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EECS E6870: Advanced Speech Recognition

Outline of Today’s Lecture

= Administrivia

= Feature Extraction

= Brief Break

= Dynamic Time Warping
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Administrivia

= Feedback:
e Get slides, readings beforehand
e A little fast in some areas
e More interactive, if possible
= Goals:
e General understanding of ASR
o State-of-the-art, current research trends
e More theory, less programming
e Build simple recognizer

Will make sure slides and readings provided in advance in the
future, (slides should be available night before) change the pace,
and try to engage more.
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Feature Extraction
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What will be “Featured”?

= Linear Prediction (LPC)

= Mel-Scale Cepstral Coefficients (MFCCs)
= Perceptual Linear Prediction (PLP)

= Deltas and Double-Deltas

= Recent developments: Tandem models

Figures from Holmes, HAH or R+J unless indicated otherwise.
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Goals of Feature Extraction

= What do YOU think the goals of Feature Extraction should be?
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Goals of Feature Extraction

= Capture essential information for sound and word identification
= Compress information into a manageable form

= Make it easy to factor out irrelevant information to recognition
such as long-term channel transmission characteristics.
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What are some possibilities?

= What sorts of features would you extract?
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What are some possibilities?

= Model speech signal with a parsimonious set of parameters that
best represent the signal.

= Use some type of function approximation such as Taylor or
Fourier series

= Exploit correlations in the signal to reduce the the number of
parameters

= Exploit knowledge of perceptual processing to eliminate
irrelevant variation - for example, fine frequency structure at
high frequencies.
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Historical Digression

= 1950s-1960s - Analog Filter Banks

= 1970s - LPC

= 1980s - LPC Cepstra

= 1990s - MFCC and PLP

= 2000s - Posteriors, and multistream combinations

Sounded good but never made it

= Articulatory features

= Neural Firing Rate Models

= Formant Frequencies

= Pitch (except for tonal languages such as Mandarin)
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Three Main Schemes

Features

EECS E6870: Advanced Speech Recognition 10

Pre-Emphasis

Purpose: Compensate for 6dB/octave falloff due to glottal-source
and lip-radiation combination.

Assume our input signal is z[n|. Pre-emphasis is implemented via
very simple filter:

y[n] = z[n] + ax[n — 1]

To analyze this, let’s use the “Z-Transform” introduced in Lecture
1. Since z[n — 1] = 2z~ 'z[n] we can write

Y(2) = X(2)H(z) = X(2)(14+az™")
If we substitute z = ¢/«, we can write

|H(?)*> = |1+ a(cosw — jsinw)|?

= 14 a4 2acosw

EECS E6870: Advanced Speech Recognition 11




orin dB

101og,, | H (') |* = 101og;o(1 + a® + 2a cos w)

a=-0.5 - e, =05
(=) JE] e :
10 o=-09 0=09
-15
-20
0 0.05 0.1 0.15 0.35 0.4 0.45 05

0.2 0.25 0.3
Normalized Frequency

Figure 5.21 Frequency response of the first order FIR filter for various values of ¢ .

For a > 0 we have a low-pass filter and for « < 0 we have a
high-pass filter, also called a “pre-emphasis” filter because the
frequency response rises smoothly from low to high frequencies.
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Uses are:

= Improve LPC estimates (works better with “flatter” spectra)
= Reduce or eliminate DC offsets

= Mimic equal-loudness contours (higher frequency sounds
appear “louder” than low frequency sounds for the same
amplitude)
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Basic Speech Processing Unit - the Frame

Block input into frames consisting of about 20 msec segments
(200 samples at a 10 KHz sampling rate). More specifically, define

x™[n] = x[n — mF]w|n|

as frame m to be processed where F' is the spacing frames and
w|n] is our window of length N.

Let us also assume that z[n] = 0 forn < 0 and n > L — 1. For
consistency with all the processing schemes, let us assume x has
already been pre-emphasized.
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Time {ms)

Figure 10.1 Analysis of a speech signal into a sequence of frames. This example shows a
20 ms Hanning window applied at 10 ms intervals to give a frame rate of 100 frames/s.

How do we choose the window w[n], the frame spacing, F, and
the window length, N?

= Experiments in speech coding intelligibility suggest that F
should be around 10 msec. For F' greater than 20 msec one
starts hearing noticeable distortion. Less and things do not
appreciably improve.

= From last week, we know that Hamming windows are good.

So what window length should we use?
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= [f too long, vocal tract will be non-stationary; smooth out
transients like stops.

= |f too short, spectral output will be too variable with respect to
window placement.

Usually choose 20-25 msec window length as a compromise.

Effects of Windowing
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Figure 6.3 Short-time spectrum of male voiced speech (vowel /ah/ with local pitch of 110Hz):
(a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms rectangular
window, (d) 30 ms Hamming window, (¢) 15 ms Hamming window. The window lobes are
not visible in (e), since the window is shorter than 2 times the pitch period. Note the spectral
leakage present in (b).
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Figure 6.4 Short-time spectrum of female voiced speech (vowel /aa/ with local pitch of . i ¥ 3 b _
200Hz): (a) time signal, spectra obtained with (b) 30 ms rectangular window and (c) 15 ms Fl.gure 6.5 Short-time spectrum ‘?f unvoiced speech: (a) time M_g"ﬂl, (b) 30 ms rec[ungu.lar
rectangular windowj (d) 30 ms Hamming window, (¢) 15 ms Hamming window. In all cases window, (c) 15 ms rectangular window, (d) 30 ms Hamming window, (¢) 15 ms Hamming
the window lobes are visible, since the window is longer than 2 times the pitch period. Note window.
the spectral leakage present in (b) and (c).
= What do you notice about all these spectra?
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Optimal Frame Rate
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= Few studies of frame rate vs. error rate

= Above curves suggest that the frame rate should be one-third
of the frame size
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Linear Prediction

Pre-emphasis

Window

PLP

Features
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Linear Prediction - Motivation

: Glottis Lips
Glottis Lips
A(x)
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Figure 6.9 Approximation of a tube with continuously varying arca A(x) as a concatenation of
5 lossless acoustic tubes.

The above model of the vocal tract matches observed data quite
well, at least for speech signals recorded in clean environments. It
can be shown that associated the above vocal tract model can be
associated with a filter H(z) with a particularly simple time-domain
interpretation.
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Linear Prediction

The linear prediction model assumes that z[n] is a linear
combination of the p previous samples and an excitation e[n]

zn] =) aljleln — j] + Ge[n]

Jj=1

e[n] is either a string of (unit) impulses spaced at the fundamental
frequency (pitch) for voiced sounds such as vowels or (unit) white
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noise for unvoiced sounds such as fricatives.

Taking the Z-transform,

. e P_Laljlz—7

where H(z) can be associated with the (time-varying) filter
associated with the vocal tract and an overall gain G.
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Solving the Linear Prediction Equations

It seems reasonable to find the set of a[j]s that minimize the
prediction error

oo

" (el Yabielo )

n=—oo j=1

If we take derivatives with respect to each «[i] in the above
equation and set the results equal to zero we get a set of p
equations indexed by i:

ia R(i,0),1<i<p
where R(i,j) = >, xz[n — ilz[n — j].

In practice, we would not use the potentially infinite signal z[n] but

EECS E6870: Advanced Speech Recognition 25

the individual windowed frames x™[n]. Since x™[n] is zero outside
the window, R(i,j) = R(j,i) = R(|i — j|) where R(i) is just the
autocorrelation sequence corresponding to 2™ (n). This allows us
to write the previous equation as

p
> aljlR(Ji - j]) =

Jj=1

R(i),1<i<p

a much simpler and regular form.
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The Levinson-Durbin Recursion

The previous set of linear equations (actually, the matrix
associated with the equations) is called Toeplitz and can easily
be solved using the “Levinson-Durbin recursion” as follows:

Initialization E° = R(0)
Iteration. Fori=1,...,pdo

il = (RO~ Y o lRG — g1)/E
a'lt] = ki
a'l] = a7 ke i - gl 1< <

E' = (1-Ek[]?)E™!

End. a[j] = @”[j] and G? = EP. Note this is an O(n?) algorithm
rather than O(n?®) and made possible by the Toeplitz structure of
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the matrix. One can show that the ratios of the successive vocal
tract cross sectional areas, A;1/A; = (1 — k;)/(1 + k;). The ks
are called the reflection coefficients (inspired by transmission line
theory).
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LPC Examples
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Figure 6.20 LPC spectrum of the /ah/ phoneme in the word /ives of Figure 6.3. Used here are a

30-ms Hamming window and the autocorrelation method with p = 14. The short-time spectrum
is also shown.

Here the spectra of the original sound and the LP model are
compared. Note how the LP model follows the peaks and
ignores the “dips” present in the actual spectrum of the signal as
computed from the DFT. This is because the LPC error, [ E(z) =
X(z)/H(z)dz inherently forces a better match at the peaks in the

EECS E6870: Advanced Speech Recognition 29

spectrum than the valleys.
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Observe the prediction error. It clearly is NOT a single impulse.
Also notice how the error spectrum is “whitened” relative to the
original spectrum.
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As the model order p increases the LP model progressively
approaches the original spectrum. (Why?) As a rule of thumb,
one typically sets p to be the sampling rate (divided by 1 KHz)
+ 2-4, so for a 10 KHz sampling rate one would use p = 12 or
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LPC and Speech Recognition

How should one use the LP coefficients in speech recognition?

= The alj|s themselves have an enormous dynamic range,
are highly intercorrelated in a nonlinear fashion, and vary
substantially with small changes in the input signal frequencies.

= One can generate the spectrum from the LP coefficients but
that is hardly a compact representation of the signal.

= Can use various transformations, such as the reflection
coefficients k[i] or the log area ratios log(1 — k[i])/(1 + k[i]) or
LSP parameters (yet another transformation related to the roots
of the LP filter).

= The transformation that seems to work best is the LP Cepstrum.
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LPC Cepstrum

The complex cepstrum is defined as the IDFT of the logarithm of
the spectrum:

- 1 . .
- 1 H Jwy ,Jwn
hin] 27r/ n H(e’*)e! " dw
Therefore, )
In H(e’*) =Y h[n]e 7"
or equivalently )
InH(z) = Z h[n]z™"
Let us assume correponding to our LPC filter is a cepstrum A[n).
If so we can write

3 Az =G - In(1 -y aljlz )

n=-—00 Jj=1
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Taking the derivative of both sides with respect to z we get

St _ o p lall —1—-1
_ Z nh[n]z_”_l — Zl:zl) a[ ]Z —
n=—oo 1- jzla[']]z !
Multiplying both sides by —z(1 — >0_, a[j]z~7) and equating
coefficients of z we can show with some manipulations that h[n]
is

0 n <0
InG n=20

aln] + Y02 Lhljlaln —j] 0 <n<p
Yy Lhljlaln — 4] n>p

Notice the number of cepstrum coefficients is infinite but
practically speaking 12-20 (depending upon the sampling rate
and whether you are doing LPC or PLP) is adequate for speech
recognition purposes.
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Mel-Frequency Cepstral Coefficients

Pre-emphasis

LPC

Autocorrelation

LPC Cepstra

Features

Simulating Filterbanks with the FFT

A common operation in speech recognition feature extraction is
the implementation of filter banks.

The simplest technique is brute force convolution. Assuming i
filters h;[n]

Li—1

xi[n] = x[n] * hiln] = Z hi[m]x[n — m)|

m=0

The computation is on the order of L; for each filter for each output
point n, which is large.

Say now h;[n] = h[n]le’*, where h(n) is a fixed length low

pass filter heterodyned up (remember, multiplication in the time

domain is the same as convolution in the frequency domain) to be
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centered at different frequencies. In such a case ; g .

xin] = Z h[m]e?“™x[n — m]
= ewin Z z[m]h[n — m]e Iwim

The last term on the right is just X,,(e’“), the Fourier transform
of a windowed signal evaluated at w, where now the window
is the same as the filter. So we can interpret the FFT as just
the instantaneous filter outputs of a uniform filter bank whose
bandwidths corresponding to each filter are the same as the main
lobe width of the window.

Notice that by combining various filter bank channels we can
create non-uniform filterbanks in frequency.
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Figure 3.18 Two arbitrary nonuniform filter-bank ideal filter specifications
consisting of either 3 bands (part a) or 7 bands (part b).

What is typically done in speech processing for recognition is to
sum the magnitudes or energies of the FFT outputs rather than
the raw FFT outputs themselves. This corresponds to a crude
estimate of the magnitude/energy of the filter output over the time
duration of the window and is not the filter output itself, but the
terms are used interchangeably in the literature.
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Mel-Frequency Cepstral Coefficients
Goal: Develop perceptually based set of features.

Divide frequency axis into m triangular filters spaced in equal
perceptual increments. Each filter is defined in terms of the FFT
bins k as

0 E< fim—1)
P I s f(m—1) < k < f(m)

H,,(k) f(mzn—f(ni—l)
s f(m) <k < f(m+1)
0 k> f(m+1)
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Figure 10.2 Triangular filters of the type suggested by Davis and Mermelstein (1980) for
transforming the output of a Fourier transform onto a mel scale in both bandwidth and spacing.

Triangular filters are used as a very crude approximation to the
shape of tuning curves of nerve fibers in the auditory system.

Define f; and f, to be lowest and highest frequencies of the
filterbank, F, the sampling frequency, M, the number of filters,
and N the size of the FFT. The boundary points f(m) are spaced
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in equal increments in the mel-scale:

o) = 5B + m 20— B

where the mel-scale, B, is given by

)

B(f) = 25951log,,(1 + f/700)

Some authors prefer to use 1127 In rather than 2595 log; , but they
are obviously the same thing. The filter outputs are computed as

N—-1
S(m) = 201og10( > [ Xm (k)| Hm(K)),0 < m < M
k=0
where X,,,(k) = N-Point FFT of 2™[n], the mth window frame of
the input signal, z[n]. N is chosen as the largest power of two
greater than the window length; the rest of the input FFT is padded
with zeros.
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Mel-Cepstra

The mel-cepstrum can then be defined as the DCT of the M filter
outputs

M—1
cln] = Y S(m) cos(mn(m — 1/2)/M)

=0

The DCT can be interpreted as the DFT of a symmetrized signal.
There are many ways of creating this symmetry:
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Figure 5.17 Four ways to extend a four-point sequence x[n] to make it both periodic and have
even symmetry. The figures in (a), (b), (c) and (d) correspond to the DCT-1, DCT-II, DCT-III
and DCT-1V respectively.

The DCT-Il scheme above has somewhat better energy
compaction properties because there is less of a discontinuity
at the boundary. This means energy is concentrated more at
lower frequencies thus making it somewhat easier to represent
the signal with fewer DCT coefficients.
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Perceptual Linear Prediction

PLP

LPC
Autocorrelation ‘ ‘ |FFTJ? ‘
| LPCCepstra | | DCT Cepstra
Features
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Practical Perceptual Linear Prediction [2]

Perceptual linear prediction tries to merge the best features of
Linear Prediction and MFCCs.

= Smooth spectral fit that matches higher amplitude components
better than lower amplitude components (LP)

= Perceptually based frequency scale (MFCCs)
= Perceptually based amplitude scale (neither)

First, the, cube root of power is taken rather than the logarithm:

N-1

S(m) = (Y [Xm(k)[*Hin (k)™

k=0

Then, the IDFT of a symmetrized version of S(m) is taken:

R(m) = IDFT([S(:),S(M —1: —1:2)))
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This symmetrization ensures the result of the IDFT is real (the
IDFT of a symmetric function is real).

We can now pretend that R(m) are the autocorrelation coefficients
of a genuine signal and compute LPC coefficients and cepstra as
in “normal” LPC processing.
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Deltas and Double Deltas

Dynamic characteristics of sounds often convey significant
information

= Stop closures and releases
= Formant transitions

One approach is to directly model the trajectories of features.
What is the problem with this?

Bright idea: augment normal “static” feature vector with dynamic

features (first and second derivatives of the parameters). If y, is
the feature vector at time ¢, then compute

Ay = Yiyp — Yt—D
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and create a new feature vector

Yy = (ye, Auy)

D is typically set to one or two frames. It is truly amazing that
this relatively simple “hack” actually works quite well. Significant
improvements in recognition performance accrue.

A more robust measure of the time course of the parameter can
be computed using linear regression to estimate the derivatives.
A good five point derivative estimate is given by:

yt+r Yt— T)
Ayt Z T
T=1 2 Z‘r 1 T2

The above process can be iterated to compute a set of second-
order time derivatives, called “delta-delta” parameters., and
augmented to the static and delta parameters, above.
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What Feature Representation Works Best?

The literature on front ends, for reasons mentioned earlier in the
talk, is weak. A good early paper by Davis and Mermelstein [1] is
frequently cited.

Simple Framework:

= 52 different CVC words

= 2 () male speakers

= 169 tokens

= Excised from simple sentences
= 676 tokens in all

Compared following parameters:

= MFCC
= LFCC

iD EECS E6870: Advanced Speech Recognition 50

= LPCC
s LPC+ltakura metric
= LPC Reflection coefficients
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TEST DATA TEMPLATES RESULTS
Fig. 7. Two-way speaker-dependent identification tests.
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Fig. 8. Performance of parametric representations for recognition.

They also found that a frame rate of 6.4 msec works slightly
better than a 12.8 msec rate, but the computation cost goes up

1]
[
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substantially.

Other results tend to be anecdotal. For example, evidence for
the value of adding delta and delta-delta parameters are buried in
old DARPA proceedings, and many experiments comparing PLP
and MFCC parameters are somewhat inconsistent - sometimes
better, sometimes worse, depending on the task. The general
consensus is PLP is slightly better, but it is always safe to stay
with MFCC parameters.

1]
[
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Recent Developments: Tandem Models for Speech
Recognition

= |[dea: use Neural Network to compute features for standard
speech recognition system [3]

= Train NN to classify frames into phonetic categories (e.g.,
phonemes)

= Derive features from NN outputs, e.g. log posteriors

= Append features to standard features (MFCC or PLP)

= Train system on extended feature vector

Some improvements (36% for new features vs 37.9% for PLP)
over standard feature vector alone. May be covered in more detail
in Special Topics lecture at end of semester.

[
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What Feature Representation Works Best?
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Dynamic Time Warping - Introduction

= Simple, inexpensive way to build a recognizer

= Represent each word in vocabulary as a sequence of feature
vectors, called a template

= Input feature vectors endpointed
= Compared against inventory of templates
= Best scoring template chosen
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Two Speech Patterns

Say we have two speech patterns X and Y comprised of the
feature vectors (z1,x2,...,z7,) and (y1,y2,...,yr,). How do we
compare them? What are some of the problems and issues?
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Linear Alighment

Let i, be the time indices of X and i, be the time indices of Y.
Let d(i,, i) be the “distance” between frame i, of pattern X and
frame i, of pattern Y.

In linear time normalization,

d(X,Y) = Z d(iy, i)

ip=1

where i, and i, satisfy:

T,

Z.y - Elm
One can also pre-segment the input and do linear alignment on

the indvidual segments, allowing for a piecewise linear alignment.
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Distances
LP: 2|z —yl?
Weighted L? : >wlz —ylP

ltakura d;(X,Y) :
Symmetrized Itakura :

log(a® Rya/G?)
di(X,Y) +d(Y, X)

Whatever you like. Note weighting can be done in advance to
the feature vector components. Called “liftering” when applied to
cepstra. Used for variance normalization. Also, note the L? metric
is also called the Euclidean distance.
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Time Warping Based Alignment

Define two warping functions:

iv=¢u(k) k=1,2,...,T
iy=¢yk) k=1,2,....T

We can define a distance between X and Y as
T
do(X,Y) = d(¢u(k), dy(k))m(k)/M,
k=1

m(k) is a non-negative weight and My is a normalizing factor
(Why might we need this?)
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This can be seen in more detail in the following figure:

Figure 4.37 An example of time normalization of two se-
quential patterns to a common time index; the time warping
functions ¢, and ¢, map the individual time index iy and iy,
respectively, to the common time index 4.

So the goal is to determine the two warping functions, which is
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basically the same as trying to determine the best path through
the above grid, from the lower left corner to the top right corner.
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Solution: Dynamic Programming

Definition: An algorithmic technique in which an optimization
problem is solved by caching subproblem solutions (i.e.,
memorization) rather than recomputing them.

For example, take Fibonacci numbers.

f(@) = fli—1)+ f@i—2)fori>1

= 1 otherwise

If we write a standard recursive function:

function fibonacci (n)

if n < 2 return 1

otherwise return (fibonacci(n-1) + fibonacci (n-2))
This repeats the same calculation over and over.

The alternative is:
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fib(0,1) =1

for i = 2 to n do

fib(n) = fib(n-1) + fib(n-2)
which is clearly much faster.
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Why “Dynamic Programming?” [1]

“I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An interesting question
is, Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very
interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred
of the word, research. Im not using the term lightly; Im using it precisely. His face would suffuse, he would turn red, and he would get
violent if people used the term, research, in his presence. You can imagine how he felt, then, about the term, mathematical. The RAND
Corporation was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, | felt | had to do something to
shield Wilson and the Air Force from the fact that | was really doing mathematics inside the RAND Corporation. What title, what name,
could | choose? In the first place | was interested in planning, in decision making, in thinking. But planning, is not a good word for
various reasons. | decided therefore to use the word, “programming” | wanted to get across the idea that this was dynamic, this was
multistage, this was time-varying | thought, lets kill two birds with one stone. Lets take a word that has an absolutely precise meaning,
namely dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is its impossible to use
the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. Its impossible.
Thus, | thought dynamic programming was a good name. It was something not even a Congressman could object to. So | used it as an

umbrella for my activities.”
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Dynamic Programming: Basic Idea for Speech

Time—>

[pJaJr]r[ER]N]

.
|
T
I/
|

—| o—

[P Iela T [s T Tale]

Time—>

Figure 8.3 Illustration of a time-alignment path between two words that
differ in their timescale. Any point /, j can have three predecessors as shown.

Let D(i, j) be cumulative distance along the optimum path from
the beginning of the word to the point (7, j) and let d(i, j) be the
distance between frame i of the input “speech” and frame j of the
template. In the example, since there are only three possible ways
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to get to (7, j) we can write:

All we have to do then is to proceed from column to column filling
in the values of D(i, j) according to the above formula until we get
to the top right hand corner. The actual process for speech is only
slightly more complicated.
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Endpoint Constraints Monotonicity Constraints
Beginning Point: ¢,(1) =1 ¢,(1) =1
Ending Point: ¢, (T) =T, ¢,(T) =T,
Sometimes we need to relax these conditions (Why?) $a(k +1) 2 ¢ul(k)
dy(k+1) = ¢y(k)
Why? What does equality imply?
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Local Continuity Constraints Path Definition
¢m(k 1)_¢x(k) < 1
Gy(k+1) —¢y(k) < 1
Why? What does this mean? One can define complex constraints on the warping paths by
composing a path as a sequences of path components we will
call local paths. One can define a local path as a sequence
of incremental path changes. Define path P as a sequence of
moves:
P — (p1,q1)(p2,42) - - - (7 q1)
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Note that

¢z (k) = Z?:lpi by(k) = Z?:l i
% (with endpoint constraints)
i) T, = ZiT:1pi Ty= ZiT:1 qi

2,—(1,1)(1,0)

23— (1,1)(0,1)

Figure 440 An example of local continuity con-
straints expressed in terms of coordinate increments
(after Myers et al. [23]).
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Global Path Constraints

Consider Type Il local continuity constraints (see Figure 4.40 or Table 4.5).

Because of local continuity constraints, certain portions of the
P —(1,1)(1,0)

Py (D) iz, 1y Plane are excluded from the region the optimal warping path
Ps = (1,1)0,1)
can traverse.

.7y
ly
(11,9)
9l
) 3
b /43 | v
o LEGAL RANGE -
X
S
o
(1, To+1)
r [4
(T, o1
ol i 1.1 (To+1,1) oy 00=206,00-Td+Ty (T 1)
0

Qmax=2
| o) =0y (k)| <To

Figure 4.41 The effects of global path constraints and range limiting on the allowable
regions for time warping functions
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Yet another constraint is to limit the maximum warping in time:

P2(k) — ¢y(k) < To

Note that aggressive pruning can effectively reduce a full-search
O(n?) computation to a O(n) computation.
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Slope Weighting

The overall score of a path in dynamic programming depends
on its length. To normalize for different path lengths,
one can put weights on the individual path increments
(p1,q1)(p2,q2) - .. (pr,qr) Many options have been suggested,
such as

Type (a) m(k) = min[gy(k) — ¢z(k — 1), ¢y (k) — ¢y(k — 1)]
Type (b) m(k) = max[p(k) — ¢o(k — 1), dy(k) — ¢y(k — 1)]
Type (c) m(k) = ¢x(k) - ¢x(k - 1)

Type (d) m(k) = dy(k) — dy(k — 1) + ¢u(k) — ¢u(k — 1)

(@) mik)=minfo,(k)=0,(k-1),,(k)-o,(k=1)]

(b) mik)=max[o,(ki-o,k=1), 0, (k}-b,(k—1}]
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Overall Normalization

Overall normalization is needed when one wants to have an
average path distortion independent of the two patterns being
compared (for example, if you wanted to compare how far apart
two utterances of the word “no” are relative to how far apart
two utterances of the word “antidisestablishmentarianism”). The
overall normalization is computed as

My =Y m(k)
k=1

Note that for type (c) constraints, M, is T, and for type (d)
constraints, My is T, + T,,. However, for types (a) and (b), the
normalizing factor is a function of the actual path, a bit of a hassle.
To simplify matters, for type (a) and (b) constraints, we set the
normalization factor to 7.
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DTW Solution

Since we will use an M, independent of the path, we now can
write the minimum cost path as

D(T.,T,) = min Zd $u(k), oy (k))m (k)
=Py

Similarly, for any intermediate point, the minimum partial
accumulated cost at (i, 1,) is

D(iz,iy) = min d(¢x(k), dy(k))m(k)

baspy, T 7 —

where ¢, (1) = i, and ¢, (T") = iy,.

The dynamic programming recursion with constraints then
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becomes

D(iq,iy) = min[D(ig, i) + (15, 1), (i ty))]

il il

%y
where ( is the weighted accumulated cost between point (i, ;)
and point (i, i,):
(i 1y), (ia, dy)) Zd Ga(T ¢y(T" = 1))m(T" = 1)

where L, is the number of moves in the path from (i, i} ) to (i, ;)
according to ¢, and ¢,

So ( is only evaluated over the allowable paths as defined by the
chosen continuity constraints for efficient implementation of the
dynamic programming algorithm.
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DTW Example

iy
6 o3 2 o3 o2 e2 e2
5 o3 e2 e3 1 81 @1 1
4 82 82 o2 o2 2 1
3 o2 o1 #2 o2 o1 @3 1 L]
2 o 1 ®1 ®2 e3
1 o1 3 e3 3 3 .
1 2 3 4 5 6
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Additional DTW Comments

Although there are many continuity constraints and slope
weightings, the following seems to produce the best performance:

The version on the left was evaluated originally by Sakoe and
Chiba [2] but R+J claim that distributing the weights in a smooth
fashion produces better performance (right).
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Other Comments

Multiple utterances may be employed for additional robustness.
Speaker dependently, this is done as follows:

= Speak one utterance
= Speak second utterance

= Align second vs. first utterance. If close, average samples
along best path.

= If not close, ask for third utterance, compare to first two, and
find best pair.

Multiple templates may be employed when performing speaker
independent recognition. Samples from multiple speakers can be
clustered to a small number of templates using a variation of the
pervious algorithm.

It is also possible to extend this algorithm to connected speech,
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Figure 7.20 The one-pass connected word recognition algorithm (afier
Bridle et al. [6]).
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COURSE FEEDBACK

= Was this lecture mostly clear or unclear? What was the
muddiest topic?

= Other feedback (pace, content, atmosphere)?
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