
Why Is Speech Recognition Important?

Ways that people communicate

modality me th od rate (w ords /min )

sound speech 15 0 – 20 0

sig ht sig n lang uag e; g estures 10 0 – 15 0

touch typing ; mousing 6 0

taste cov ering self in food <1

smell not show ering <1
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Why Is Speech Recognition Important?

n speech is potentially the fastest way people can communicate with machines

l natural; req uires no specializ ed training

l can b e used in parallel with other mod alities

n remote speech access is ub iq uitous

l not ev eryone has Internet; ev eryone has a phone

n archiv ing /ind ex ing /compressing /und erstand ing human speech

l e.g., transcription: leg al, med ical, T V

l e.g., transaction: fl ig ht information, name d ialing

l e.g., emb ed d ed : nav ig ation from the car

�� �

E E C S E 6 8 7 0 : S peech R ecog nition 3

What Is Speech Recognition?

n converting speech to text

l a u tom a tic speech recognition (A S R ), speech-to-text (S T T )

n w ha t it’s not

l spea k er recognition — recogniz ing w ho is spea k ing

l na tu ra l la ngu a ge u nd ersta nd ing — u nd ersta nd ing w ha t is b eing sa id

l speech sy nthesis — converting text to speech (T T S )
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Meets Here and Now

n 1300 Mudd; 4:10-6:40pm Tuesday

l 5 min ute b reak at 5 :2 5 pm

n h ardc o py o f slides distrib uted at eac h lec ture

l 4 per pag e
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This Course

n cover fundamentals of ASR in depth (weeks 1–9)

n survey state-of-the-art techniq ues (weeks 10 –13 )

n force y ou, the student, to implement key alg orithms in C + +

l C + + is the international lang uag e of ASR
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Assignments

n four programming assignments (80% of grade)

l implement k ey algorith ms for A S R in C + + (b est supported)

l some sh ort w ritten q uestions

l optional ex erc ises for th ose w ith ex c essiv e leisure time

l c h ec k , c h ec k -plus, c h ec k -minus grading

n fi nal reading projec t (undec ided; 2 0% of grade)

l c h oose paper(s) ab out topic not c ov ered in depth in c ourse; giv e 1 5 -

minute presentation summariz ing paper(s)

l programming projec t

n w eek ly readings

l journal/c onferenc e artic les; b ook c h apters
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Speech Recognition Is Multidisciplinary

n too much knowledge to fit in one brain

l s ignal p roces s ing, machine learning

l linguis tics

l comp utational linguis tics , natural language p roces s ing

l p attern recognition, artificial intelligence, cognitiv e s cience

n three lecturers (no T A ? )

l M ichael P icheny

l S tanley F . C hen

l B huv ana R amabhadran

n from IB M T .J . W ats on R es earch C enter, Y orktown H eights , N Y

l hotbed of s p eech recognition res earch
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Readings

n PDF versions of readings will be available on the web site

n rec om m ended tex t (book store):

l Speech Synthesis and Recognition, H olm es, 2 nd edition (p ap erbac k , 2 5 6

p p ., 2 0 0 1 , IS B N 0 7 4 8 4 0 8 5 7 6 ) [H o lm es]

n referenc e tex ts (library , online, book store, E E ? ):

l F u ndm entals of Speech Recognition, R abiner, J u ang

(p ap erbac k , 4 9 6 p p ., 1 9 9 3 , IS B N 0 1 3 0 1 5 1 5 7 2 ) [R+ J ]

l Speech and L angu age P rocessing, J u rafsk y , M artin

(2 nd-E d, hardc over, 1 0 2 4 p p ., 2 0 0 8 , IS B N 0 1 3 1 8 7 3 2 2 1 0 ) [J + M ]

l Statistical M ethods for Speech Recognition, J elinek

(hardc over, 3 0 5 p p ., 1 9 9 8 , IS B N 0 2 6 2 1 0 0 6 6 5 ) [J elinek ]

l Spok en L angu age P rocessing, H u ang, A c ero, H on

(p ap erbac k , 1 0 0 8 p p ., 2 0 0 1 , IS B N 0 1 3 0 2 2 6 1 6 5 ) [H A H ]
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Course Outline

week to p ic a s s ig n ed d u e

1 In tro d u c tio n ;

2 S ig n a l p ro c es s in g ; D T W la b 1

3 G a u s s ia n m ix tu re m o d els ; H M M s

4 H id d en M a rko v M o d els la b 2 la b 1

5 L a n g u a g e m o d elin g

6 P ro n u n c ia tio n m o d elin g ,D ec is io n

T rees

la b 3 la b 2

7 L V C S R a n d fi n ite-s ta te tra n s d u c ers

8 S ea rc h la b 4 la b 3

9 R o b u s tn es s ; A d a p ta tio n

10 A d v a n c ed la n g u a g e m o d elin g p ro jec t la b 4

11 D is c rim in a tiv e tra in in g , R O V E R

12 S p o ken D o c u m en t R etriev a l, S 2S

13 P ro jec t p res en ta tio n s p ro jec t
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How To Contact Us

n in E -m ail, p r e fi x su b je ct line with “ E E CS E 6 8 7 0 :” !!!

n Michael Picheny — picheny@us.ibm.com

n S tanley F . C hen — stanchen@watson.ibm.com

n B hu v ana R am ab had ran — bhuvana@us.ibm.com

l p ho ne: 9 1 4 -9 4 5 -2 5 9 3 ,9 1 4 -9 4 5 -2 9 7 6

n o ffi ce ho u rs : rig ht after clas s ; o r b efo re clas s b y ap p o intm ent

n C o u rs ew o rk s

l fo r p o s ting q u es tio ns ab o u t lab s
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Programming Assignments

n C++ (g++ compiler) on x86 PC’s running Linux

l k now led ge of C++ a nd U nix h elpful

n extensiv e cod e infra structure in C++ w ith S W IG to ma k e it a ccessib le from

J a v a a nd Py th on (prov id ed b y IB M )

l y ou, th e stud ent, only h a v e to w rite th e “fun” pa rts

l b y end of course, y ou w ill h a v e w ritten k ey pa rts of b a sic la rge v oca b ula ry

continuous speech recognition sy stem

n get a ccount on ILA B computer cluster

l complete th e surv ey

n la b s d ue W ed nesd a y a t 6pm
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Outline For Rest of Today

1. a brief history of speech recognition

2. speech recognition as pattern classification

n w hy is speech recognition hard ?

3 . speech prod u ction and perception

4 . introd u ction to signal processing

� � �
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Web Site

http://www.ee.columbia.edu/˜stanchen/fall09/e6870/

n syllabus

n slid e s fro m le c ture s (P D F )

l o n lin e by 8 p m th e n ig h t be fo re e ac h le c ture

n lab assig n m e n ts (P D F )

n re ad in g assig n m e n ts (P D F )

l o n lin e by le c ture th e y are assig n e d

l p assw o rd -p ro te c te d (n o t w o rk in g rig h t n o w )

l use rn am e : speech, p assw o rd : pythonrules
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A Quick Historical Tour

1. the early years: 1920–1960’s

n ad hoc m etho d s

2. the b irth o f m o d ern A S R : 197 0–198 0’s

n m atu ratio n o f statistic al m etho d s; b asic H M M /G M M fram ew o rk d ev elo p ed

3 . the g o ld en years: 1990’s–n o w

n m o re p ro c essin g p o w er, d ata

n v ariatio n s o n a them e; tu n in g ;

n d em an d fro m d o w n stream tec hn o lo g ies (searc h, tran slatio n )
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Help Us Help You

n feedback questionnaire after each lecture (2 questions)

l feedback w elcom e any tim e

n E E ’s m ay fi nd C S p arts challeng ing , and v ice v ersa

n y ou, the student, are p artially resp onsible for quality of course

n tog ether, w e can g et throug h this

n let’s g o!
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The Turning Point

Whither Speech Recognition? John Pierce, Bell Labs, 1969

Speech recognition has glamour. Funds have been available. Results

have been less glamorous . . .

. . . General-purpose speech recognition seems far away. Special-

purpose speech recognition is severely limited. It would seem appropriate

for people to ask themselves why they are working in the field and what

they can expect to accomplish . . .

. . . These considerations lead us to believe that a general phonetic

typewriter is simply impossible unless the typewriter has an intelligence

and a knowledge of language comparable to those of a native speaker of

English . . .

� � �
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The Start of it All

Radio Rex (1920’s)

n sp eak er-in dep en den t sin g le-w ord rec og n iz er (“Rex”)

l trig g ered if su ffi c ien t en erg y at 5 00H z detec ted (from “e” in “Rex”)
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The Turning Point

n killed ASR research at Bell Labs for many years

n p artially serv ed as imp etu s for fi rst (D )ARP A p rog ram (1 9 7 1 – 1 9 7 6 ) fu nding

ASR research

l g oal: integ rate sp eech know ledg e, ling u istics, and AI to make a

breakthrou g h in ASR

l larg e v ocabu lary: 1 0 0 0 w ords; artifi cial syntax

l <6 0 × “real time”
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The Early Years: 1920–1960’s

Ad hoc methods

n simp le sig n a l p rocessin g /fea tu re ex tra ction

l detect en erg y a t v a riou s freq u en cy b a n ds; or fi n d domin a n t freq u en cies

n ma n y idea s cen tra l to modern AS R in trodu ced, b u t n ot u sed a ll tog ether

l e.g., sta tistica l tra in in g ; la n g u a g e modelin g

n sma ll v oca b u la r y

l dig its; y es/n o; v ow els

n n ot tested w ith ma n y sp ea k ers (u su a lly <1 0 )

n error ra tes < 10%

	
 �

E E C S E 6 8 7 0 : S p eech R ecog n ition 1 7



The Birth of Modern ASR: 1970–1980’s

n basic paradigm/algorithms developed during this time still used today

l ex pectation-max imiz ation algorithm; n-gram models;

G aussian mix tures; H idden M ark ov models; V iterbi decoding; etc.

n then, computer pow er still catching up to algorithms

l fi rst real-time dictation system built in 1 9 8 4 (IB M )
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The Turning Point

n four competitors

l th ree used h a n d -d eriv ed rules, scores b a sed on “k n ow led g e” of speech

a n d la n g ua g e

l H A R P Y (C M U ): in teg ra ted a ll k n ow led g e sources in to fi n ite-sta te n etw ork

th a t w a s tra in ed sta tistica lly

n H A R P Y w on h a n d s d ow n
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The Golden Years: 1990’s–now

n dramatic growth in available computing power

l fi rs t demons tration of real-time large vocabulary A S R (1 9 8 4 )

l s pecializ ed hardware ≈ 6 0 M H z P entium

l today : 3 G H z C P U ’s are cheap

n dramatic growth in trans cribed data s ets available

l 1 9 7 1 A R P A initiative: training on < 1 hour of s peech

l today : s y s tems trained on thous ands of hours of s peech

n bas ic algorithmic framework remains the s ame as in the 1 9 8 0 ’s

l s ignifi cant advances in adaptation; dis criminative training

l lots of tuning and twiddling improvements
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The Turning Point

Rise of probabilistic data-driven methods (1970’s and on)

n view speech recog nition as . . .

l fi nding most probable w ord seq u ence g iven the au dio sig nal

l g iven some informative probability distribu tion

l train probability distribu tion au tomatically from transcribed speech

l minimal amou nt of ex plicit k now ledg e of speech and

lang u ag e u sed

n dow nfall of try ing to manu ally encode intensive amou nts of ling u istic,

phonetic k now ledg e
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Research Systems

Driven by government-funded evaluations (DARPA, NIST, etc.)

n different sites comp ete on a common test set

n h arder and h arder p roblems over time

l read sp eech : TIM IT, resource management (1 ,0 0 0 w ord vocab), W all

Street J ournal (5 ,0 0 0 – 2 0 ,0 0 0 w ord vocab), B roadcast New s (p artially

sp ontaneous, back ground music)

l sp ontaneous sp eech : air travel domain (ATIS), Sw itch board (telep h one),

C all H ome (accented)

l M andarin, Arabic (G AL E )

l M any more languages...

� � �
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Not All Recognizers Are Created Equal

More processing power and data lets us do more difficult things

n speak er dependent vs. speak er independent

l recogniz e single speak er or many

n small vs. large v ocab ulary

l recogniz e from list of digits or list of cities

n constrained vs. unconstrained domain

l air trav el reserv ation sy stem vs. E -mail dictation

n isolated vs. continuous

l pause b etween each word or speak naturally

n read vs. spontaneous

l news b roadcasts or telephone conv ersations

�� �
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Research Systems
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Commercial Speech Recognition

n 1995 — Dragon, IBM release speaker-dependent isolated word large-

vocabulary dictation systems

n 1997 — Dragon, IBM release speaker-dependent continuous word large-

vocabulary dictation systems

n late 1990 ’s — speaker-independent continuous small-vocab A S R available

over th e ph one

n late 1990 ’s — limited-domain speaker-independent continuous large-

vocabulary A S R available over th e ph one

n to get reasonable performance, must constrain someth ing

l speaker, vocabulary, domain

l word error rates can be < 5% , or not
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The Big Picture

n speech recognition as pattern classification

n w hy is speech recognition so d ifficu lt?

n k ey prob lem s in speech recognition

� � �
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Where Are We Now?

Task W o rd e rro r rate

B ro ad c ast N e w s <1 0 %

c o n v e rsatio n al te le p h o n e (S w itc h b o ard ) <1 5 %

m e e tin g tran sc rip tio n (c lo se -talkin g m ike ) <2 5 %

m e e tin g tran sc rip tio n (far-fi e ld m ike ) ∼5 0 %

ac c e n te d e ld e rly sp e e c h (M alac h ) <3 0 %

n e ac h sy ste m h as b e e n e x te n siv e ly tu n e d to th at d o m ain !

n still a w ay s to g o u n til u n c o n strain e d larg e -v o c ab u lary sp e ake r-in d e p e n d e n t

A S R is a re ality

�� �
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Speech Recognition as Pattern Classification

n consider isolated digit recognition

l p erson sp eak s a single digit ∈ 0, . . . , 9

l recogniz e w h ich digit w as sp ok en

n classifi cation

l w h ich of ten classes does au dio signal (A) b elong to?

�� �
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Where Are We Now?

Human word error rates an order of magnitude below that of machines

(Lippmann, 1997)

n for humans, one sy stem fi ts all

M achine Human

T ask P erformance P erformance

C onnected D igits1 0 .72 % 0 .0 0 9%

Letters2 5 .0 % 1.6 %

R esource M anagement 3 .6 % 0 .1%

W S J 7.2 % 0 .9%

T imit3 2 0 .0 % 1.0 %

S W IT C HB O A R D 3 0 % 4 .0 %

1string error rates, 3phone error rates
2isolated letters presented to humans, continuous for machine	
 �
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Speech Recognition as Pattern Classification

n speech recognition⇔ building a classifier

l discrim inant function S C O R E c(A) for c = 0, . . . , 9
l e.g., how m uch (little) signal A sounds lik e digit c

l pick class c w ith highest (low est) S C O R E c(A)

n speech recognition⇔ design discrim inant function S C O R E c(A)

n can use concepts, tools from pattern classification

� � �
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Speech Recognition as Pattern Classification

0 0.5 1 1.5 2 2.5

x  10
4

−1

−0.5

0

0.5

n What does an audio signal look like?

l e.g., turn on m ic rop hone for ex ac tly one sec ond

l m ic rop hone c onv erts instantaneous air p ressure into real v alue�� �
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Speech Recognition as Pattern Classification

n a simple classifier

l co llect sin g le ex ample Ac o f each d ig it c = 0, . . . , 9

n d iscrimin an t fu n ctio n S C O R E c(A) = D IS T A N C E (A, Ac)

l E u clid ean d istan ce? (

√

∑

16000

i=1
(ai − ai,c)2)

n pick class w h o se ex ample is clo sest to A

n e.g., scen ario fo r cell ph o n e n ame reco g n itio n
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Speech Recognition as Pattern Classification

Discretizing the audio signal

n discretizing in tim e

l sam p ling rate, e.g., 1 6 0 0 0 sam p les/sec (H z)

n discretizing in m agnitude (A /D conv ersion)

l e.g., 1 6 -b it A /D returns integer v alue ∈ [−32768, +32767]

n one second audio signal A ∈ R 16000

l v ector of 1 6 0 0 0 real v alues, e.g., [0 , -1 , 4 , 1 6 , 2 3 , 7 , . . . ]
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Why Is Speech Recognition Hard?
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Why Is Speech Recognition Hard?
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Why Is Speech Recognition Hard?

n taking Euclidean distance in the frequency domain doesn’t work well either

n can we ex tract cogent features A ⇒ (f1, . . . , fk)
l such that can use simp le distance measure b etween feature v ectors to do

accurate classifi cation

n this turns out to b e remarkab ly diffi cult!
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Why Is Speech Recognition Hard?

n wait, taking Euclidean distance in the time domain is dumb!

n what about the freq uency domain?

l a wav eform can be decomp osed into its energy at each freq uency

l sp ectrogram is grap h of energy at each freq uency ov er time
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Key Problems In Speech Recognition (Cont’d)

n coming up with good canonical representatives Aw,i for each class

l G aussian mix ture models (G M M ’s); discriminative training

n what if don’t have ex amples for each word? (sparse data)

l pronunciation modeling

n effi ciently fi nding the closest word

l search; fi nite-state transducers

n using k nowledge that not all words or word seq uences are eq ually prob ab le

l language modeling

� � �
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Why Is Speech Recognition Hard?

n there is a enormous range of ways a particular word can be realized

n sources of v ariability

l source v ariation

l v olume; rate; pitch; accent; dialect; v oice q uality (e.g., gender);

coarticulation; contex t

l channel v ariation

l type of microphone; position relativ e to microphone (angle + distance);

back ground noise

n screwing with any one of these factors can mak e A S R accuracy go to hell

�� �
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Finding Good Features

n find features of speech such that . . .

l sim ilar sounds hav e sim ilar feature v alues

l dissim ilar sounds hav e dissim ilar feature v alues

n discard stuff that doesn’t m atter

l e.g., pitch (E ng lish)

n look at hum an production and perception for insig ht

�� �
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Key Problems In Speech Recognition

At a high level, ASR systems are simple classifiers

n fo r each w o rd w, co llect man y ex amples; su mmariz e w ith set o f can o n ical

ex amples Aw,1, Aw,2, . . .

n to reco gn iz e au d io sign al A, fin d w o rd w that min imiz es D IST AN C E (A, Aw,i)

K ey P ro b lems

n co n vertin g au d io sign als A in to a set o f co gen t featu res valu es (f1, . . . , fk)
so simple d istan ce measu res w o rk w ell

l sign al pro cessin g; ro b u stn ess; ad aptatio n

n co min g u p w ith go o d d istan ce measu res D IST AN C E (·, ·)
l d yn amic time w arpin g; hid d en M ark o v mo d els; G M M ’s
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Classes of Speech Sounds

Can categorize phonemes by how they are produced

n v oicing

l e.g., F (unv oiced), V (v oiced)

l all v owels are v oiced

n stops/plosiv es

l oral cav ity block ed (e.g., lips, v elum); then opened

l e.g., P , B (lips)

� � �
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Speech Production

n air comes out of lungs

n v ocal cord s tensed (v ib rate ⇒ v oicing) or relax ed (unv oiced )

n mod ulated b y v ocal tract (glottis → lip s); resonates

l articulators: jaw , tongue, v elum, lip s, mouth�� �

E E C S E 6 8 7 0 : S p eech R ecognition 4 4

Classes of Speech Sounds

n spectogram shows energy at each frequency over time

n voiced sound s have pitch (F 0 ); formants (F 1 , F 2 , F 3 )

n trained humans can d o recognition on spectrograms with high accuracy

(e.g., V ictor Z ue)
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Speech Is Made Up Of a Few Primitive Sounds?

n phonemes

l 4 0 to 5 0 for E ng lish

l spea k er/d ia lec t d ifferenc es

l a re the v ow els in M A R Y , M A R R Y , a nd M E R R Y d ifferent?

l phone: a c ou stic rea liz a tion of a phoneme

n ma y b e rea liz ed d ifferently b a sed on c ontex t

l allophones: d ifferent w a y s a phoneme c a n b e rea liz ed

l P in S P IN , P IN a re tw o d ifferent a llophones of P phoneme
l T in B A T , B A T T E R ; A in B A T , B A D

	
 �

E E C S E 6 8 7 0 : S peec h R ec og nition 4 5



Coarticulation

n realization of a phoneme can differ very much depending on context

(allophones)

n w here articulators w ere for last phone affect how they transition to next

� � �
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Classes of Speech Sounds

n What can the machine do? Here is a sample on TIMIT:

�� �
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Speech Production

Can we use knowledge of speech production to help speech recognition?

n insight into what features to use?

l (inferred) location of articulators; v oicing; form ant freq uencies

l in practice, these features prov ide little or no im prov em ent ov er features

less directly b ased on acoustic phonetics

n infl uences how signal processing is done

l source-fi lter m odel

l separate ex citation from m odulation from v ocal tract

l e.g., freq uency of ex citation can b e ignored (E nglish)

�� �
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Classes of Speech Sounds

n vowels — EE, AH, etc.

l d iffer in loca tion s of form a n ts

l d ip th on g s — tra n sition b etween two vowels (e.g., C O Y , C O W )

n con son a n ts

l frica tives — F , V , S , Z , S H, J

l stop s/p losives — P , T , B , D , G , K

l n a sa ls — N , M , N G

l sem ivowels (liq u id s, g lid es) — W , L , R , Y
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Speech Perception — Physiology

n human physiology used as justification for frequency analysis ubiquitous in

speech processing

n limited k now ledge of higher-lev el processing

l can glean insight from psychophysical ex periments

l relationship betw een physical stimuli and psychological effects

� � �
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Speech Perception

n as it turns out, the features that work well . . .

l m otiv ated m ore b y sp eec h p erc ep tion than p rod uc tion

n e.g., M el F req uenc y C ep stral C oeffi c ients (M F C C )

l m otiv ated b y how hum ans p erc eiv e p itc hes to b e sp ac ed

l sim ilarly for p erc ep tual linear p red ic tion (P L P )
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Speech Perception — Psychophysics

Threshold of hearing as a function of frequency

n 0 dB sound p ressure lev el (S P L ) ⇔ threshold of hearing

l + 2 0 decib els (dB ) ⇔ 1 0 × increase in p ressure/loudness

n tells us w hat range of frequencies p eop le can detect
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Speech Perception — Physiology

n sound comes in ear, converted into vibrations in fluid in cochlea

n in fluid is basilar membrane, w ith ∼3 0 ,0 0 0 little hairs

l hairs sensitive to different freq uencies (band-p ass fi lters)
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Speech Perception — Psychoacoustics

n use controlled stimuli to see what features humans use to distinguish sounds

n H ask ins L ab oratories (1 9 4 0 – 1 9 5 0 ’s), P attern P lay b ack machine

l sy nthesiz e sound from hand-p ainted sp ectrograms

n demonstrated imp ortance of formants, formant transitions, trajectories in

human p ercep tion

l e.g., v ary ing second formant alone can distinguish b etween B , D , G

http://www.haskins.yale.edu/haskins/MISC/PP/bdg/bdg.html
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Speech Perception — Psychophysics
Sensitivity of humans to different frequencies

n equal loudness contours

l sub jects adjust volume of tone to match volume of another tone at different

p itch

n tells us w hat rang e of frequencies mig ht b e g ood to focus on
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Speech Perception — Machine

n just as human physiology has its quirks, so does machine “physiology”

n sources of distortion

l microphone — different response b ased on direction and frequency of

sound

l sampling frequency

l telephones — 8 kH z sampling; throw aw ay all frequencies ab ov e 4 kH z

(“low b andw ith”)

l analog/digital conv ersion — need to conv ert to digital w ith suffi cient

precision (8 – 1 6 b its)

l lossy compression — e.g., cellular telephones

l v oip (compressed audio ov er the internet)
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Speech Perception — Psychophysics
Human perception of distance between frequencies

n adjust pitch of one tone until twice/h alf pitch of oth er tone

n M el scale — frequencies equally spaced in M el scale are equally spaced

according to h uman perception

M el freq = 2595 log
10

(1 + freq/700)
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Signal Processing Basics — Motivation

Goal: Review some basics about signal processing to provide an appropriate

context for the details and issues involved in feature extraction, which will be

discussed next week.

- Present enough about signal processing to allow you to understand how we

can digitally simulate banks of filters, similar to those present in the human

peripheral auditory system

- Describe some basic properties of linear systems, since linear channel

variability is one of the main problems speech recognition systems need to

be able to cope with to achieve robustness.

Recommended Readings: HAH pg. 201-223, 242-245. R+J pg. 69-91. All

figures taken from these sources unless indicated otherwise.
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Speech Perception — Machine

n input distortion can still be a significant problem

l mismatch ed conditions — train/test in different conditions

l low bandw idth — teleph one, cellular

l ch eap eq uipment — e.g., mik es in h andh eld dev ices

n enough said
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Source-Filter Model

A simple popular model for the vocal tract is the Source-Filter model in which

the vocal tract is modeled as a sequence of filters representing the various

functions of the vocal tract.

T he initial filter, G(z), represents the effect of the glottis. D ifferences in the

glottal waveform (essentially different amounts of low-frequency emphasis) are

one of the main sources of interspeak er differences. V (z) represents the

effects of the vocal tract — a linear filter with time vary ing resonances. N ote that�� �
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Segue

n now that we see what humans do

n let’s disc uss what sig nal p roc essing has b een found to work well emp iric ally

l has b een tuned ov er dec ades

n g oal: ig noring time alig nment issues . . .

l how to p roc ess sig nals to p roduc e features . . .

l so that alik e sounds g enerate similar feature v alues

n start with some mathematic al b ac k g round
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i.e., a shift in the time axis of x produces the same output, except for a time

shift.

Therefore, if h[n] is the response of an LTI system to an impulse δ[n] (a signal

which is 1 at n = 0 and 0 otherwise) the response of the the system to an

arbitrary signal, x[n], because of linearity and time invariance, will just be the

weighted superposition of the impulse responses:

y[n] =

∞∑

k=−∞

x[k]h[n− k] =
∞∑

k=−∞

x[n− k]h[k]

The above is also known as Convolution and is written as

y[n] = x[n] ∗ h[n]
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the length of the vocal tract, which strongly determines the general positions of

the resonances, is another major source of interspeaker differences. The last

filter, ZL(z) represents the effects of radiation from the lips and is basically a

simple high-frequency pre-emphasis.
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Linear Time Invariant Systems and Sinusoids

A sinusoid cos(ωn + φ) can also be written as <(ej(ωn+φ)) — a complex

exponential. It is more convenient to work directly with complex exponentials

for ease of manipulation.

If x[n] = ejωn then

y[n] =

∞∑
k=−∞

ejω(n−k)h[k] = ejωn

∞∑
k=−∞

e−jωkh[k] = H(ejω)ejωn

Hence if the input to an LTI system is a complex exponential, the output is just

a scaled and phase-adjusted version of the same complex exponential.

So if we can decompose x[n] =
∫

X(ejω)e−jωndω by the LTI property

y[n] =

∫
H(ejω)X(ejω)e−jωndω
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Signal Processing Basics — Linear Time Invariant Systems

The output of our A/D converter is a signal x[n].

A digital system T takes and input signal x[n] and produces a signal y[n]:

y[n] = T (x[n])

Calculating the output of T to an input signal x becomes very simple if a digital

system T satisfies two basic properties

T is linear if

T (a1x1[n] + a2x2[n]) = a1T (x1[n]) + a2T (x2[n])

T is time-invariant if

y[n− n0] = T (x[n− n0])	
 �
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One can generalize the Fourier Transform to

H(z) =
∞∑

n=−∞

h(n)z−n

where z is any complex variable. The Fourier Transform is just the z-transform

evaluated at z = e−jω.

The z-transform concept allows DSPers to analyze a large range of signals,

even those whose integrals are unbounded. We will primarily just use it as a

notational convenience, though.

The main property we will use is the convolution property:

Y (z) =
∞∑

n=−∞

y[n]z−n =
∞∑

n=−∞

(
∞∑

k=−∞

x[k]h[n− k])z−n
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We will not try to prove this here, but the above decomposition can almost

always be performed for most functions of interest.
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=
∞∑

k=−∞

x[k](
∞∑

n=−∞

h[n− k]z−n) =
∞∑

k=−∞

x[k](
∞∑

n=−∞

h[n]z−(n+k))

=
∞∑

k=−∞

x[k]z−kH(z) = X(z)H(z)

The autocorrelation of x[n] is defined as

Rxx[n] =
∞∑

m=−∞

x[m + n]x∗[m] = x[n] ∗ x∗(−n)

The Fourier Transform of Rxx[n], denoted as Sxx(ejω) , is called the power

spectrum and is just |X(ejω)|2

Notice also that
∞∑

n=−∞

|x[n]|2 = 1/(2π)

∫ π

−π

|X(ejω)|2
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Fourier Transforms and Z-Transforms

The Fourier Transform of a discrete signal is defined as

H(ejω) =

∞∑
n=−∞

h[n]e−jωn

Note this is a complex quantity, with a magnitude |H(ejω)| and a phase

ej arg[H(ejω)]

The inverse Fourier Transform is defined as

h[n] = 1/(2π)

∫ π

−π

H(ejω)ejωndω

The Fourier transform is invertible, and exists as long as
∑
∞

−∞
|h[n]| < ∞	
 �
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Note that the last term on the right is N for m = n and 0 otherwise, so the

entire right side is just x[n] Note that the DFT is equivalent to a Fourier series

expansion of a periodic version of x[n].
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Lastly, observe that there is a duality between the time and frequency domains;

convolution in the time domain is the same as multiplication in the frequency

domain, and visa-versa:

x[n]y[n] = X(ejω) ∗ Y (ejω)

This will become important later when we discuss the effects of windowing on

the speech signal.
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The Fast Fourier Transform

Note that the computation of

X[k] =

N−1∑

n=0

x[n]e−j2πkn
N =

N−1∑

n=0

x[n]Wnk
N

for k = 0 ..N-1 , w here Wnk
N = e−j2πkn

N req uires ∼ O(N2) operations .

L et f [n] = x[2n] and g[n] = x[2n + 1 ]. T he ab ov e eq uation b ecomes

X[k] =

N/ 2−1∑

n=0

f [n]Wnk
N/ 2

+ W k
N

N/ 2−1∑

n=0

g[n]Wnk
N/ 2

= F [k] + W k
NG[k]

w hen F [k] and G[k] are the N/ 2 point D F T s of f [n] and g[n] . T o prod uce v alues

for X[k] for N > k ≥ N/ 2, note that F [k + N/ 2] = F [k] and G[k + N/ 2] = G[k].�� �
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The DFT — Discrete Fourier Transform

We usually compute the Fourier Transform digitally. We obviously cannot afford

to deal with infinite signals, so assuming that x[n] is finite and of length N we

can define

X[k] =
N−1∑

n=0

x[n]e−jωn =

N−1∑

n=0

x[n]e−j2πkn
N

where we have replaced ω with 2πk
N

The inverse of the D FT is

1

N

N−1∑

k=0

X[k]ej2πkn
N =

1

N

N−1∑

k=0

[
N−1∑

m=0

x[m]e−j2πkm
N ]ej2πkn

N

=
1

N

N−1∑

m=0

x[m]
N−1∑

n=0

e
j
2πk(n−m)

N
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By creating such a signal, the overall energy will be concentrated at lower

frequency components (because discontinuities at the boundaries will be

minimized). The coefficients are also all real. This allows for easier truncation

during approximation and will come in handy later when computing MFCCs.
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The above process can be iterated to produce a way of computing the DFT

with O(N log N) operations, a significant savings over O(N2) operations.
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Windowing

All signals we deal with are finite. We may view this as taking an infinitely long

signal and multiplying it with a finite window.

Rectangular Window

h[n] = 1, 0 ≤ n < N − 1, 0otherwise

T he F F T can b e written in closed form as

sin ωN/2

sin ω/2
e−jω(N−1)/2
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The Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is defined as

C[k] =
N−1∑

n=0

x[n] cos(πk(n + 1/2)/N), 0 ≤ k < N

If we create a signal

y[n] = x[n], 0 ≤ n < N

y[n] = x[2N − 1− n], N ≤ n < 2N

then Y [k], the DFT of y[n] is

Y [k] = 2ej πk
2N C[k], 0 ≤ k < N

Y [2N − k] = 2e−j πk
2N C[k], 0 ≤ k < N	
 �
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Implementation of Filter Banks

A common operation in speech recognition feature extraction is the

implementation of filter banks.

The simplest technique is brute force convolution:

xi[n] = x[n] ∗ hi[n] =

Li−1∑

m=0

hi[m]x[n−m]

The computation is on the order of Li for each filter for each output point n,

which is large.

Say now hi[n] = h[n]ejωin, a fixed length low pass filter heterodyned up

(remember, multiplication in the time domain is the same as convolution in the

frequency domain) to be centered at different frequencies. In such a case

xi[n] =
∑

h[m]ejωimx[n−m]
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Note the high sidelobes of the window. Since multiplication in the time domain

is the same as convolution in the frequency domain, the high sidelobes tend

to distort low energy components in the spectrum when there are significant

high-energy components also present.

Hamming and Hanning Windows

h[n] = .5− .5 cos 2πn/N (Hanning)

h[n] = .54− .46 cos 2πn/N (Hamming)�� �
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= e
jωin

∑
x[m]h[n−m]e−jωim

The last term on the right is just Xn(ejω), the Fourier transform of a windowed

signal., where now the window is the same as the filter. So we can interpret

the FFT as just the instantaneous filter outputs of a uniform filter bank whose

bandwidths corresponding to each filter are the same as the main lobe width

of the window. Notice that by combining various filter bank channels we can

create nom-uniform filterbanks in frequency.
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Observe the different sidelobe behaviors. Both the Hanning and Hamming

windows have slightly wider main lobes but much lower sidelobes than the

rectangular window. The Hamming window has a lower first sidelobe than

a Hanning window, but the sidelobes at higher frequencies do not roll off as

much.
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All this will prove useful in our discussion of mel-scaled filter banks, next week!
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