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Outline of Today’s Lecture

n Administrivia
n Linear Discriminant Analysis
n Maximum Mutual Information Training
n ROVER
n Consensus Decoding
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Administrivia

See

http://www.ee.columbia.edu/ stanchen/fall09/e6870/readings/project f09.html

for suggested readings and presentation guidelines for final
project.
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Linear Discriminant Analysis

A way to achieve robustness is to extract features that
emphasize sound discriminability and ignore irrelevant sources of
information. LDA tries to achieve this via a linear transform of the
feature data.

If the main sources of class variation lie along the coordinate
axes there is no need to do anything even if assuming a diagonal
covariance matrix (as in most HMM models):

IBM EECS E6870: Advanced Speech Recognition 3



Principle Component Analysis-Motivation

If the main sources of class variation lie along the main source
of variation we may want to rotate the coordinate axis (if using
diagonal covariances):
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Linear Discriminant Analysis - Motivation

If the main sources of class variation do NOT lie along the main
source of variation we need to find the best directions:
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Eigenvectors and Eigenvalues

A key concept in feature selection are the eigenvalues and
eigenvectors of a matrix.

The eigenvalues and eigenvectors of a matrix are defined by the
following matrix equation:

Ax = λx

For a given matrix A the eigenvectors are defined as those
vectors x for which the above statement is true. Each eigenvector
has an associated eigenvalue, λ. To solve this equation, we can
rewrite it as

(A− λI)x = 0

If xis non-zero, the only way this equation can be solved is if the
determinant of the matrix (A − λI) is zero. The determinant of
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this matrix is a polynomial (called the characteristic polynomial)
p(λ). The roots of this polynomial will be the eigenvalues of A.
For example, let us say

A =
[

2 −4
−1 −1

]
.

In such a case,

p(λ) =
∣∣∣∣ 2− λ −4
−1 −1− λ

∣∣∣∣
= (2− λ)(−1− λ)− (−4)(−1)

= λ2 − λ− 6

= (λ− 3)(λ+ 2)

Therefore, λ1 = 3 and λ2 = −2 are the eigenvalues of A.

To find the eigenvectors, we simply plug in the eigenvalues into
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(A− λI)x = 0 and solve for x. For example, for λ1 = 3 we get[
2− 3 −4
−1 −1− 3

] [
x1

x2

]
=
[

0
0

]
Solving this, we find that x1 = −4x2, so all the eigenvector
corresponding to λ1 = 3 is a multiple of [−4 1]T . Similarly, we
find that the eigenvector corresponding to λ1 = −2 is a multiple of
[1 1]T .
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Principle Component Analysis-Derivation

First consider the problem of best representing a set of vectors
x1,x2, . . . ,xn by a single vector x0. More specifically let us try to
minimize the sum of the squared distances from x0

J0(x0) =
N∑
k=1

|xk − x0|2

It is easy to show that the sample mean, m, minimizes J0, where
m is given by

m = x0 =
1
N

N∑
k=1

xk
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Now, let e be a unit vector in an arbitrary direction. In such a case,
we can express a vector x as

x = m + ae

For the vectors xk we can find a set of aks that minimizes the
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mean square error:

J1(a1, a2, . . . , aN , e) =
N∑
k=1

|xk − (m + ake)|2

If we differentiate the above with respect to ak we get

ak = eT (xk −m)

i.e. we project xk onto the line in the direction of e that passes
through the sample mean m. How do we find the best direction
e? If we substitute the above solution for ak into the formula for
the overall mean square error we get after some manipulation:

J1(e) = −eTSe +
N∑
k=1

|xk −m|2
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where S is called the Scatter matrix and is given by:

S =
N∑
k=1

(xk −m)(xk −m)T

Notice the scatter matrix just looks like N times the sample
covariance matrix of the data. To minimize J1 we want to
maximize eTSe subject to the constraint that |e| = eTe = 1. Using
Lagrange multipliers we write

u = eTSe− λeTe

. Differentiating u w.r.t e and setting to zero we get:

2Se− 2λe = 0

or
Se = λe
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So to maximize eTSe we want to select the eigenvector of S
corresponding to the largest eigenvalue of S.

If we now want to find the best d directions, the problem is now to
express x as

x = m +
d∑
i=1

aiei
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In this case, we can write the mean square error as

Jd =
N∑
k=1

|(m +
d∑
i=1

akiei)− xk|2

and it is not hard to show that Jd is minimized when the vectors
e1, e2, . . . , ed correspond to the d largest eigenvectors of the
scatter matrix S.
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Linear Discriminant Analysis - Derivation

Let us say we have vectors corresponding to c classes of data.
We can define a set of scatter matrices as above as

Si =
∑
x∈Di

(x−mi)(x−mi)T

where mi is the mean of class i. In this case we can define
the within-class scatter (essentially the average scatter across the
classes relative to the mean of each class) as just:

SW =
c∑
i=1

Si
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Another useful scatter matrix is the between class scatter matrix,
defined as

SB =
c∑
i=1

(mi −m)(mi −m)T
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We would like to determine a set of projection directions V
such that the classes c are maximally discriminable in the new
coordinate space given by

x̃ = Vx
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A reasonable measure of discriminability is the ratio of the
volumes represented by the scatter matrices. Since the
determinant of a matrix is a measure of the corresponding volume,
we can use the ratio of determinants as a measure:

J =
|SB|
|SW |

So we want to find a set of directions that maximize this
expression. In the new space, we can write the above expression
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as:

S̃B =
c∑
i=1

(m̃i − m̃)(m̃i − m̃)T

=
c∑
i=1

V(mi −m)(mi −m)TVT

= VSBVT

and similarly for SW so the discriminability measure becomes

J(V) =
|VSBVT |
|VSWVT

|

With a little bit of manipulation similar to that in PCA, it turns out
that the solution are the eigenvectors of the matrix

S−1
W SB
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which can be generated by most common mathematical
packages.
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Linear Discriminant Analysis in Speech
Recognition

The most successful uses of LDA in speech recognition are
achieved in an interesting fashion.

n Speech recognition training data are aligned against the
underlying words using the Viterbi alignment algorithm
described in Lecture 4.

n Using this alignment, each cepstral vector is tagged with a
different phone or sub-phone. For English this typically results
in a set of 156 (52x3) classes.

n For each time t the cepstral vector xt is spliced together with
N/2 vectors on the left and right to form a “supervector” of
N cepstral vectors. (N is typically 5-9 frames.) Call this
“supervector” yt.
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n The LDA procedure is applied to the supervectors yt.
n The top M directions (usually 40-60) are chosen and the

supervectors yt are projected into this lower dimensional space.
n The recognition system is retrained on these lower dimensional

vectors.
n Performance improvements of 10%-15% are typical.

IBM EECS E6870: Advanced Speech Recognition 22



Training via Maximum Mutual Information

The Fundamental Equation of Speech Recognition states that

p(S|O) = p(O|S)p(S)/P (O)

where S is the sentence and O are our observations. We
model p(O|S) using Hidden Markov Models (HMMs). The HMMs
themselves have a set of parameters θ that are estimated from a
set of training data, so it is convenient to write this dependence
explicitly: pθ(O|S).

We estimate the parameters θ to maximize the likelihood of the
training data. Although this seems to make some intuitive sense,
is this what we are after?

Not really! (Why?). So then, why is ML estimation a good thing?
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Maximum Likelihood Estimation Redux

ML estimation results in a function that allows us to estimate
parameters of the desired distribution from observed samples of
the distribution. For example, in the Gaussian case:

µ̂MLE =
1
n

n∑
k=1

xk

Σ̂MLE =
1
n

n∑
k=1

(xk − µ̂MLE)(xk − µ̂MLE)T

Since µ and Σ themselves are computed from the random
variables xk we can consider them to be random variables as well.

More generally we can consider the estimate of the parameters θ
as a random variable. The function that computes this estimate is
called an estimator.
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Any estimator, maximum likelihood or other, since it is a random
variable, has a mean and a variance. It can be shown that if

n The sample is actually drawn from the assumed family of
distributions

n The family of distributions is well-behaved
n The sample is large enough

then, the maximum likelihood estimator has a Gaussian
distribution with the following good properties:

n The mean converges to the true mean of the parameters
(consistent)

n The variance has a particular form and is just a function of
the true mean of the parameters and the samples (Fisher
information)

n No other consistent estimator has a lower variance
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This means the ML estimate on the average will produce the
closest estimate to the true parameters of the system.

If we assume that the system has its best performance when the
parameters match the true parameters, then the ML estimate will,
on average, perform as good as or better than any other estimator.
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Main Problem with Maximum Likelihood
Estimation

The true distribution of speech is (probably) not generated by an
HMM, at least not of the type we are currently using. (How might
we demonstrate this?)

Therefore, the optimality of the ML estimate is not guaranteed and
the parameters estimated may not result in the lowest error rates.

A reasonable criterion is rather than maximizing the likelihood of
the data given the model, we try to maximize the a posteriori
probability of the model given the data (Why?):

θMAP = arg max
θ

pθ(S|O)
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MMI Estimation

Let’s look at the previous equation in more detail. It is more
convenient to look at the problem as maximizing the logarithm
of the a posteriori probability across all the sentences:

θMMI = arg max
θ

∑
i

log pθ(Si|Oi)

= arg max
θ

∑
i

log
pθ(Oi|Si)p(Si)

pθ(Oi)

= arg max
θ

∑
i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|Sji )p(S

j
i )

where Sji refers to the jth possible sentence hypothesis given a
set of acoustic observations Oi

IBM EECS E6870: Advanced Speech Recognition 28



Why is this Called MMI Estimation?

There is a quantity in information theory called the Mutual
Information. It is defined as:

E

[
log

p(X,Y )
p(X)p(Y )

]
Since p(Si) does not depend on θ, the term can be dropped from
the previous set of equations, in which case the estimation formula
looks like the expression for mutual information, above.

When originally derived by Brown[1], the formulation was actually
in terms of mutual information, hence the name. However, it is
easier to quickly motivate in terms of maximizing the a posteriori
probability of the answers.
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Comparison to ML Estimation

In ordinary ML estimation, the objective is to find θ :

θML = arg max
θ

∑
i

log pθ(Oi|Si)

Therefore, in ML estimation, for each i we only need to make
computations over the correct sentence Si. In MMI estimation,
we need to worry about computing quanitities over all possibile
sentence hypotheses - a much more computationally intense
process.

Another advantage of ML over MMI is that there exists a
relatively simple algorithm - the forward-backward, or Baum-
Welch, algorithm, for iteratively estimating θ that is guaranteed
to converge. When originally formulated, MMI training had to be
done by painful gradient search.
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MMI Training Algorithm

A big breakthrough in the MMI area occured when it was shown
that a forward-backward-like algorithm existed for MMI training [2].
The derivation is complex but the resulting esitmation formulas are
surprisingly simple. We will just give the results for the estimation
of the means in a Gaussian HMM framework.

The MMI objective function is

∑
i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|Sji )p(S

j
i )

We can view this as comprising two terms, the numerator, and the
denominator. We can increase the objective function in two ways:

n Increase the contribution from the numerator term
n Decrease the contribution from the denominator term
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Basic idea:

n Collect estimation counts from both the numerator and
denominator terms

n Increase the objective function by subtracting the denominator
counts from the numerator counts.

More specifically, let:

θnummk =
∑
i,t

Oi(t)γnummki (t)

θdenmk =
∑
i,t

Oi(t)γdenmki(t)

where γnummki (t) are the counts for state k, mixture component
m, computed from running the forward-backward algorithm on
the “correct” sentence Si and γdenmki(t) are the counts computed
across all the sentence hypotheses corresponding to Si The MMI
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estimate for µmk is:

µkm =
θnummk − θdenmk +Dmkµ

′
mk

γnummk − γdenmk +Dmk

The factor Dmk is chose large enough to avoid problems with
negative count differences. Notice that ignoring the denominator
counts results in the normal mean estimate. A similar expression
exists for variance estimation.
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Computing the Denominator Counts

The major component of the MMI calculation is the computation of
the denominator counts. Theoretically, we must compute counts
for every possible sentence hypotheis. How can we reduce the
amount of computation?

1. From the previous lectures, realize that the set of sentence
hypotheses are just captured by a large HMM for the entire
sentence:
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Counts can be collected on this HMM the same way counts are
collected on the HMM representing the sentence corresponding
to the correct path.

2. Use a ML decoder to generate a “reasonable” number of
sentence hypotheses and then use FST operations such as
determinization and minimization to compactify this into an HMM
graph (lattice).

3. Do not regenerate the lattice after every MMI iteration.
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Other Computational Issues

Because we ignore correlation, the likelihood of the data tends
to be dominated by a very small number of lattice paths (Why?).
To increase the number of confusable paths, the likelihoods are
scaled with an exponential constant:

∑
i

log
pθ(Oi|Si)κp(Si)κ∑
j pθ(Oi|Sji )κp(S

j
i )κ

For similar reasons, a weaker language model (unigram) is
used to generate the denominator lattice. This also simplifies
denominator lattice generation.
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Results

Note that results hold up on a variety of other tasks as well.
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Variations and Embellishments

n MPE - Minimum Phone Error
n bMMI - Boosted MMI
n MCE - Minimum Classification Error
n fMPE/fMMI - feature-based MPE and MMI
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MPE

∑
i

∑
j pθ(Oi|Sj)κp(Sj)κA(Sref , Sj)∑

j pθ(Oi|Sji )κp(S
j
i )κ

n A(Sref , Sj is a phone-frame accuracy function. A measures the
number of correctly labeled frames in S

n Povey [3] showed this could be optimized in a way similar to that
of MMI.

n Usually works somewhat better than MMI itself
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bMMI

∑
i

log
pθ(Oi|Si)κp(Si)κ∑

j pθ(Oi|Sji )κp(S
j
i )κ exp(−bA(Sji , Sref))

n A is a phone-frame accuracy function as in MPE.
n Boosts contribution of paths with lower phone error rates.
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Various Comparisons

Language Arabic English English English
Domain Telephony News Telephony Parliament
Hours 80 50 175 80
ML 43.2 25.3 31.8 8.8
MPE 36.8 19.6 28.6 7.2
bMMI 35.9 18.1 28.3 6.8
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MCE

∑
i

f(log
pθ(Oi|Si)κp(Si)κ∑

j pθ(Oi|Sji )κp(S
j
i )κ exp(−bA(Sji , Si)

)

where f(x) = 1
1+e2ρx

n The sum over competing models explicitly excludes the correct
class (unlike the other variations)

n Approximates sentence error rate on training data
n Originally developed for grammar-based applications
n Comparable to MPE, never compared to bMMI
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fMPE/fMMI

yt = Ot +Mht

n ht are the set of Gaussian likelihoods for frame t. May be
clustered into a smaller number of Gaussians, may also be
combined across multiple frames.

n The training of M is exceedingly complex involving both the
gradients of your favorite objective function with respect to M

as well as the model parameters θ with multiple passes through
the data.

n Rather amazingly gives significant gains both with and without
MMI.

IBM EECS E6870: Advanced Speech Recognition 43



fMPE/fMMI Results

English BN 50 Hours, SI models

RT03 DEV04f RT04
ML 17.5 28.7 25.3
fBMMI 13.2 21.8 19.2
fbMMI+ bMMI 12.6 21.1 18.2

Arabic BN 1400 Hours, SAT Models

DEV07 EVAL07 EVAL06
ML 17.1 19.6 24.9
fMPE 14.3 16.8 22.3
fMPE+ MPE 12.6 14.5 20.1
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ROVER - Recognizer Output Voting Error
Reduction[1]

ROVER is a technique for combining recognizers together to
improve recognition accuracy. The concept came from the
following set of observations about 11 years ago:

n Compare errors of recognizers from two different sites
n Error rate performance similar - 44.9% vs 45.1%
n Out of 5919 total errors, 738 are errors for only recognizer A

and 755 for only recognizer B
n Suggests that some sort of voting process across recognizers

might reduce the overall error rate
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ROVER - Basic Architecture

n Systems may come from multiple sites
n Can be a single site with different processing schemes
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ROVER - Text String Alignment Process
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ROVER - Example
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ROVER - Form Confusion Sets
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ROVER - Aligning Strings Against a Network

Solution: Alter cost function so that there is only a substitution
cost if no member of the reference network matches the target
symbol.
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ROVER - Aligning Networks Against Networks

No so much a ROVER issue but will be important for confusion
networks.
Problem: How to score relative probabilities and deletions?
Solution: cost subst(s1,s2)= (1 - p1(winner(s2)) + 1 - p2(winner(s1))/2
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ROVER - Vote

n Main Idea: for each confusion set, take word with highest
frequency

SYS1 SYS2 SYS3 SYS4 SYS5 ROVER
44.9 45.1 48.7 48.9 50.2 39.7

n Improvement very impressive - as large as any significant
algorithm advance.
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ROVER - Example

n Error not guaranteed to be reduced.
n Sensitive to initial choice of base system used for alignment -

typically take the best system.
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ROVER - As a Function of Number of Systems [2]

n Alphabetical: take systems in alphabetical order.
n Curves ordered by error rate.
n Note error actually goes up slightly with 9 systems
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ROVER - Types of Systems to Combine

n ML and MMI
n Varying amount of acoustic context in pronunciation models

(Triphone, Quinphone)
n Different lexicons
n Different signal processing schemes (MFCC, PLP)
n Anything else you can think of!

Rover provides an excellent way to achieve cross-site collaboration
and synergy in a relatively painless fashion.
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Consensus Decoding[1] - Introduction

Problem

n Standard SR evaluation procedure is word-based
n Standard hypothesis scoring functions are sentence-based

Goal

n Explicitly minimize word error metric:

Ŵ = arg min
W

EP (R|A)[WE (W,R)] = arg min
W

∑
R

P (R|A)WE (W,R)

n For each candidate word, sum the word posteriors and pick the
word with the highest posterior probability.
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Consensus Decoding - Motivation

n Original work was done off N-best lists
n Lattices much more compact and have lower oracle error rates
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Consensus Decoding - Approach

Find a multiple alignment of all the lattice paths
Input Lattice:

SIL

SIL

SIL

SIL

SIL
SIL

VEAL

VERY

HAVE

HAVE

HAVE

MOVE

MOVE

HAVE

VERY

VERY

VERY

VERY

VERY

VEAL

I
I

I

FINE

OFTEN

OFTEN

FINE

IT

IT
FAST

Multiple Alignment:
I

-
VEAL 

VERY

FINE

OFTEN

FAST

HAVE

-
IT

MOVE
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Consensus Decoding Approach - cont’d

n Compute the word error between two hypotheses according to
the multiple alignment:

WE(W,R) ≈MWE(W,R)

n Find the consensus hypothesis:

WC = arg min
W∈W

∑
R∈W

P (R|A) ∗MWE(W,R)
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Consensus Decoding Approach - cont’d

Input:

SIL

SIL

SIL

SIL

SIL
SIL

VEAL

VERY

HAVE

HAVE

HAVE

MOVE

MOVE

HAVE

VERY

VERY

VERY

VERY

VERY

VEAL

I
I

I

FINE

OFTEN

OFTEN

FINE

IT

IT
FAST

Output:
I

-
VEAL 

VERY

FINE

OFTEN

FAST

HAVE

-
IT

MOVE
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Consensus Decoding Approach - Multiple
Alignment

n Equivalence relation over word hypotheses (links)
n Total ordering of the equivalence classes

Mathematical problem formulation:

n Define a partial order on sets of links which is consistent with
the precedence order in the lattice

n Cluster sets of links in the partial order to derive a total order
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Consensus Decoding Approach - Clustering
Algorithm

Initialize Clusters: a cluster consists of all the links having the
same starting time, ending time and word label

Intra-word Clustering: merge only clusters which are not in
relation and correspond to the same word

Inter-word Clustering: merge heterogeneous clusters which are
not in relation
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Obtaining the Consensus Hypothesis

Input:

SIL

SIL

SIL

SIL

SIL
SIL

VEAL

VERY

HAVE

HAVE

HAVE

MOVE

MOVE

HAVE

VERY

VERY

VERY

VERY

VERY

VEAL

I
I

I

FINE

OFTEN

OFTEN

FINE

IT

IT
FAST

Output:
(0.45)

(0.55)MOVE

HAVEI

-
VEAL 

VERY

FINE

OFTEN

FAST

(0.39)IT

(0.61)-

IBM EECS E6870: Advanced Speech Recognition 65



Confusion Networks

(0.45)

(0.55)MOVE

HAVEI

-
VEAL 

VERY

FINE

OFTEN

FAST

(0.39)IT

(0.61)-

n Confidence Annotations and Word Spotting
n System Combination
n Error Correction
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Consensus Decoding on DARPA Communicator

   40K     70K     280K 40K MLLR
14

16

18

20

22

24

Acoustic Model

W
or

d 
E

rr
or

 R
at

e 
(%

)

LARGE sLM2
SMALL sLM2
LARGE sLM2+C
SMALL sLM2+C
LARGE sLM2+C+MX
SMALL sLM2+C+MX
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Consensus Decoding on Broadcast News

Word Error Rate (%)
Avg F0 F1 F2 F3 F4 F5 FX

C- 16.5 8.3 18.6 27.9 26.2 10.7 22.4 23.7
C+ 16.0 8.5 18.1 26.1 25.8 10.5 18.8 22.5

Word Error Rate (%)
Avg F0 F1 F2 F3 F4 F5 FX

C- 14.0 8.6 15.8 19.4 15.3 16.0 5.7 44.8
C+ 13.6 8.5 15.7 18.6 14.6 15.3 5.7 41.1
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Consensus Decoding on Voice Mail

Word Error Rate (%)
System Baseline Consensus
S-VM1 30.2 28.8
S-VM2 33.7 31.2
S-VM3 42.4 41.6
ROVER 29.2 28.5
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System Combination Using Confusion Networks

If we have multiple systems, we can combine the concept of
ROVER with confusion networks as follows:

n Use the same process as ROVER to align confusion networks
n Take the overall confusion network and add the posterior

probabilities for each word.
n For each confusion set, pick the word with the highest summed

posteriors.
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System Combination Using Confusion Networks
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Results of Confusion-Network-Based System
Combination
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COURSE FEEDBACK

n Was this lecture mostly clear or unclear? What was the
muddiest topic?

n Other feedback (pace, content, atmosphere)?
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