#### Lecture 10 Advanced Language Modeling

#### Bhuvana Ramabhadran, Michael Picheny, Stanley F. Chen

IBM T.J. Watson Research Center Yorktown Heights, New York, USA {bhuvana,picheny,stanchen}@us.ibm.com

#### 17 November 2009



EECS 6870: Speech Recognition

Advanced Language Modeling

# Administrivia

- Lab 4 due Thursday, 11:59pm.
- Lab 3 handed back next week.
  - Answers:

/user1/faculty/stanchen/e6870/lab3\_ans/.

- Main feedback from last lecture.
  - Pace a little fast; derivations were "heavy".



# Where Are We?

#### Introduction

- 2 Techniques for Restricted Domains
- 3 Techniques for Unrestricted Domains
- 4 Maximum Entropy Models
- 5 Other Directions in Language Modeling
- An Apology

The Sec. 74

# Review: Language Modeling

• The Fundamental Equation of Speech Recognition.

$$\mathsf{class}(\mathbf{x}) = rg\max_{\omega} \ P(\omega|\mathbf{x}) = rg\max_{\omega} \ P(\omega)P(\mathbf{x}|\omega)$$

- P(ω = w<sub>1</sub> ··· w<sub>l</sub>) models frequencies of word sequences w<sub>1</sub> ··· w<sub>l</sub>.
- Helps disambiguate acoustically ambiguous utterances.
  - e.g., THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD



# **Review: Language Modeling**

- Small vocabulary, restricted domains.
  - Write grammar; convert to finite-state acceptor.
  - Or possibly *n*-gram models.
- Large vocabulary, unrestricted domains.
  - *N*-gram models all the way.



$$P(\omega = w_1 \cdots w_l)$$

$$= P(w_1)P(w_2|w_1)P(w_3|w_1w_2)\cdots P(w_l|w_1\cdots w_{l-1})$$

$$= \prod_{i=1}^{l} P(w_i|w_1\cdots w_{i-1})$$

 Markov assumption: identity of next word depends only on last n - 1 words, say n=3

$$P(w_i|w_1\cdots w_{i-1}) \approx P(w_i|w_{i-2}w_{i-1})$$



#### Review: N-Gram Models

Maximum likelihood estimation

$$P_{MLE}(w_i|w_{i-2}w_{i-1}) = \frac{count(w_{i-2}w_{i-1}w_i)}{\sum_{w_i} count(w_{i-2}w_{i-1}w_i)} = \frac{count(w_{i-2}w_{i-1}w_i)}{count(w_{i-2}w_{i-1})}$$

. /

Smoothing.

Better estimation in sparse data situations.



# Spam, Spam, Spam, Spam, and Spam

- N-gram models are robust.
  - Assigns nonzero probs to all word sequences.
  - Handles unrestricted domains.
- *N*-gram models are easy to build.
  - Can train on plain unannotated text.
  - No iteration required over training corpus.
- *N*-gram models are scalable.
  - Can build models on billions of words of text, fast.
  - Can use larger *n* with more data.
- N-gram models are great!
  - Or are they?



#### The Dark Side of *N*-Gram Models

- In fact, *n*-gram models are deeply flawed.
- Let us count the ways.



# What About Short-Distance Dependencies?

- Poor generalization.
  - Training data contains sentence: LET'S EAT STEAK ON TUESDAY
  - Test data contains sentence: LET'S EAT SIRLOIN ON THURSDAY
  - Occurrence of STEAK ON TUESDAY ...
  - Doesn't affect estimate of P(THURSDAY | SIRLOIN ON)
- Collecting more data won't fix this.
  - (Brown *et al.*, 1992) 350MW training ⇒ 15% trigrams unseen.



#### Medium-Distance Dependencies?

- "Medium-distance"  $\Leftrightarrow$  within sentence.
- Fabio example:

FABIO, WHO WAS NEXT IN LINE, ASKED IF THE TELLER SPOKE ...

• Trigram model: P(ASKED | IN LINE)



12 N A 12

### Medium-Distance Dependencies?

- Random generation of sentences with  $P(\omega = w_1 \cdots w_l)$ :
  - Roll a K-sided die where ...
  - Each side  $s_{\omega}$  corresponds to a word sequence  $\omega \dots$
  - And probability of landing on side  $s_{\omega}$  is  $P(\omega)$
- Reveals what word sequences model thinks is likely.



12 N A 12

# Trigram Model, 20M Words of WSJ

AND WITH WHOM IT MATTERS AND IN THE SHORT -HYPHEN TERM AT THE UNIVERSITY OF MICHIGAN IN A GENERALLY QUIET SESSION THE STUDIO EXECUTIVES LAW REVIEW WILL FOCUS ON INTERNATIONAL UNION OF THE STOCK MARKET HOW FEDERAL LEGISLATION **"DOUBLE-QUOTE SPENDING** THE LOS ANGELES THE TRADE PUBLICATION SOME FORTY %PERCENT OF CASES ALLEGING GREEN PREPARING FORMS NORTH AMERICAN FREE TRADE AGREEMENT (LEFT-PAREN NAFTA )RIGHT-PAREN ,COMMA WOULD MAKE STOCKS A MORGAN STANLEY CAPITAL INTERNATIONAL PERSPECTIVE , COMMA GENEVA "DOUBLE-QUOTE THEY WILL STANDARD ENFORCEMENT THE NEW YORK MISSILE FILINGS OF BUYERS



★ ∃ > < ∃ >

#### Medium-Distance Dependencies?

- Real sentences tend to "make sense" and be coherent.
  - Don't end/start abruptly.
  - Have matching quotes.
  - Are about a single subject.
  - Some are even grammatical.
- Why can't n-gram models model this stuff?



#### Long-Distance Dependencies?

- "Long-distance"  $\Leftrightarrow$  between sentences.
- See previous examples.
- In real life, adjacent sentences tend to be on same topic.
  - Referring to same entities, e.g., Clinton.
  - In a similar style, *e.g.*, formal *vs.* conversational.
- Why can't n-gram models model this stuff?
- $P(\omega = w_1 \cdots w_l)$  = frequency of  $w_1 \cdots w_l$  as sentence?



# Recap: Shortcomings of *N*-Gram Models

- Not great at modeling short-distance dependencies.
- Not great at modeling medium-distance dependencies.
- Not great at modeling long-distance dependencies.
- Basically, *n*-gram models are just a dumb idea.
  - They are an insult to language modeling researchers.
  - Are great for me to poop on.
  - N-gram models, ... you're fired!



#### Introduction

#### 2 Techniques for Restricted Domains

- 3 Techniques for Unrestricted Domains
- 4 Maximum Entropy Models
- 5 Other Directions in Language Modeling
- An Apology

The Sec. 74

# Where Are We?

#### Techniques for Restricted Domains

- Embedded Grammars
- Using Dialogue State
- Confidence and Rejection



# Improving Short-Distance Modeling

- Issue: data sparsity/lack of generalization.
   I WANT TO FLY FROM BOSTON TO ALBUQUERQUE
   I WANT TO FLY FROM AUSTIN TO JUNEAU
- Point: (handcrafted) grammars are good for this:

 $\begin{array}{rrr} [\texttt{sentence}] & \rightarrow & \texttt{I WANT TO FLY FROM [city] TO [city]} \\ [\texttt{city}] & \rightarrow & \texttt{AUSTIN} \mid \texttt{BOSTON} \mid \texttt{JUNEAU} \mid \ldots \end{array}$ 

- Can we combine robustness of *n*-gram models ...
  - With generalization ability of grammars?



# Combining N-Gram Models with Grammars

- Replace cities and dates, say, in training set with *class* tokens:
  - I WANT TO FLY TO [CITY] ON [DATE]
- Build *n*-gram model on new data, *e.g.*, *P*([DATE] | [CITY] ON)
- Instead of *n*-gram model on words ...
  - We have *n*-gram model over words and *classes*.
- To model probability of class expanding to particular token, use WFSM:



# The Model

- Given word sequence  $w_1 \cdots w_l$ .
  - Substitute in classes to get class/word sequence  $C = c_1 \cdots c_{l'}$ .

I WANT TO FLY TO [CITY] ON [DATE]

$$P(w_1 \cdots w_l) = \sum_{C} \prod_{i=1}^{l'+1} P(c_i | c_{i-2} c_{i-1}) \times P(\operatorname{words}(c_i) | c_i)$$

- Sum over all possible ways to substitute in classes?
  - e.g., treat MAY as verb or date?
  - Viterbi approximation.



12 N A 12

# Implementing Embedded Grammars

- Need final LM as WFSA.
  - Convert word/class *n*-gram model to WFSM.
  - Compose with transducer expanding each class ...
  - To its corresponding WFSM.
- Static or on-the-fly composition?
  - What if city grammar contains 100,000 cities?

# Recap: Embedded Grammars

- Improves modeling of short-distance dependencies.
- Improves modeling of medium-distance dependencies, *e.g.*,
   I WANT TO FLY TO WHITE PLAINS AIRPORT IN FIRST CLASS
   I WANT TO FLY TO [CITY] IN FIRST CLASS
- More robust than grammars alone.



# Where Are We?

#### Techniques for Restricted Domains

- Embedded Grammars
- Using Dialogue State
- Confidence and Rejection



EECS 6870: Speech Recognition

4 3 > 4 3

# Modeling Dependencies Across Sentences

- Many apps involve computer-human dialogue.
  - We know what the computer said.
  - We have a good guess of what the human said before.
  - This gives us lots of hints ...
  - About what the human will say next.
- Directed dialogue.
  - Computer makes it clear what the human should say.
  - e.g., what day do you want to fly to boston?
- Undirected or mixed initiative dialogue.
  - User has option of saying arbitrary things at any point.
  - e.g., HOW MAY I HELP YOU?



12 N A 12

#### Modeling Dependencies Across Sentences

- Switch LM's based on context.
  - *e.g.*, IS THIS FLIGHT OK?
  - e.g., WHICH CITY DO YOU WANT TO FLY TO?
  - If use "correct" LM, accuracy goes way up.
- Boost probabilities of entities mentioned before in dialogue?



# There Are No Bad Systems, Only Bad Users

- What if the user doesn't obey the current grammar?
  - Or any grammar?
- e.g., system asks: IS THIS FLIGHT OK?
  - User responds: I WANT TO TALK TO AN OPERATOR
  - User responds: HELP, MY PANTS ARE ON FIRE!
- More generally, what if we make ASR errors?
  - Whether utterances are in-grammar or not?
- To gracefully recover from errors ...
  - We need to know when errors are being made.



# Where Are We?

#### Techniques for Restricted Domains

- Embedded Grammars
- Using Dialogue State
- Confidence and Rejection



★ ∃ > < ∃ >

# **Rejecting Hypotheses With Low Confidence**

- *e.g.*, I DID NOT UNDERSTAND; COULD YOU REPEAT?
- How to tell when you have low confidence?
  - Low acoustic likelihood  $P(\mathbf{x}|\omega)$ ?
- Better: posterior probability.
  - How much model prefers hypothesis  $\omega$  over all others.  $P(\omega|\mathbf{x}) = \frac{P(\mathbf{x}|\omega)P(\omega)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|\omega)P(\omega)}{\sum_{\omega^*} P(\mathbf{x}|\omega^*)P(\omega^*)}$



モトイモト

# **Computing Posterior Probabilities**

$$P(\omega|\mathbf{x}) = \frac{P(\mathbf{x}|\omega)P(\omega)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|\omega)P(\omega)}{\sum_{\omega^*} P(\mathbf{x}|\omega^*)P(\omega^*)}$$

• Need to sum over sufficiently rich set of hypotheses  $\omega^*$ .

- Generate lattice of most likely hypotheses.
- Which algorithm to compute denominator?
- For out-of-grammar utterances, use garbage models.
  - Simple models that kind of cover any utterance.
- Issue: language model weight or acoustic model weight?



# Recap: Confidence and Rejection

- Accurate rejection essential for usable dialogue systems.
- Posterior probabilities are more or less state-of-the-art.
- Can we use confidence to improve WER?
  - *e.g.*, other information sources, like back-end database. I WANT TO FLY FROM FORT WORTH TO BOSTON (0.4) I WANT TO FLY FROM FORT WORTH TO AUSTIN (0.3) I WENT TO FLY FROM FORT WORTH TO AUSTIN (0.3)
  - (Encode database directly in LM?)

#### Introduction

- 2 Techniques for Restricted Domains
- 3 Techniques for Unrestricted Domains
- 4 Maximum Entropy Models
- 5 Other Directions in Language Modeling
- An Apology



The Sec. 74

# Where Are We?

#### Techniques for Unrestricted Domains

- Short-Distance Dependencies: Word Classes
- Aside: Decoding With Advanced LM's
- Medium-Distance Dependencies: Grammars
- Long-Distance Dependencies: Adaptation
- Linear Interpolation Revisited



4 3 5 4 3 5 5

#### Class N-Gram Models

- Word *n*-gram models do not generalize well. LET'S EAT STEAK ON TUESDAY LET'S EAT SIRLOIN ON THURSDAY
  - Occurrence of STEAK ON TUESDAY ...
  - Doesn't affect estimate of *P*(THURSDAY | SIRLOIN ON)
- Embedded grammars: *n*-gram models on words and classes.
  - Counts shared among members of same class. LET'S EAT [FOOD] ON [DAY-OF-WEEK]



#### Class N-Gram Models

- Embedded grammars, typically.
  - Classes can contain phrases, *e.g.*, THIS AFTERNOON.
  - Not all words belong to classes.
  - Same word/phrase may belong to multiple classes.
  - Class grammars are manually constructed.
- Class *n*-gram models, typically.
  - Classes only contain single words.
  - All words are assigned to a class . . .
  - And only a single class.
  - Classes are induced automatically from data.

$$P(w_1 \cdots w_l) = \sum_{C} \prod_{i=1}^{l'+1} P(c_i | c_{i-2} c_{i-1}) \times P(w_i | c_i)$$



### How To Assign Words To Classes?

- With vocab sizes of 50,000+, don't want to do this by hand.
- Basic idea: similar words tend to occur in similar contexts.
  - e.g., beverage words occur to right of word DRINK
- Use one of the zillions of existing clustering algorithms?
  - *e.g.*, map each word to point in  $\mathcal{R}^k \dots$
  - Based on frequency of words in fixed positions to left and right.


## The Usual Way (Brown et al., 1992)

#### Maximum likelihood!

- Fix number of classes, *e.g.*, 1000.
- Choose class assignments to maximize training likelihood ...
- With respect to class bigram model:

$$P(w_1 \cdots w_l) = \prod_{i=1}^{l'+1} P(c_i | c_{i-1}) \times P(w_i | c_i)$$

- Naturally groups words occurring in similar contexts.
- Directly optimizes objective function we care about?
  - Optimize classes for class bigram model ...
  - Regardless of order of final class *n*-gram model.



## How To Do Search?

- Come up with initial assignment of words to classes.
- Consider reassigning each word to each other class.
  - Do move if helps likelihood.
- Stop when no more moves help.



B 5 4 B

#### Example Classes, 900MW Training Data

THE TONIGHT'S SARAJEVO'S JUPITER'S PLATO'S CHILDHOOD'S GRAVITY'S EVOLUTION'S

OF

- AS BODES AUGURS BODED AUGURED
- HAVE HAVEN'T WHO'VE
- DOLLARS BARRELS BUSHELS DOLLARS' KILOLITERS
- MR. MS. MRS. MESSRS. MRS
- HIS SADDAM'S MOZART'S CHRIST'S LENIN'S NAPOLEON'S JESUS'
- ARISTOTLE'S DUMMY'S APARTHEID'S FEMINISM'S
- ROSE FELL DROPPED GAINED JUMPED CLIMBED SLIPPED TOTALED
  - EASED PLUNGED SOARED SURGED TOTALING AVERAGED TUMBLED SLID SANK SLUMPED REBOUNDED PLUMMETED DIPPED FIRMED RETREATED TOTALLING LEAPED SHRANK SKIDDED ROCKETED SAGGED LEAPT ZOOMED SPURTED RALLIED TOTALLED NOSEDIVED



### Class N-Gram Model Performance

- On small training sets, better than word *n*-gram models.
- On large training sets, worse than word *n*-gram models.
- Can we combine the two?



## **Combining Multiple Models**

• *e.g.*, interpolated smoothing.

 $P_{\text{interp}}(\textbf{\textit{w}}_i|\textbf{\textit{w}}_{i-1}) = \lambda_{\textbf{\textit{w}}_{i-1}}P_{\text{MLE}}(\textbf{\textit{w}}_i|\textbf{\textit{w}}_{i-1}) + (1-\lambda_{\textbf{\textit{w}}_{i-1}})P_{\text{interp}}(\textbf{\textit{w}}_i)$ 

- Linear interpolation: A "hammer" for combining models.
  - Fast.
  - Combined model probabilities sum to 1 correctly.
  - Easy to train  $\lambda$  to maximize likelihood of data. (How?)
  - Effective.



3 ► < 3 ► </p>

## Combining Word and Class N-Gram Models

• Gain over either model alone.

• Conceivably,  $\lambda$  can be history-dependent.

$$\begin{aligned} & \mathcal{P}_{\text{combine}}(\textit{\textit{W}}_i | \textit{\textit{W}}_{i-2} \textit{\textit{W}}_{i-1}) = \lambda \times \mathcal{P}_{\text{word}}(\textit{\textit{W}}_i | \textit{\textit{W}}_{i-2} \textit{\textit{W}}_{i-1}) + \\ & (1 - \lambda) \times \mathcal{P}_{\text{class}}(\textit{\textit{W}}_i | \textit{\textit{W}}_{i-2} \textit{\textit{W}}_{i-1}) \end{aligned}$$

|                      | training set (sents.) |       |       |       |  |  |
|----------------------|-----------------------|-------|-------|-------|--|--|
|                      | 1k                    | 10k   | 100k  | 900k  |  |  |
| word <i>n</i> -gram  | 34.5%                 | 30.4% | 25.7% | 22.3% |  |  |
| class <i>n</i> -gram | 34.8%                 | 30.1% | 26.3% | 23.9% |  |  |
| interpolated         | 34.0%                 | 29.0% | 24.7% | 21.6% |  |  |



### **Practical Considerations**

- Smaller than word *n*-gram models.
  - N-gram model over vocab of  $\sim$ 1000 rather than  $\sim$ 50000
  - Few additional parameters:  $P(w_i | class(w_i))$ .
- Easy to add new words to vocabulary.
  - Only need to initialize  $P(w_{new} | class(w_{new}))$ .
- How to decode with class *n*-gram models?



## Where Are We?

Techniques for Unrestricted Domains

Short-Distance Dependencies: Word Classes

#### Aside: Decoding With Advanced LM's

- Medium-Distance Dependencies: Grammars
- Long-Distance Dependencies: Adaptation
- Linear Interpolation Revisited



4 3 5 4 3

### Decoding With Class N-Gram Models

- (First-pass) decoding.
  - Need LM expressed as WFSA.
  - Take class *n*-gram WFSA ...
  - Compose with transducer rewriting each class as all members.
  - 50000 words/1000 classes = 50 words/class.
- Currently, only word *n*-gram models and grammars.



## Lattice Rescoring

- Can be implemented as weighted composition.
  - Again, want LM as WFSA, but need not be static.
- On-the-fly composition.
  - Generate states/arcs of machine on demand.
- More generally, on-the-fly *expansion*.
  - Generate states/arcs of machine on demand ...
  - Regardless of how we're doing the expansion.
- Example: word or class *n*-gram models.
  - *e.g.*, one state for each (n 1)-gram history  $w_{i-2}w_{i-1}$ .
  - Outgoing arc for each  $w_i$  with prob  $P(w_i|w_{i-2}w_{i-1})$ .
  - Avoid backoff approximation from WFSA conversion.



# **N-Best List Rescoring**

- For each hypothesis  $w_1 \dots w_l$  in *N*-best list ...
  - Compute  $P_{LM}(w_1 \dots w_l)$ .
- If you can't do this fast, your LM ain't real practical.



12 N A 12

## Where Are We?

#### Techniques for Unrestricted Domains

- Short-Distance Dependencies: Word Classes
- Aside: Decoding With Advanced LM's
- Medium-Distance Dependencies: Grammars
- Long-Distance Dependencies: Adaptation
- Linear Interpolation Revisited



4 3 5 4 3

## Modeling Medium-Distance Dependencies

- N-gram models predict identity of next word ...
  - Based on identities of words in fixed positions in past.
  - e.g., the two words immediately to left.
- Important words for prediction may occur elsewhere.
  - Important word for predicting SAW is DOG.





## Modeling Medium-Distance Dependencies

- Important words for prediction may occur elsewhere.
  - Important word for predicting SAW is DOG.



Instead of condition on a fixed number of words back ...

• Condition on words in fixed positions in parse tree!?

## Using Grammatical Structure

- Each constituent has a *headword*.
  - Condition on preceding exposed headwords?



12 N A 12

# Using Grammatical Structure

• Predict next word based on preceding *exposed* headwords.

| Р( | THE | $\triangleright$ | $\triangleright$ | ) |
|----|-----|------------------|------------------|---|
| Р( | DOG | $\triangleright$ | THE              | ) |
| Р( | ON  | $\triangleright$ | DOG              | ) |
| Р( | TOP | DOG              | ON               | ) |
| Р( | SAW | $\triangleright$ | DOG              | ) |
| Р( | ROY | DOG              | SAW              | ) |

- Picks most relevant preceding words, regardless of position.
- Structured language model (Chelba and Jelinek, 2000).

## Hey, Where Do Parse Trees Come From?

• Come up with grammar rules:

$$S \rightarrow NP VP$$

9

$$\mathsf{NP} \rightarrow \mathsf{DET} \mathsf{N} | \mathsf{PN} | \mathsf{NP} \mathsf{PP}$$

- $N \quad \rightarrow \quad \text{dog} \mid \text{cat}$
- These describe legal constituents/parse trees.
- Come up with probabilistic parameterization.
  - Way of assigning probabilities to parse trees.
- Can extract rules and train probabilities using a treebank.
  - e.g., Penn Treebank (Switchboard, WSJ text).



## Structured Language Modeling

- Decoding: another hidden variable to worry about.
  - *N*-gram models: find most likely word sequence.
  - Structured LM: find most likely word sequence and parse tree.
- Not yet implemented in one-pass decoder.
- Evaluated via lattice rescoring.
  - On-the-fly expansion of equivalent WFSA.



# So, Does It Work?

- Um, -cough-, kind of.
- Issue: training is expensive.
  - SLM trained on 20M words of WSJ text.
  - Trigram model trained on 40M words of WSJ text.
- Lattice rescoring.
  - SLM: 14.5% WER.
  - Trigram: 13.7% WER.
- Well, can we get gains of both?
  - SLM may ignore preceding two words even when useful.
  - Linear interpolation  $!? \Rightarrow 12.9\%$

# Recap: Structured Language Modeling

- Grammatical language models not yet ready for prime time.
  - Need manually-parsed data to bootstrap parser.
  - Training is expensive; difficult to train on industrial-strength training sets.
  - Decoding is expensive and difficult to implement.
  - A lot of work for little gain; easier to achieve gain with other methods.
- If you have an exotic LM and need publishable results ...
  - Interpolate it with a trigram model.



## Where Are We?

Techniques for Unrestricted Domains

- Short-Distance Dependencies: Word Classes
- Aside: Decoding With Advanced LM's
- Medium-Distance Dependencies: Grammars
- Long-Distance Dependencies: Adaptation
- Linear Interpolation Revisited



4 3 5 4 3

# Modeling Long-Distance Dependencies

A group including Phillip C. Friedman, a Gardena, California, investor, raised its stake in Genisco Technology Corporation to seven. five % of the common shares outstanding.

Neither officials of Compton , California - based Genisco , an electronics manufacturer , nor Mr. Friedman could be reached for comment .

In a Securities and Exchange Commission filing , the group said it bought thirty two thousand common shares between August twenty fourth and last Tuesday at four dollars and twenty five cents to five dollars each .

The group might buy more shares , its filing said .

According to the filing , a request by Mr. Friedman to be put on Genisco's board was rejected by directors .

*Mr.* Friedman has requested that the board delay Genisco's decision to sell its headquarters and consolidate several divisions until the decision can be " much more thoroughly examined to determine if it is in the company's interests , " the filing said .

## Modeling Long-Distance Dependencies

- Observation: words and phrases in previous sentences ....
  - Are more likely to occur in future sentences.
  - *e.g.*, GENISCO, GENISCO'S, FRIEDMAN, SHARES.
- Language model adaptation.
  - Adapt language model to current style or topic.
  - Similar in spirit to acoustic adaptation.
- Distribution over single sentences  $P(\omega = w_1 \cdots w_l) \dots$ 
  - $\Rightarrow$  Distribution over sentence sequences  $P(\vec{\omega} = \omega_1 \cdots \omega_L).$



## Cache Language Models

- How to boost probabilities of recently-occurring words?
- Idea: build language model on recent words.
  - *e.g.*, last *k*=500 words in current document.
- How to combine with primary language model?
  - Linear interpolation.

$$\begin{aligned} & \mathcal{P}_{\text{cache}}(\textit{w}_{i} | \textit{w}_{i-2} \textit{w}_{i-1}, \textit{w}_{i-500}^{i-1}) = \\ & \lambda \times \mathcal{P}_{\text{static}}(\textit{w}_{i} | \textit{w}_{i-2} \textit{w}_{i-1}) + (1 - \lambda) \times \mathcal{P}_{\textit{w}_{i-500}^{i-1}}(\textit{w}_{i} | \textit{w}_{i-2} \textit{w}_{i-1}) \end{aligned}$$

•  $\Rightarrow$  Cache language models (Kuhn and De Mori, 1990).

## Beyond Cache Language Models

- What's the problem?
  - Does seeing THE boost the probability of THE?
  - Does seeing MATSUI boost the probability of YANKEES?
- Can we induce which words trigger which other words?
  - Let's say your training corpus is subdivided into articles.
  - How might one find trigger pairs?



12 N A 12

# Trigger Language Models

- How to combine with primary language model?
  - Linear interpolation?
  - Give a word a unigram count every time triggered?

$$\begin{aligned} \mathbf{P}_{\mathsf{cache}}(\mathbf{w}_i | \mathbf{w}_{i-2} \mathbf{w}_{i-1}, \mathbf{w}_{i-500}^{i-1}) &= \\ \lambda \times \mathbf{P}_{\mathsf{static}}(\mathbf{w}_i | \mathbf{w}_{i-2} \mathbf{w}_{i-1}) + (\mathbf{1} - \lambda) \times \mathbf{P}_{\mathbf{w}_{i-500}^{i-1}}(\mathbf{w}_i) \end{aligned}$$

• Another way: maximum entropy models (Lau et al., 1993).

## Beyond Trigger Language Models

- Some groups of words are mutual triggers.
  - *e.g.*, IMMUNE, LIVER, TISSUE, TRANSPLANTS, etc.
  - Corresponding to a *topic*, *e.g.*, medicine.
  - Difficult to discover all pairwise relations: sparse data.
- May not want to trigger words based on a single word event.
  - Some words are ambiguous.
  - *e.g.*, LIVER  $\Rightarrow$  TRANSPLANTS OF CHICKEN?
- $\Rightarrow$  Topic language models.



12 N A 12

## **Topic Language Models**

- Assign a topic (or topics) to each document in training corpus.
  - *e.g.*, politics, medicine, Monica Lewinsky, cooking, etc.
- For each topic, build a topic-specific language model.
  - *e.g.*, train *n*-gram model only on documents labeled with that topic.
- Decoding.
  - Try to guess current topic (*e.g.*, from past utterances).
  - Use appropriate topic-specific language model(s).



3 + 4 = +

# Example: Seymore and Rosenfeld (1997)

- Assigning topics to documents.
  - One way: manual labels, *e.g.*, Broadcast News corpus.
  - Another way: automatic clustering.
  - Map each document to point in  $\mathcal{R}^{|V|} \dots$
  - Based on frequency of each word in vocab.
- Guessing the current topic.
  - Select topic LM's that maximize likelihood of adaptation data.
  - Adapt on previous utterances or first-pass decoding.



## Example: Seymore and Rosenfeld (1997)

- Topic LM's may be sparse.
  - Combine with general LM.
- How to combine selected topic LM's and general LM?
  - Linear interpolation!

$$\mathcal{P}_{\text{topic}}(\mathbf{w}_i | \mathbf{w}_{i-2} \mathbf{w}_{i-1}) = \lambda_0 \mathcal{P}_{\text{general}}(\mathbf{w}_i | \mathbf{w}_{i-2} \mathbf{w}_{i-1}) + \sum_{t=1}^T \lambda_t \mathcal{P}_t(\mathbf{w}_i | \mathbf{w}_{i-2} \mathbf{w}_{i-1})$$



ŀ

#### So, Do Cache Models Work?

- Um, -cough-, kind of.
- Good PP gains (up to  $\sim$ 20%).
- WER gains: little to none.
  - e.g., (lyer and Ostendorf, 1999; Goodman, 2001).



12 N A 12

## What About Trigger and Topic Models?

- Triggers.
  - Good PP gains (up to  ${\sim}30\%$ )
  - WER gains: unclear; e.g., (Rosenfeld, 1996).
- Topic models.
  - Good PP gains (up to  ${\sim}30\%$ )
  - WER gains: up to 1% absolute.
  - e.g., (lyer and Ostendorf, 1999; Goodman, 2001).



The Sec. 74

## Recap: Adaptive Language Modeling

- ASR errors can cause adaptation errors.
  - In lower WER domains, LM adaptation may help more.
- Large PP gains, but small WER gains.
  - What's the dillio?
- Increases system complexity for ASR.
  - e.g., how to adapt LM scores with static decoding?
- Unclear whether worth the effort.
  - Not used in most products/live systems?
  - Not used in most research evaluation systems.



## Recap: LM's for Unrestricted Domains

- Short-distance dependencies.
  - Interpolate class *n*-gram with word *n*-gram.
  - <1% absolute WER gain; pain to implement.
- Medium-distance dependencies.
  - Interpolate grammatical LM with word *n*-gram.
  - <1% absolute WER gain; pain to implement.
- Long-distance dependencies.
  - Interpolate adaptive LM with static *n*-gram.
  - <1% absolute WER gain; pain to implement.



## Where Are We?

#### Techniques for Unrestricted Domains

- Short-Distance Dependencies: Word Classes
- Aside: Decoding With Advanced LM's
- Medium-Distance Dependencies: Grammars
- Long-Distance Dependencies: Adaptation
- Linear Interpolation Revisited



4 3 5 4 3 5 5

## Linear Interpolation Revisited

- If short, medium, and long-distance modeling ...
  - All achieve  $\sim$ 1% WER gain . . .
  - What happens if we combine them all in one system ...
  - Using our hammer: linear interpolation?
- "A Bit of Progress in Language Modeling" (Goodman, 2001).
  - Combined higher order *n*-grams, skip *n*-grams, class *n*-grams, cache models, and sentence mixtures.
  - Achieved 50% reduction in PP over baseline trigram.
  - $\Rightarrow \sim 1\%$  WER gain (WSJ *N*-best list rescoring).



モトイモト
# What Up?

- Humans use short, medium, and long-distance info.
  - Short: BUY BEER, PURCHASE WINE.
  - Medium: complete, grammatical sentences.
  - Long: coherent sequences of sentences.
- Sources of info seem complementary.
- And yet, linear interpolation fails to yield cumulative gains.
  - Maybe, instead of a hammer, we need a Swiss army knife.



#### A Thought Experiment: Scenario 1

- Consider a unigram LM with triggers.
- Talking to two people, each on a different topic.
  - P(OPERA|NEW YORK) = 0.01
  - P(OPERA|DETROIT) = 0.001
  - P(OPERA|NEW YORK, DETROIT) = ?
- e.g., hidden variables; mutually exclusive histories.

$$P(y|x_1, x_2) = \lambda_1 P(y|x_1) + \lambda_2 P(y|x_2)$$



12 N A 12

### A Thought Experiment: Scenario 2

- Talking to one person about two topics simultaneously.
  - P(LEWINSKY|CLINTON) = 0.01
  - P(LEWINSKY|POLITICS) = 0.001
  - *P*(LEWINSKY|CLINTON, POLITICS) = ?
- e.g., dependent topics, one subsuming the other.

$$P(y|x_1,x_2)=P(y|x_1)$$



**E N 4 E N** 

#### A Thought Experiment: Scenario 3

- Talking to one person about two topics simultaneously.
  - P(MATSUI|YANKEES) = 0.01
  - *P*(MATSUI|JAPAN) = 0.001
  - P(MATSUI|YANKEES, JAPAN) = ?

• e.g., independent topics, partially overlapping.

$$P(y|x_1, x_2) = \frac{P(x_1, x_2|y)P(y)}{P(x_1, x_2)}$$
  
=  $\frac{P(x_1|y)P(x_2|y)}{P(x_1)P(x_2)}P(y)$   
=  $P(y)\frac{P(y|x_1)}{P(y)}\frac{P(y|x_2)}{P(y)}$ 



## **Combining Information Sources**

- Point: the correct way to combine multiple histories ....
  - Very much depends on their relationship!
- The old way.
  - Use linear interpolation ...
  - Because it's easy.
- A new way?
  - Can we actually use some principles!?



## Where Are We?

#### Introduction

- 2 Techniques for Restricted Domains
- 3 Techniques for Unrestricted Domains



5 Other Directions in Language Modeling

#### An Apology

The Sec. 74

## Where Are We?

#### 4 Maximum Entropy Models

- Introduction
- Smoothing and N-Gram Models, Revisited
- Results



A B F A B F

4 A N

#### What Do We Really Know?

- Let's say we have some training data  $\mathcal{D}$ .
  - $y_i$  = current word;  $x_i$  = preceding words.

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_D, y_D)\}$ 

- We want to build a conditional LM:  $P^*(y_i|x_i)$ .
- Say the word MIX follows the word MEOW ....
  - 40 times in the training data.
- What does this imply about what we want for  $P^*(y_i|x_i)$ ?

 $count(MEOW) \times P^*_{avg}(MIX|MEOW) \approx 40$ 

$$P_{\text{avg}}^{*}(\text{MIX}|\text{MEOW}) = \frac{1}{\text{count}(\text{MEOW})} \sum_{d:\text{MEOW} \text{ last word of } x_d} P^{*}(\text{MIX}|x_d)$$

80

#### Constraints

- Each *constraint* can be viewed as encoding a piece of info.  $count({\tt MEOW}) \times P^*_{\rm avg}({\tt MIX}|{\tt MEOW}) = 40$
- Can combine multiple sources of info ...
  - By just making lots of constraints.
- The point: We want each constraint to hold ...
  - Regardless of what other constraints we try to enforce.

#### **Constraint-Based Modeling**

- The old way.
  - Use linear interpolation ...
  - Because it's easy.
- The new way.
  - Find single model that satisfies ...
  - All of our constraints simultaneously.



## There Can Be Only One

- There may be lots of models  $P^*(y_i|x_i) \dots$ 
  - That satisfy a given set of constraints.
- Example: building a trigram model  $P^*(y_i|x_i) \dots$ 
  - Given five bigram frequency constraints.
- Which model to pick?
  - The one with the maximum entropy (Jaynes, 1957).



B N 4 B N

# Maximum Entropy

- Entropy  $\Leftrightarrow$  uniformness  $\Leftrightarrow$  least assumptions.
- Maximum entropy model given some constraints ...
  - Models exactly what you know, and assumes nothing more.
- The entropy H(P) of  $P(\cdot)$  is

$$H(P) = -\sum_{x} P(x) \log P(x)$$

• For conditional distribution, maximize (given training  $\mathcal{D}$ ):

$$H(P^*) = -\sum_d \sum_y P^*(y|x_d) \log P^*(y|x_d)$$



3 x 4 3

# Finding the Maximum Entropy Model

- A general way of representing linear constraints.
- For each constraint, make a *feature* function  $f_i(x, y) \dots$ 
  - That is 1 when the feature is active, 0 otherwise.
- Then, constraints have the form:

$$\sum_{d} \sum_{y} P^{*}(y|x_{d}) f_{i}(x_{d}, y) = \sum_{d} f_{i}(x_{d}, y_{d})$$
$$\mathcal{D} = \{(x_{1}, y_{1}), ..., (x_{D}, y_{D})\}$$



#### **Expressing Linear Constraints**

What we had before.

$$\mathsf{count}(\mathsf{MEOW}) imes P^*_\mathsf{avg}(\mathsf{MIX}|\mathsf{MEOW}) = 40$$
 .

$$P^*_{\mathsf{avg}}(\mathsf{MIX}|\mathsf{MEOW}) = rac{1}{\mathsf{count}(\mathsf{MEOW})}\sum_{d:\mathsf{MEOW}\in x_d} P^*(\mathsf{MIX}|x_d)$$

Rearranged.

 $f_i(x, y) = \begin{cases} 1 & \text{if } y = \text{MIX and MEOW last word of } x \\ 0 & \text{otherwise} \end{cases}$  $\sum_d \sum_y P^*(y|x_d) f_i(x_d, y) = \sum_d f_i(x_d, y_d)$ 

## Finding the Maximum Entropy Model

- One feature for each constraint:  $f_1(x, y), \ldots, f_F(x, y)$ .
- One parameter for each feature:  $\Lambda = \{\lambda_i, \dots, \lambda_F\}.$
- The maximum entropy model has the form:

$$\mathcal{P}_{\Lambda}(y|x) = rac{\exp(\sum_{i=1}^F \lambda_i f_i(x,y))}{Z_{\Lambda}(x)}$$

- $Z_{\Lambda}(x) = \text{normalizer} = \sum_{y'} \exp(\sum_{i=1}^{F} \lambda_i f_i(x, y')).$
- a.k.a. exponential models, log-linear models.

B 5 4 B

#### How to Find the $\lambda_i$ 's?

• Given a model of the form:

$$P_{\Lambda}(y|x) = rac{\exp(\sum_{i=1}^F \lambda_i f_i(x,y))}{Z_{\Lambda}(x)}$$

- $\{\lambda_i\}$  satisfying constraints (derived from training) ...
- Are also the ML estimates of the {λ<sub>i</sub>}!
- Also, training likelihood is convex function of  $\{\lambda_i\}$ !
- $\Rightarrow$  Can find the  $\{\lambda_i\}$  using hill-climbing.
  - e.g., iterative scaling; L-BFGS.



12 N A 12

## Recap: Maximum Entropy, Part I

- Elegant as all hell.
- Single global optimum when training parameters.
- Principled way to combine lots of information sources.
- But does it blend?



## Where Are We?

#### 4 Maximum Entropy Models

Introduction

#### • Smoothing and N-Gram Models, Revisited

Results



#### **Constraint-Based Modeling**

• Kneser-Ney smoothing.

$$\mathcal{P}_{ ext{tri}}^{ ext{KN}}(w) = \left\{egin{array}{c} rac{c_{ ext{tri}}(w) - D}{c_{ ext{tri}}(ullet)} & ext{if } c_{ ext{tri}}(w) > 0 \ (1 - \lambda) imes \mathcal{P}_{ ext{bi}}^{ ext{KN}}(w) & ext{if } c_{ ext{tri}}(w) = 0 \end{array}
ight.$$

- $P_{\rm bi}^{\rm KN}(w)$  chosen such that ...
  - Unigram and bigram marginals of training data are met exactly.



## **Kneser-Ney Smoothing**

- Bigram probabilities  $P_{bi}^{KN}(w)$ :
  - Not proportional to how often bigram occurs.
  - Proportional to how many word types that bigram follows.

$$N_{1+}(\bullet w_{i-1}w_i) \equiv |\{w_{i-2} : c(w_{i-2}w_{i-1}w_i) > 0\}|$$
$$P_{bi}^{KN}(w_i) = \frac{N_{1+}(\bullet w_{i-1}w_i)}{\sum_{w_i}N_{1+}(\bullet w_{i-1}w_i)}$$



**E N 4 E N** 

#### What is a (Conventional) N-Gram Model?

• You gots parameters like:

 $P_{\text{BIG}}, P_{\text{BIG}|\text{LIKE}}, P_{\text{BIG}|\text{I}|\text{LIKE}}$ 

• You compute probs like so (for interpolated smoothing):



#### What is an Exponential *N*-Gram Model?

• You gots parameters like:

 $\lambda_{\mathrm{BIG}},\,\lambda_{\mathrm{LIKE BIG}},\,\lambda_{\mathrm{I \ LIKE BIG}}$ 

• You compute probs like so:

$$m{P}_{\Lambda}( ext{BIG}| ext{I LIKE}) = rac{ ext{exp}(\lambda_{ ext{BIG}}+\lambda_{ ext{LIKE BIG}}+\lambda_{ ext{I LIKE BIG}})}{Z_{\Lambda}( ext{I LIKE})}$$

• Just a different way of parameterizing *n*-gram models.

- Can express same set of models.
- Can convert between parameterizations exactly.



#### Smoothing for Exponential Models

- The smaller  $|\lambda_i|$  is, the smaller its effect . . .
  - And the smoother the model.
- Smoothing: pick  $\lambda_i$ 's to optimize:

obj fn = log PP<sub>train</sub> + 
$$rac{1}{(\# ext{ train wds})}$$
(penalty for large  $|\lambda_i|$ )

- $\ell_2^2$  regularization (*e.g.*, Lau, 1994; Chen *et al.*, 2000).
  - Performs similarly to Kneser-Ney smoothing.

(penalty) 
$$=\sum_{i=1}^F rac{\lambda_i^2}{2\sigma^2}$$



## Recap: Maximum Entropy, Part II

- Constraint-based modeling has shown its worth in smoothing.
- Can express smoothed *n*-gram models using maximum entropy . . .
  - Only simpler.
  - Still single global optimum when training parameters.
- But does it blend?



## Where Are We?

#### 4 Maximum Entropy Models

- Introduction
- Smoothing and N-Gram Models, Revisited
- Results



A B b 4 B b

4 A N

### How Well Does It Work? Rosenfeld (1996)

- 38M words of WSJ training data.
- Trained maximum entropy model with ....
  - *N*-gram, skip *n*-gram, and trigger features.
  - Interpolated with regular word *n*-gram and cache.
- 39% reduction in PP, 2% absolute reduction in WER for lattice rescoring.
  - Baseline: (pruned) Katz-smoothed(?) trigram model.
- Contrast: Goodman (2001), -50% PP, -0.9% WER.



## Model M (Chen, 2008)

- Combine class and word *n*-gram features ...
  - In single maximum entropy model.
- Compared to word trigram: -28% PP; -1.9% WER.
- Without interpolation with word *n*-gram model.



12 N A 12

#### Perplexity vs. WER



EECS 6870: Speech Recognition

Advanced Language Modeling

17 November 2009

#### Performance Prediction (Chen, 2008)

- Given training set and test set from same distribution.
- Desire: want to optimize performance on test set.
- Reality: only have access to *training* set.

(test perf) = (training perf) + (overfitting penalty)

• Can we estimate the overfitting penalty?



Yes



EECS 6870: Speech Recognition

Advanced Language Modeling

17 November 2009

## A Tool for Good

- Holds for many different types of data.
  - Different domains; languages; token types; vocabulary sizes; training set sizes; *n*-gram order.
- Holds for many different types of exponential models.
  - Word *n*-gram models; class-based *n*-gram models; minimum discrimination information models.
- Explains lots of diverse aspects of language modeling.



### What's the Catch?

- Rosenfeld (1996): 200 computer-days to train.
- Slow training vs. regular n-gram model.
  - For each word, update O(|V|) counts.

$$\sum_{d}\sum_{y} \mathcal{P}^*(y|x_d)f_i(x_d, y) = \sum_{d}f_i(x_d, y_d)$$

- Tens of passes through training data.
- Slow evaluation.
  - We have to evaluate  $Z_{\Lambda}(x)$ . Or do we?

$$P_{\Lambda}(y|x) = \frac{\exp(\sum_{i=1}^{F} \lambda_i f_i(x, y))}{Z_{\Lambda}(x)}$$
$$Z_{\Lambda}(x) = \sum_{y'} \exp(\sum_{i=1}^{F} \lambda_i f_i(x, y'))$$



B 5 4 B

## Recap: Maximum Entropy

- Some of the best WER results in LM literature.
  - Gain of 2%+ absolute WER over trigram (instead of <1%).</li>
- Can surpass linear interpolation in WER in many contexts.
  - Log-linear interpolation.
  - Each is appropriate in different situations. (When?)
  - Together, powerful tool set for model combination.
- Performance prediction explains existing models ...
  - And helps design new ones!
- Training is still too painful for most people.



### Where Are We?

#### Introduction

- 2 Techniques for Restricted Domains
- 3 Techniques for Unrestricted Domains
- 4 Maximum Entropy Models
- Other Directions in Language Modeling

#### An Apology

## Other Directions in Language Modeling

#### Neural network LM's.

Super ARV LM. I SA-based I M's Variable-length *n*-grams; skip *n*-grams. Concatenating words to use in classing. Context-dependent word classing. Word classing at multiple granularities. Alternate parameterizations of class *n*-grams. Using part-of-speech tags. Semantic structured LM. Sentence-level mixtures. Soft classing. Hierarchical topic models. Combining data/models from multiple domains. Whole-sentence maximum entropy models.



## Where Are We?

#### Introduction

- 2 Techniques for Restricted Domains
- 3 Techniques for Unrestricted Domains
- 4 Maximum Entropy Models
- 5 Other Directions in Language Modeling

6 An Apology


## An Apology to *N*-Gram Models

- I didn't mean what I said about you.
- You know I was kidding when I said you are great to poop on.



# What Is Used In Real Deployed Systems?

#### • Technology.

- Mostly *n*-gram models, grammars, embedded grammars.
- Grammar switching based on dialogue state.
- Users cannot distinguish WER differences of a few percent.
  - Good user interface design is WAY, WAY, WAY, WAY more important ...
  - Than small differences in ASR performance.
- Research developments in language modeling.
  - Not worth the extra effort and complexity.
  - Difficult to implement in one-pass decoding paradigm.



## Large-Vocabulary Research Systems

- *e.g.*, government evaluations: Switchboard, Broadcast News.
  - Small differences in WER matter.
  - Interpolation of word *n*-gram models ...
  - Built from different corpora.
  - Neural net LM's; Model M (+0.5% WER?)
- Modeling medium-to-long-distance dependencies.
  - Almost no gain in combination with other techniques?
  - Not worth the extra effort and complexity.
- LM gains pale in comparison to acoustic modeling gains.



## Where Do We Go From Here?

- *N*-gram models are just really easy to build.
  - Can train on billions and billions of words.
  - Smarter LM's tend to be orders of magnitude slower to train.
  - Faster computers? Data sets also growing.
- Need to effectively combine many sources of information.
  - Short, medium, and long distance.
  - Log-linear models are promising, but slow to train and use.
- Evidence that LM's will help more when WER's are lower.
  - Human rescoring of *N*-best lists (Brill *et al.*, 1998).



## The Road Ahead

- Week 11: Discriminative training; ROVER; consensus.
- Week 12: Applications of ASR.
  - Speech-to-speech translation.
  - Spoken document retrieval.
- Week 13: Final presentations.



#### **Course Feedback**

- Was this lecture mostly clear or unclear? What was the muddiest topic?
- Other feedback (pace, content, atmosphere)?

