convergence
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How can we Do Better?

n Key insight 1: Learn as much as possible from data - Distance
measure, weights on graph, even graph structure itself (future
research)

n Key insight 2: Use well-described theories and models from
probability, statistics, and computer science to describe the
data rather than developing new heuristics with ill-defined
mathematical properties

n Start by modeling the behavior of the distribution of feature
vectors associated with different speech sounds leading to a
particular set of models called Gaussian Mixture Models - a
formalism of the concept of the distance measure.

n Then derive models for describing the time evolution of feature
vectors for speech sounds and words, called Hidden Markov
Models, a generalization of the template idea in DTW.
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Gaussian Mixture Model Overview

n Motivation for using Gaussians
n Univariate Gaussians
n Multivariate Gaussians
n Estimating parameters for Gaussian Distributions
n Need for Mixtures of Gaussians
n Estimating parameters for Gaussian Mixtures
n Initialization Issues
n How many Gaussians?
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How do we Capture Variability?
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Data Models

IBM EECS E6870: Advanced Speech Recognition 10



The Gaussian Distribution

A lot of different types of data are distributed like a “bell-shaped
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curve”. Mathematically we can represent this by what is called a
Gaussian or Normal distribution:

N (µ, σ) =
1√
2πσ

e
−(O−µ)2

2σ2

µ is called the mean and σ2 is called the variance. The value at
a particular point O is called the likelihood. The integral of the
above distribution is 1:∫ ∞

−∞

1√
2πσ

e
−(O−µ)2

2σ2 dO = 1

It is often easier to work with the logarithm of the above:

− ln
√

2πσ − (O − µ)2

2σ2

which looks suspiciously like a weighted Euclidean distance!
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Advantages of Gaussian Distributions

n Central Limit Theorem: Sums of large numbers of identically
distributed random variables tend to Gaussian

n The sums and differences of Gaussian random variables are
also Gaussian

n If X is distributed as N (µ, σ) then aX + b is distributed as
N (aµ+ b, (aσ)2)
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Gaussians in Two Dimensions
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N (µ1, µ2, σ1, σ2) =
1

2πσ1σ2

√
1− r2

e
− 1

2(1−r2)

(
(O1−µ1)2

σ2
1

−2rO1O2
σ1σ2

+
(O2−µ2)2

σ2
2

)

If r = 0 can write the above as

1√
2πσ1

e
−(O1−µ1)2

2σ2
1

1√
2πσ2

e
−(O2−µ2)2

2σ2
2
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If we write the following matrix:

Σ =
∣∣∣∣ σ2

1 rσ1σ2

rσ1σ2 σ2
2

∣∣∣∣
using the notation of linear algebra, we can write

N (µ,Σ) =
1

(2π)n/2|Σ|1/2
e−

1
2(O−µ)TΣ−1(O−µ)

where O = (O1, O2) and µ = (µ1, µ2). More generally, µ and
Σ can have arbitrary numbers of components, in which case the
above is called a multivariate Gaussian.

We can write the logarithm of the multivariate likelihood of the
Gaussian as:

−n
2

ln(2π)− 1
2

ln |Σ| − 1
2
(O− µ)TΣ−1(O− µ)

IBM EECS E6870: Advanced Speech Recognition 16



For most problems we will encounter in speech recognition, we
will assume that Σ is diagonal so we may write the above as:

−n
2

ln(2π)−
n∑
i=1

lnσi −
1
2

n∑
i=1

(Oi − µi)2/σ2
i

Again, note the similarity to a weighted Euclidean distance.
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Estimating Gaussians

Given a set of observations O1,O2, . . . ,ON it can be shown that
µ and Σ can be estimated as:

µ =
1
N

N∑
i=1

Oi

and

Σ =
1
N

N∑
i=1

(Oi − µ)T (Oi − µ)

How do we actually derive these formulas?
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Maximum-Likelihood Estimation

For simplicity, we will assume a univariate Gaussian. We can write
the likelihood of a string of observations ON1 = O1, O2, . . . , ON as
the product of the individual likelihoods:

L(ON1 |µ, σ) =
N∏
i=1

1√
2πσ

e
−(Oi−µ)2

2σ2

It is much easier to work with L = lnL:

L(ON1 |µ, σ) = −N
2

ln 2πσ2 − 1
2

N∑
i=1

(Oi − µ)2

σ2

To find µ and σ we can take the partial derivatives of the above
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expressions:

∂L(ON1 |µ, σ)
∂µ

=
N∑
i=1

(Oi − µ)
σ2

(1)

∂L(ON1 |µ, σ)
∂σ2

= − N

2σ2
+

N∑
i=1

(Oi − µ)2

σ4
(2)

By setting the above terms equal to zero and solving for µ

and σ we obtain the classic formulas for estimating the means
and variances. Since we are setting the parameters based on
maximizing the likelihood of the observations, this process is
called Maximum-Likelihood Estimation, or just ML estimation.

IBM EECS E6870: Advanced Speech Recognition 20



Problems with Gaussian Assumption

What can we do? Well, in this case, we can try modeling this with
two Gaussians:

L(O) = p1
1√

2πσ1

e
−(O−µ1)2

2σ2
1 + p2

1√
2πσ2

e
−(O−µ2)2

2σ2
2

where p1 + p2 = 1.
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More generally, we can use an arbitrary number of Gaussians:

∑
i

pi
1√

2πσi
e
−(O−µi)

2

2σ2
i

this is generally referred to as a Mixture of Gaussians or a
Gaussian Mixture Model or GMM. Essentially any distribution of
interest can be modeled with GMMs.
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Issues with ML Estimation of GMMs

How many Gaussians? (to be discussed later....)

Infinite solutions: For the two-mixture case above, we can write
the overall log likelihood of the data as:

N∑
i=1

ln

p1
1√

2πσ1

e
−(Oi−µ1)2

2σ2
1 + p2

1√
2πσ2

e
−(Oi−µ2)2

2σ2
2


Say we set µ1 = O1. We can then write the above as

ln

 1
2
√

2πσ1

+
1

2
√

2πσ2

e
1
2
(O1−µ2)2

σ2
2

+
N∑
i=2

. . .

which clearly goes to ∞ as σ1 → 0. Empirically we can restrict
our attention to the finite local maxima of the likelihood function.
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This can be done by such techniques as flooring the variance and
eliminating solutions in which µ is estimated from essentially a
single data point.

Solving the equations: Very ugly. Unlike single Gaussian case, a
closed form solution does not exist.

What are some methods you could imagine?
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Estimating Mixtures of Gaussians - Intuition

Can we break down the problem? (Let’s focus on the two
Gaussian case for now).

n For each data point Oi, if we knew which Gaussian it belonged
to, we could just compute µ1, the mean of the first Gaussian, as

µ1 =
1
N1

∑
Oi∈G1

Oi

where G1 is the first Gaussian. Similar formulas follow for the
other parameters.

n Well, we don’t know which one it belongs to. So let’s devise a
scheme to divvy each data point across the Gaussians.

n First, make some initial reasonable guesses about the
parameter values (more on this later)
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n Second, divvy up the data point using the following formula

C(i, j) =

pj 1√
2πσj

e
−

(Oi−µj)
2

2σ2
j

 /L(Oi)

Observe that this will be a number between 0 and 1. This is
called the a posteriori probability of Gaussian j producing Oi.
In speech recognition literature, this is also called the Count.

n This probability is a measure of how much a data point can
be assumed to “belong” to a particular Gaussian given a set of
parameter values for the means and covariances.

n We then estimate µ and σ using a modified version of the
Gaussian estimation equations presented earlier:

µj =
1

C(j)

N∑
i=1

OiC(i, j)
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and

σj =
1

C(j)

N∑
i=1

(Oi − µj)2C(i, j)

where C(j) =
∑
iC(i, j).

n Use these estimates and repeat the process several times.
n A typical stopping criteria is to compute the log likelihood of

the data after each iteration and compare it to the value on the
previous iteration.

n The beauty of this estimation process is that it can be
shown that this not only increases the likelihood but eventually
converges to a local minimum (E-M Algoritm, more details in a
later lecture).
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Two-mixture GMM Solution

The log-likelihood of the two mixture case is

N∑
i=1

ln

p1
1√

2πσ1

e
−(Oi−µ1)2

2σ2
1 + p2

1√
2πσ2

e
−(Oi−µ2)2

2σ2
2


We can use Lagrange multiplers to satisfy the constraint
that p1 + p2 = 1. We take the derivative with respect
to each parameter and set the result equal to zero:

∂
∂p1

:

N∑
i=1

1√
2πσ1

e
−(Oi−µ1)2

2σ2
1

p1√
2πσ1

e
−(Oi−µ1)2

2σ2
1 + p2√

2πσ2
e
−(Oi−µ2)2

2σ2
2

+ λ = 0
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Define

C(i, j) =

pj√
2πσj

e
−

(Oi−µj)
2

2σ2
j

p1√
2πσ1

e
−(Oi−µ1)2

2σ2
1 + p2√

2πσ2
e
−(Oi−µ2)2

2σ2
2

The above equation is then:

N∑
i=1

C(i, 1)/p1 + λ = 0

So we can write

p1 = −1
λ

∑
iC(i, 1) = −1

λC(1)
p2 = −1

λ

∑
iC(i, 2) = −1

λC(2)
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Since p1 + p2 = 1 we can write

−1
λ

(C(1) + C(2)) = 1⇒ λ = − 1
C(1) + C(2)

and

p1 = C(1)/(C(1) + C(2)); p2 = C(2)/(C(1) + C(2))

Similarly,
∂
∂µ1

:
N∑
i=1

C(i, 1)(Oi − µ1) = 0

implies that

µ1 =
N∑
i=1

C(i, 1)Oi/C(1)
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and with similar manipulation,

σ1 =
N∑
i=1

C(i, 1)(Oi − µ1)2/C(1)

The n-dimensional case is derived in the handout from Duda and
Hart.
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Initialization

How do we come up with initial values of the parameters? One
solution:

n set all the pis to 1/N
n pick N data points at random and use them to seed the initial

values of µi
n set all the initial σs to an arbitrary value, or the global variance

of the data.

Similar solution: Try multiple starting points, pick the one with the
highest overall likelihood (why would one do this?)

Splitting:

n Initial: Compute global mean and variance
n Repeat: Perturb each mean by ±ε (doubling the number of

Gaussians)
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n Run several iterations of the GMM parameter mixture
estimation algorithm.

Have never seen a comprehensive comparison of the above two
schemes!
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Number of Gaussians

Method 1 (most common): Guess!

Method 2: Penalize the likelihood by the number of parameters
(Bayesian Information Criterion (BIC)[1]):

where k is the number of clusters, ni the number of data points
in cluster i, N the total number of data points, and d the
dimensionality of the parameter vector.

Such penalty terms can be derived by viewing a GMM as a way
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of coding data by transmitting the id of the closest Gaussian. In
such a case, the number of bits required for transmission of the
data also includes the cost of transmitting the model itself; the
bigger the model, the larger the cost.
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References

[1] S. Chen and P. S. Gopalakrishnan (1998)“Clustering via the
Bayesian Information Criterion with Applications in Speech
Recognition”, ICASSP-98, Vol. 2 ppp 645-648.
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Introduction to Hidden Markov Models

n The issue of weights in DTW
n Interpretation of DTW grid as Directed Graph
n Adding Transition and Output Probabilities to the Graph gives

us an HMM!
n The three main HMM operations
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Another Issue with Dynamic Time Warping

Weights are completely heuristic!

Maybe we can learn the weights from data?

n Take many utterances
n For each node in the DP path, count number of times move up
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↑ right→ and diagonally↗.
n Normalize number of times each direction taken by the total

number of times the node was actually visited.
n Take some constant times the reciprocal as the weight.

For example, if a particular node was visited 100 times, and after
alignment, the diagonal path was taken 50 times, and the “up” and
“right” paths 25 times each, the weights could be set to 2, 4, and
4, respectively, or (more commonly) 1, 2 and 2.

Point is that it seems to make sense that if you observe out of a
given node, a particular direction is favored, the weight distribution
should reflect it.

There is no real solution to weight estimation in DTW but
something called a Hidden Markov Model tries to put the weight
estimation ideas and the GMM concepts in a single consistent
probabilistic framework.
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DTW and Directed Graphs

Take the following Dynamic Time Warping setup:

Let’s look at a compact representation of this as a directed graph:
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Another common DTW structure:

and a directed graph:

One can represent even more complex DTW structures though
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the resultant directed graphs can get quite bizarre looking....
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Path Probabilities

Let us now assign probabilities to the transitions in the directed
graph:

Where aij is the transition probability going from state i to state
j. Note that

∑
j aij = 1. We can compute the probability P of an

individual path just using the transition probabilities aij.
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It is also common (just to be confusing!) to reorient the typical
DTW picture:

The above only describes the path probability associated with the
transition. We also need to include the likelihoods associated with
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the observations.

As in the GMM discussion, previously, let us define the likelihood,
of producing observation Oi from state j as

bj(Oi) =
∑
m

cjm
1

(2π)n/2|Σjm|1/2
e
−1

2(Oi−µjm)TΣ−1
jm(Oi−µjm)

where cjm are the mixture weights associated with state j. This
state likelihood is also called the output probability associated
with the state. In this case the likelihood of the entire path can
be written as:
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The output and transition probilities define what is called a Hidden
Markov Model or HMM. Since the probabilities of moving from
state to state only depend on the current and previous state, the
model is Markov. Since we only see the observations and have to
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infer the states after the fact, we add the term Hidden

One may consider an HMM to be a generative model of speech.
One starts at the upper left corner of the trellis, and generates
observations according to the permissible transitions and output
probabilities.

Note also that one can not only compute the likelihood of a single
path through the HMM but one can also compute the overall
likelihood of producing a string of observations from the HMM
as the sum of the likelihoods of the individual paths through the
HMM.
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HMM-The Three Main Tasks

Given the above formulation, the three main computations
associated with an HMM are:

n Compute the likelihood of generating a string of observations
from the HMM (the Forward algorithm)

n Compute the best path from the HMM (the Viterbi algorithm)
n Learn the parameters (output and transition probabilities) of the

HMM from data (the Baum-Welch a.k.a. Forward-Backward
algorithm)
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the
muddiest topic?

n Other feedback (pace, content, atmosphere)?
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