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Administrivia

■ main feedback from last lecture
● a little too fast
● FST’s still unclear

■ Lab 2 not graded yet, will be handed back next week

■ Lab 3 out, due Sunday after next
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Lab 2 Review

■ output distributions on states vs. arcs?
● advantages of either representation?

■ computing total likelihood for each word HMM separately vs.
using Viterbi algorithm on one big HMM?
● hint: what about computing Viterbi likelihood for each word

HMM separately?
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Lab 2 Review

Viterbi algorithm as shortest distance problem

■ for arc a, frame t, distance from (src(a), t) to (dst(a), t+1) is . . .
● − log [P (a)P (xt|a)]
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Viterbi As Shortest Distance Problem

■ need to traverse chart in an order such that . . .
● all chart arcs go from cell traversed earlier . . .
● to cell traversed later

■ loop first through frames, then through states
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Viterbi As Shortest Distance Problem

What if we add skip arcs?

■ for skip arc a, distance from (src(a), t) to (dst(a), t) is . . .
● − log [P (a)]
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Viterbi As Shortest Distance Problem

Handling skip arcs

■ at a given frame, for all skip arcs a, must visit . . .
● state src(a) before state dst(a)

■ topologically sort states with respect to skip arcs only
● then, natural ordering will work

for t in [0 . . . (T − 1)]:
for ssrc in [1 . . . S]:

■ in practice, may process skip arcs and emitting arcs in separate
stages

■ recap: beware of skip arcs
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Lab 2 Review

■ Q: if an HMM were a fruit, what type of fruit would it be?
● A: a Hidden Markov Banana
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Viterbi Algorithm

C[0 . . . T, 1 . . . S].vProb = 0
C[0, start].vProb = 1
for t in [0 . . . (T − 1)]:

for ssrc in [1 . . . S]:
for a in outArcs(ssrc ):

sdst = dest(a)
curProb = C[t, ssrc ].vProb × arcProb(a, t)
if curProb > C[t + 1, sdst ].vProb:

C[t + 1, sdst ].vProb = curProb
C[t + 1, sdst ].trace = a

(do backtrace starting fromC[T, final] to find best path)
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Forward Algorithm

C[0 . . . T, 1 . . . S].fProb = 0
C[0, start].fProb = 1
for t in [0 . . . (T − 1)]:

for ssrc in [1 . . . S]:
for a in outArcs(ssrc ):

sdst = dest(a)
curProb = C[t, ssrc ].fProb × arcProb(a, t)
C[t + 1, sdst ].fProb += curProb

totProb = C[T, final].fProb
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Backward Algorithm

C[0 . . . T, 1 . . . S].bProb = 0
C[T, final].bProb = 1
for t in [(T − 1) . . . 0]:

for ssrc in [1 . . . S]:
for a in outArcs(ssrc ):

sdst = dest(a)
curProb = C[t + 1, sdst ].bProb × arcProb(a, t)
C[t, ssrc ].bProb += curProb
fbCount = C[t, ssrc ].fProb × curProb / totProb
addCount(a, t, fbCount)
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Gaussian Update

■ occupancy count γu,t for given arc at frame t of utterance u

● posterior prob of arc at that frame, i.e., fbCount

■ collect counts (for each dimension d)

S0 =
∑
utt u

∑
frame t

γu,t

S1,d =
∑
utt u

∑
frame t

γu,t xu,t,d

S2,d =
∑
utt u

∑
frame t

γu,t x2
u,t,d
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Mean Update

S0 =
∑
utt u

∑
frame t

γu,t

S1,d =
∑
utt u

∑
frame t

γu,t xu,t,d

S2,d =
∑
utt u

∑
frame t

γu,t x2
u,t,d

µd =
∑

u

∑
t γu,t xu,t,d∑

u

∑
t γu,t

=
S1,d

S0
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Variance Update
S0 =

∑
utt u

∑
frame t

γu,t

S1,d =
∑
utt u

∑
frame t

γu,t xu,t,d

S2,d =
∑
utt u

∑
frame t

γu,t x2
u,t,d

■ update only diagonal terms Σd,d in covariance matrix

Σd,d =

∑
u,t γu,t(xu,t,d − µd)2∑

u,t γu,t

=
1
S0

[∑
u,t γu,tx

2
u,t,d − 2µd

∑
u,t γu,txu,t,d + µ2

d

∑
u,t γu,t

]
=

S2,d − 2µdS1,d + µ2
dS0

S0
=

S2,d − µ2
dS0

S0
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The Big Picture

■ weeks 1–4: small vocabulary ASR

■ weeks 5–8: large vocabulary ASR
● week 5: language modeling
● week 6: pronunciation modeling
● week 7: training

● week 8: FST’s; search

■ weeks 9–13: advanced topics
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Where Were We? ⇒ LVCSR Decoding

What did we do for small vocabulary tasks?

■ graph/FSA representing language model
LIKE
UH

● i.e., all allowed word sequences

■ expand to underlying HMM

LIKE

UH

■ run the Viterbi algorithm!
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Decoding

Well, can we do the same thing for LVCSR?

■ Issue 1: Can we express an n-gram model as an FSA?
● yup

h=w1

w1/P(w1|w1)

h=w2w2/P(w2|w1)

w1/P(w1|w2)

w2/P(w2|w2)

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)
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Decoding

Issue 2: How can we expand a word graph to its underlying HMM?

■ word models
● replace each word with its HMM

■ CI phone models
● replace each word with its phone sequence(s)
● replace each phone with its HMM

h=LIKE

LIKE/P(LIKE|LIKE)

UH/P(UH|LIKE)

h=UH

LIKE/P(LIKE|UH)

UH/P(UH|UH)
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Graph Expansion with Context-Dependent Models
DH

D

AH

AO

G

■ how can we do context-dependent expansion?
● handling branch points is tricky

■ example of triphone expansion

G_D_AO D_AO_G

AO_G_D AO_G_DH G_DH_AH

DH_AH_DH

DH_AH_D

AH_DH_AH

AH_D_AO
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Graph Expansion with Context-Dependent Models

Is there a better way?

■ is there some elegant theoretical framework . . .

■ that makes it easy to do this type of expansion . . .

■ and also makes it easy to do lots of other graph operations
useful in ASR?

■ ⇒ finite-state transducers (FST’s)!
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Outline

■ Unit I: finite-state transducers
● how do we build decoding graphs for LVCSR?

■ Unit II: introduction to search

■ Unit III: making decoding graphs smaller

■ Unit IV: efficient Viterbi decoding

■ Unit V: other decoding paradigms
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Remix: A Reintroduction to FSA’s and FST’s

The semantics of (unweighted) finite-state acceptors

■ the meaning of an FSA is the set of strings (i.e., token
sequences) it accepts
● set may be infinite

■ two FSA’s are equivalent if they accept the same set of strings

■ things that don’t affect semantics
● how labels are distributed along a path
● invalid paths (paths that don’t connect initial and final states)

■ see board
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You Say Tom-ay-to; I Say Tom-ah-to

■ a finite-state acceptor is . . .
● a set of strings . . .
● expressed (compactly) using a finite-state machine

■ what is a finite-state transducer?
● a one-to-many mapping from strings to strings
● expressed (compactly) using a finite-state machine
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The Semantics of Finite-State Transducers

■ the meaning of an (unweighted) FST is the string mapping it
represents
● a set of strings (possibly infinite) it can accept

● all other strings are mapped to the empty set
● for each accepted string . . .

● the set of strings (possibly infinite) mapped to

■ two FST’s are equivalent if they represent the same mapping

■ things that don’t affect semantics
● how labels are distributed along a path
● invalid paths (paths that don’t connect initial and final states)

■ see board
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The Semantics of Composition

■ for a set of strings A (FSA) . . .

■ for a mapping from strings to strings T (FST) . . .
● let T (s) = the set of strings that s is mapped to

■ the composition A ◦ T is the set of strings (FSA) . . .

A ◦ T =
⋃
s∈A

T (s)

■ maps all strings in A simultaneously

IBM ELEN E6884: Speech Recognition 24



Graph Expansion as Repeated Composition

■ want to expand from set of strings (LM) to set of strings
(underlying HMM)
● how is an HMM a set of strings? (ignoring arc probs)

■ can be decomposed into sequence of composition operations
● words ⇒ pronunciation variants
● pronunciation variants ⇒ CI phone sequences
● CI phone sequences ⇒ CD phone sequences
● CD phone sequences ⇒ GMM sequences

■ to do graph expansion
● design several FST’s
● implement one operation: composition!
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FST Design and The Power of FST’s

■ figure out which strings to accept (i.e., which strings should be
mapped to non-empty sets)
● (and what “state” we need to keep track of, e.g., for CD

expansion)
● design corresponding FSA

■ add in output tokens
● creating additional states/arcs as necessary
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FST Design and The Power of FST’s

Context-independent examples (1-state)

■ 1:0 mapping
● removing swear words (two ways)

■ 1:1 mapping
● mapping pronunciation variants to phone sequences
● one label per arc?

■ 1:many mapping
● mapping from words to pronunciation variants

■ 1:infinite mapping
● inserting optional silence
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FST Design and The Power of FST’s

■ can do more than one “operation” in single FST

■ can be applied just as easily to whole LM (infinite set of strings)
as to single string
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FST Design and The Power of FST’s

How to express context-dependent phonetic expansion via FST’s?

■ step 1: rewrite each phone as a triphone
● rewrite AX as DH AX R if DHto left, R to right

■ what information do we need to store in each state of FST?
● strategy: delay output of each phone by one arc
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How to Express CD Expansion via FST’s?

A 1 2x 3y 4y 5x 6y

T

x_x

x:x_x_x

x_yx:x_x_y

y_y

y:x_y_y

y_x

y:x_y_x

y:y_y_y
y:y_y_x

x:y_x_x

x:y_x_y

A ◦ T 1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x
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How to Express CD Expansion via FST’s?

Example

1 2x_x_y

y_x_y
3x_y_y 4y_y_x 5y_x_y 6x_y_y

x_y_x

■ point: composition automatically expands FSA to correctly
handle context!
● makes multiple copies of states in original FSA . . .
● that can exist in different triphone contexts
● (and makes multiple copies of only these states)
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How to Express CD Expansion via FST’s?

■ step 1: rewrite each phone as a triphone
● rewrite AX as DH AX R if DHto left, R to right

■ step 2: rewrite each triphone with correct context-dependent
HMM for center phone
● how to do this?

● note: OK if FST accepts more strings than it needs
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Graph Expansion

■ final decoding graph: L ◦ T1 ◦ T2 ◦ T3 ◦ T4

● L = language model FSA
● T1 = FST mapping from words to pronunciation variants
● T2 = FST mapping from pronunciation variants to CI phone

sequences
● T3 = FST mapping from CI phone sequences to CD phone

sequences
● T4 = FST mapping from CD phone sequences to GMM

sequences

■ we know how to design each FST

■ how do we implement composition?
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Computing Composition
Example

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2

■ optimization: start from initial state, build outward
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Composition and ε-Transitions

■ basic idea: can take ε-transition in one FSM without moving in
other FSM
● a little tricky to do exactly right
● do the readings if you care: (Pereira, Riley, 1997)

A, T 1 2<epsilon>

A
3B 1 2<epsilon>:B

A:A
3B:B

A ◦ T

1,1

2,2

A

1,2

B

2,1
eps

3,3

B

eps

1,3 2,3
eps

B

3,1

3,2

B
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What About Those Probability Thingies?

■ e.g., to hold language model probs, transition probs, etc.

■ FSM’s ⇒ weighted FSM’s
● weighted acceptors (WFSA’s), transducers (WFST’s)

■ each arc has a score or cost
● so do final states

1

2/1a/0.3

c/0.4

3/0.4

b/1.3

a/0.2

<epsilon>/0.6
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Semantics

■ total cost of path is sum of its arc costs plus final cost

1 2a/1 3/3b/2 1 2a/0 3/6b/0

■ typically, we take costs to be negative log probabilities
● (total probability of path is product of arc probabilities)
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Semantics of Weighted FSA’s

The semantics of weighted finite-state acceptors

■ the meaning of an FSA is the set of strings (i.e., token
sequences) it accepts
● each string additionally has a cost

■ two FSA’s are equivalent if they accept the same set of strings
with same costs

■ things that don’t affect semantics
● how costs or labels are distributed along a path
● invalid paths (paths that don’t connect initial and final states)

■ see board

IBM ELEN E6884: Speech Recognition 38



Semantics of Weighted FSA’s

■ each string has a single cost

■ what happens if two paths in FSA labeled with same string?
● how to compute cost for this string?

■ usually, use min operator to compute combined cost (Viterbi)
● can combine paths with same labels into one without

changing semantics

1 2

a/1

a/2

b/3
3/0c/0 1 2a/1

b/3
3/0c/0

■ operations (+,min) form a semiring (the tropical semiring)
● other semirings are possible
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Which Of These Is Different From the Others?

■ FSM’s are equivalent if same label sequences with same costs

1 2/1a/0

1 2/0.5a/0.5

a/1

1 2<epsilon>/1 3/0a/0

1 2/-2a/3 3b/1

b/1
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The Semantics of Weighted FST’s

■ the meaning of an (unweighted) FST is the string mapping it
represents
● a set of strings (possibly infinite) it can accept
● for each accepted string . . .

● the set of strings (possibly infinite) mapped to . . .
● and a cost for each string mapped to

■ two FST’s are equivalent if they represent the same mapping
with the same costs

■ things that don’t affect semantics
● how costs and labels are distributed along a path
● invalid paths (paths that don’t connect initial and final states)
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The Semantics of Weighted Composition

■ for a set of strings A (WFSA) . . .

■ for a mapping from strings to strings T (WFST) . . .
● let T (s) = the set of strings that s is mapped to

■ the composition A ◦ T is the set of strings (WFSA) . . .

A ◦ T =
⋃
s∈A

T (s)

● cost associated with output string is “sum” of . . .
● cost of input string in A
● cost of mapping in T
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Computing Weighted Composition

Just add arc costs

A 1 2a/1 3b/0 4/0d/2

T

1/1

a:A/2
b:B/1
c:C/0
d:D/0

A ◦ T 1 2A/3 3B/1 4/1D/2
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Why is Weighted Composition Useful?

■ probability of a path is product of probabilities along path
● LM probs; arc probs; pronunciation probs; etc.

■ if costs are negative log probabilities . . .
● and use addition to combine scores along paths and in

composition . . .
● probabilities will be combined correctly

■ ⇒ composition can be used to combine scores from different
models
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Weighted Graph Expansion

■ final decoding graph: L ◦ T1 ◦ T2 ◦ T3 ◦ T4

● L = language model FSA (w/ LM costs)
● T1 = FST mapping from words to pronunciation variants (w/

pronunciation costs)
● T2 = FST mapping from pronunciation variants to CI phone

sequences
● T3 = FST mapping from CI phone sequences to CD phone

sequences
● T4 = FST mapping from CD phone sequences to GMM

sequences (w/ HMM transition costs)

■ in final graph, each path has correct “total” cost
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Recap

■ WFSA’s and WFST’s can represent many important structures
in ASR

■ graph expansion can be expressed as series of composition
operations
● need to build FST to represent each expansion step, e.g.,

1 2 THE
2 3 DOG
3

● with composition operation, we’re done!

■ composition is efficient

■ context-dependent expansion can be handled effortlessly
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Unit II: Introduction to Search

Where are we?

class(x) = arg max
ω

P (ω|x)

= arg max
ω

P (ω)P (x|ω)
P (x)

= arg max
ω

P (ω)P (x|ω)

■ can build the one big HMM we need for decoding

■ use the Viterbi algorithm on this HMM

■ how can we do this efficiently?
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Just How Bad Is It?

■ trigram model (e.g., vocabulary size |V | = 2)

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)

● |V |3 word arcs in FSA representation
● each word expands to ∼4 phones ⇒ 4×3 = 12-state HMM
● if |V | = 50000, 500003 × 12 ≈ 1015 states in graph
● PC’s have ∼ 109 bytes of memory
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Just How Bad Is It?

■ decoding time for Viterbi algorithm
● in each frame, loop through every state in graph
● if 100 frames/sec, 1015 states . . .

● how many cells to compute per second?
● PC’s can do ∼ 1010 floating-point ops per second

■ point: cannot use small vocabulary techniques “as is”
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Unit II: Introduction to Search

What can we do about the memory problem?

■ Approach 1: don’t store the whole graph in memory
● pruning

● at each frame, keep states with the highest Viterbi scores
● < 100000 active states out of 1015 total states

● only keep parts of the graph with active states in memory

■ Approach 2: shrink the graph
● use a simpler language model
● graph-compaction techniques (w/o changing semantics!)

● compact representation of n-gram models
● graph determinization and minimization
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Two Paradigms for Search

■ Approach 1: dynamic graph expansion
● since late 1980’s
● can handle more complex language models
● decoders are incredibly complex beasts

● e.g., cross-word CD expansion without FST’s
● everyone knew the name of everyone else’s decoder

■ Approach 2: static graph expansion
● pioneered by AT&T in late 1990’s
● enabled by minimization algorithms for WFSA’s, WFST’s
● static graph expansion is complex

● theory is clean; doing expansion in <2GB RAM is difficult
● decoding is relatively simple
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Static Graph Expansion

■ in recent years, more commercial focus on limited-domain
systems
● telephony applications, e.g., replacing directory assistance

operators
● no need for gigantic language models

■ static graph decoders are faster
● graph optimization is performed off-line

■ static graph decoders are much simpler
● not entirely unlike small vocabulary Viterbi decoder
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Static Graph Expansion

Outline

■ Unit III: making decoding graphs smaller
● shrinking n-gram models
● graph optimization

■ Unit IV: efficient Viterbi decoding

■ Unit V: other decoding paradigms
● dynamic graph expansion revisited
● stack search (asynchronous search)
● two-pass decoding
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Unit III: Making Decoding Graphs Smaller

Compactly representing n-gram models

■ for trigram model, |V |2 states, |V |3 arcs in naive representation

h=w1,w1

w1/P(w1|w1,w1)
h=w1,w2

w2/P(w2|w1,w1) h=w2,w1

w1/P(w1|w1,w2)

h=w2,w2w2/P(w2|w1,w2)

w1/P(w1|w2,w1)

w2/P(w2|w2,w1)

w1/P(w1|w2,w2)

w2/P(w2|w2,w2)

■ only a small fraction of the possible |V |3 trigrams will occur in
the training data
● is it possible to keep arcs only for occurring trigrams?
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Compactly Representing N -Gram Models

■ can express smoothed n-gram models via backoff distributions

Psmooth(wi|wi−1) =
{

Pprimary(wi|wi−1) if count(wi−1wi) > 0
αwi−1

Psmooth(wi) otherwise

■ e.g., Witten-Bell smoothing

PWB(wi|wi−1) =
ch(wi−1)

ch(wi−1) + N1+(wi−1)
PMLE(wi|wi−1) +

N1+(wi−1)
ch(wi−1) + N1+(wi−1)

PWB(wi)
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Compactly Representing N -Gram Models

Psmooth(wi|wi−1) =
{

Pprimary(wi|wi−1) if count(wi−1wi) > 0
αwi−1

Psmooth(wi) otherwise

h=w

h=<eps>
<eps>/alpha_w

w1/P(w1|w)

w2/P(w2|w)

w3/P(w3|w)

...

...

w1/P(w1)

w2/P(w2)

w3/P(w3)
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Compactly Representing N -Gram Models

■ by introducing backoff states
● only need arcs for n-grams with nonzero count
● compute probabilities for n-grams with zero count by

traversing backoff arcs

■ does this representation introduce any error?
● hint: are there multiple paths with same label sequence?
● hint: what is “total” cost of label sequence in this case?

■ can we make the LM even smaller?
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Pruning N -Gram Language Models

Can we make the LM even smaller?

■ sure, just remove some more arcs

■ which arcs to remove?
● count cutoffs

● e.g., remove all arcs corresponding to bigrams wi−1wi

occurring fewer than 10 times in the training data
● likelihood/entropy-based pruning

● choose those arcs which when removed, change the
likelihood of the training data the least

● (Seymore and Rosenfeld, 1996), (Stolcke, 1998)
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Pruning N -Gram Language Models

Language model graph sizes

■ original: trigram model, |V |3 = 500003 ≈ 1014 word arcs

■ backoff: >100M unique trigrams ⇒ ∼100M word arcs

■ pruning: keep <5M n-grams ⇒ ∼5M word arcs
● 4 phones/word ⇒ 12 states/word ⇒ ∼60M states?
● we’re done?
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Pruning N -Gram Language Models

Wait, what about cross-word context-dependent expansion?

■ with word-internal models, each word really is only ∼12 states

_S_IH S_IH_K IH_K_S K_S_

■ with cross-word models, each word is hundreds of states?
● 50 CD variations of first three states, last three states

AA_S_IH

S_IH_K IH_K_S
AE_S_IH

AH_S_IH

...

...

K_S_AA

K_S_AE

K_S_AH
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Unit III: Making Decoding Graphs Smaller

What can we do?

■ prune the LM word graph even more?
● will degrade performance

■ can we shrink the graph further without changing its meaning?
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Graph Compaction

■ consider word graph for isolated word recognition
● expanded to phone level: 39 states, 38 arcs

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE
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Determinization

■ share common prefixes: 29 states, 28 arcs

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

IBM ELEN E6884: Speech Recognition 63



Minimization

■ share common suffixes: 18 states, 23 arcs

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ABU

DD

S

Z

DD

ABROAD

ABUSE

ABSURD
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Determinization and Minimization

■ by sharing arcs between paths . . .
● we reduced size of graph by half . . .
● without changing semantics of graph
● speeds search (even more than size reduction implies)

■ determinization — prefix sharing
● produce deterministic version of an FSM

■ minimization — suffix sharing
● given a deterministic FSM, find equivalent FSM with minimal

number of states

■ can apply to weighted FSM’s and transducers as well
● e.g., on fully-expanded decoding graphs
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Determinization

■ what is a deterministic FSM?
● no two arcs exiting the same state have the same input label
● no ε arcs
● i.e., for any input label sequence . . .

● at most one path from start state labeled with that sequence

A

A <epsilon>

B

B

A B

■ why determinize?
● may reduce number of states, or may increase number

(drastically)
● speeds search
● required for minimization algorithm to work as expected
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Determinization

■ basic idea
● for an input label sequence, find set of all states you can reach

from start state with that sequence in original FSM
● collect all such state sets (over all input sequences)
● map each unique state set into state in new FSM
● by construction, each label sequence will reach single state

in new FSM

1

2A

3

A 5<epsilon>

4B

B
1 2,3,5A 4B
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Determinization

■ start from start state

■ keep list of state sets not yet expanded
● for each, find outgoing arcs, creating new state sets as

needed

■ must follow ε arcs when computing state sets

1

2A

3

A 5<epsilon>

4B

B
1 2,3,5A 4B
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Determinization

Example 2

1 2
a

3

a 4
a

5

aaa
bb

1 2,3a 2,3,4,5a

a

4,5b

b

IBM ELEN E6884: Speech Recognition 69



Determinization

Example 3

1

2
AX

7
AX

8
AX

3AE

4

AE

5

AE

6

AA

9B

14B

15B

10B

11
B

12
B

13
B

16R

17S

18Z

19
UW

20
UW

21Y

22Y

23AO

24ER

25ER

26
ABU

27
ABU

28UW

29UW

30DD

31
DD

32
DD

33S

34Z

35ABROAD

36
ABSURD

37
ABSURD

38ABUSE

39ABUSE
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Determinization

Example 3, cont’d

1

2,7,8

AX

3,4,5AE

6

AA

9,14,15
B

10,11,12B

13

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD
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Determinization

■ are all unweighted FSA’s determinizable?
● i.e., will the determinization algorithm always terminate?
● for an FSA with s states, what are the maximum number of

states in its determinization?
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Weighted Determinization
■ same idea, but need to keep track of costs

■ instead of states in new FSM mapping to state sets {si} . . .
● they map to sets of state/cost pairs {si, ci}
● need to track leftover costs

1

2/0A/0

3

A/1 5<epsilon>/2

4/1
B/1

B/2

(1,0) (2,0),(3,1)/0A/0 (4,0)/1B/2
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Weighted Determinization

■ will the weighted determinization algorithm always terminate?

1

2/0
A/0

3/0

A/0

C/0

C/1
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Weighted Determinization

What about determinizing finite-state transducers?

■ why would we want to?
● so we can minimize them; smaller ⇔ faster?
● composing a deterministic FSA with a deterministic FSM

often produces a (near) deterministic FSA

■ instead of states in new FSM mapping to state sets {si} . . .
● they map to sets of state/output-sequence pairs {si, oi}
● need to track leftover output tokens

IBM ELEN E6884: Speech Recognition 75



Minimization

■ given a deterministic FSM . . .
● find equivalent FSM with minimal number of states
● number of arcs may be nowhere near minimal

● minimizing number of arcs is NP-complete

IBM ELEN E6884: Speech Recognition 76



Minimization

■ merge states with same set of following strings (or follow sets)
● with acyclic FSA’s, can list all strings following each state

1

2A

6
B

3B

7C

8

D

4C

5

D
1

2A

3,6
B

B

4,5,7,8C

D

states following strings
1 ABC, ABD, BC, BD
2 BC, BD

3, 6 C, D
4,5,7,8 ε
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Minimization

■ for cyclic FSA’s, need a smarter algorithm
● may be difficult to enumerate all strings following a state

■ strategy
● keep current partitioning of states into disjoint sets

● each partition holds a set of states that may be mergeable
● start with single partition
● whenever find evidence that two states within a partition have

different follow sets . . .
● split the partition

● at end, each partition contains states with identical follow sets
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Minimization

■ invariant: if two states are in different partitions . . .
● they have different follow sets
● converse does not hold

■ first split: final and non-final states
● final states have ε in their follow sets; non-final states do not

■ if two states in same partition have . . .
● different number of outgoing arcs, or different arc labels . . .
● or arcs go to different partitions . . .
● the two states have different follow sets
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Minimization

1

2a

4

d

c

3b

5
c

c

6b

action evidence partitioning
{1,2,3,4,5,6}

split 3,6 final {1,2,4,5}, {3,6}
split 1 has a arc {1}, {2,4,5}, {3,6}
split 4 no b arc {1}, {4}, {2,5}, {3,6}

1 2,5

a

4

d

c

3,6b
c
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Weighted Minimization

1

2b/0

3
c/0 4/0

a/1

a/2

■ want to somehow normalize scores such that . . .
● if two arcs can be merged, they will have the same cost

■ then, apply regular minimization where cost is part of label

■ push operation
● move scores as far forward (backward) as possible

1

2b/0

3
c/1 4/1

a/0

a/0

1 2b/0

c/1
3/1a/0
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Weighted Minimization

What about minimization of FST’s?

■ yeah, it’s possible

■ use push operation, except on output labels rather than costs
● move output labels as far forward as possible

■ enough said

Pop quiz

■ does minimization always terminate?
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Unit III: Making Decoding Graphs Smaller

Recap

■ backoff representation for n-gram LM’s

■ n-gram pruning

■ use finite-state operations to further compact graph
● determinization and minimization

■ 1015 states ⇒ 10–20M states/arcs
● 2–4M n-grams kept in LM
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Practical Considerations

■ graph expansion
● start with word graph expressing LM
● compose with series of FST’s to expand to underlying HMM

■ strategy: build big graph, then minimize at the end?
● problem: can’t hold big graph in memory

■ better strategy: minimize graph after each expansion step
● never let the graph get too big

■ it’s an art
● recipes for efficient graph expansion are still evolving
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Where Are We?

■ Unit I: finite-state transducers

■ Unit II: introduction to search

■ Unit III: making decoding graphs smaller
● now know how to make decoding graphs that can fit in

memory

■ Unit IV: efficient Viterbi decoding
● making decoding fast
● saving memory during decoding

■ Unit V: other decoding paradigms
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Viterbi Algorithm

C[0 . . . T, 1 . . . S].vProb = 0
C[0, start].vProb = 1
for t in [0 . . . (T − 1)]:

for ssrc in [1 . . . S]:
for a in outArcs(ssrc ):

sdst = dest(a)
curProb = C[t, ssrc ].vProb × arcProb(a, t)
if curProb > C[t + 1, sdst ].vProb:

C[t + 1, sdst ].vProb = curProb
C[t + 1, sdst ].trace = a

(do backtrace starting fromC[T, final] to find best path)
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Real-Time Decoding

■ real-time decoding
● decoding k seconds of speech in k seconds (e.g., 0.1× RT)
● why is this desirable?

■ decoding time for Viterbi algorithm, 10M states in graph
● in each frame, loop through every state in graph
● say 100 CPU cycles to process each state
● for each second of audio, 100×10M×100 = 1011 CPU cycles
● PC’s do ∼ 109 cycles/second (e.g., 3GHz P4)

■ we cannot afford to evaluate each state at each frame
● ⇒ pruning!
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Pruning

■ at each frame, only evaluate states with best scores
● at each frame, have a set of active states
● loop only through active states at each frame
● for states reachable at next frame, keep only those with best

scores
● these are active states at next frame

for t in [0 . . . (T − 1)]:
for ssrc in [1 . . . S]:

for a in outArcs(ssrc ):
sdst = dest(a)
update C[t + 1, sdst ] from C[t, ssrc ], arcProb(a, t)
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Pruning

■ when not considering every state at each frame . . .
● we may make search errors
● i.e., we may not find the path with the highest likelihood

■ tradeoff: the more states we evaluate . . .
● the fewer the number of search errors
● the more computation required

■ the field of search in ASR
● minimizing search errors while minimizing computation
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Basic Pruning
■ beam pruning

● in a frame, keep only those states whose logprobs are within
some distance of best logprob at that frame

● intuition: if a path’s score is much worse than current best, it
will probably never become best path

● weakness: if poor audio, overly many states within beam?

■ rank or histogram pruning
● in a frame, keep k highest scoring states for some k

● intuition: if the correct path is ranked very poorly, the chance
of picking it out later is very low
● bounds computation per frame

● weakness: if clean audio, keeps states with bad scores?

■ do both
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Pruning Visualized

■ active states are small fraction of total states (<1%)
● tend to be localized in small regions in graph

AX

AE
AA

B

B

B

R

Y

S

Z

UW

UW

AO

UW

ER

ER

ABU

ABU

DD

S

Z

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD
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Pruning and Determinization

■ most uncertainty occurs at word starts
● determinization drastically reduces branching at word starts

AX

AX

AX

AE

AE

AE

AA

B

B

B

B

B

B

B

R

S

Z

UW

UW

Y

Y

AO

ER

ER

ABU

ABU

UW

UW

DD

DD

DD

S

Z

ABROAD

ABSURD

ABSURD

ABUSE

ABUSE
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Language Model Lookahead

■ in practice, word labels and LM scores at word ends
● so determinization works
● what’s wrong with this picture? (hint: think beam pruning)

AX/0

AE/0

AA/0

B/0

B/0

B/0

R/0

Y/0

S/0

Z/0

UW/0

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/7

ABU/7

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/4.3

ABUSE/3.5

ABUSE/3.5

ABSURD/4.7

ABSURD/4.7
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Language Model Lookahead

■ move LM scores as far ahead as possible
● at each point, total cost ⇔ min LM cost of following words
● push operation does this

AX/3.5

AE/4.7

AA/7.0

B/0

B/0

B/0

R/0.8

Y/0

S/0

Z/0

UW/2.3

UW/0

AO/0

UW/0

ER/0

ER/0

ABU/0

ABU/0

DD/0

S/0

Z/0

DD/0

DD/0

ABROAD/0

ABUSE/0

ABUSE/0

ABSURD/0

ABSURD/0
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Historical Note

■ in the old days (pre-AT&T-style decoding)
● people determinized their decoding graphs
● did the push operation for LM lookahead
● . . . without calling it determinization or pushing

● ASR-specific implementations

■ nowadays (late 1990’s–)
● implement general finite-state operations
● FSM toolkits
● can apply finite-state operations in many contexts in ASR
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Efficient Viterbi Decoding

■ saving computation
● pruning
● determinization
● LM lookahead
● ⇒ process ∼10000 states/frame in < 1x RT on PC’s

● much faster with smaller LM’s or allowing more search
errors

■ saving memory (e.g., 10M state decoding graph)
● 10 second utterance ⇒ 1000 frames
● 1000 frames × 10M states = 10 billion cells in DP chart
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Saving Memory in Viterbi Decoding

■ to compute Viterbi probability (ignoring backtrace) . . .
● do we need to remember whole chart throughout?

■ do we need to keep cells for all states or just active states?
● depends how hard you want to work

for t in [0 . . . (T − 1)]:
for ssrc in [1 . . . S]:

for a in outArcs(ssrc ):
sdst = dest(a)
update C[t + 1, sdst ] from C[t, ssrc ], arcProb(a, t)

IBM ELEN E6884: Speech Recognition 97



Saving Memory in Viterbi Decoding

What about backtrace information?

■ need to remember whole chart?

■ conventional Viterbi backtrace
● remember arc at each frame in best path
● really, all we want are the words

■ instead of keeping pointer to best incoming arc
● keep pointer to best incoming word sequence
● can store word sequences compactly in tree
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Token Passing

■ maintain “word tree”; each node corresponds to word sequence

■ backtrace pointer points to node in tree . . .
● holding word sequence labeling best path to cell

■ set backtrace to same node as at best last state . . .
● unless cross word boundary

1

2THE

9THIS

11

THUD

3DIG

4DOG

10DOG

5ATE

6
EIGHT

7MAY

8
MY
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Saving Memory in Viterbi Decoding

Memory usage

■ before
● static decoding graph
● (# states) × (# frames) cells

■ after
● static decoding graph (shared memory) ⇐ the biggie
● (# (active) states) × (2 frames) cells
● backtrace word tree

IBM ELEN E6884: Speech Recognition 100



Where Are We?

■ Unit V: other decoding paradigms
● dynamic graph expansion — saving memory

● stack search — best-first search
● two-pass decoding — enable complex models
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Two Approaches to Decoding

■ Approach 1: dynamic graph expansion
● don’t store the whole graph in memory
● only keep parts of the graph with active states in memory
● can use more complex LM’s

■ Approach 2: static graph expansion
● just shrink the graph
● use a simpler language model
● faster
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Dynamic Graph Expansion

■ how can we store a really big graph such that . . .
● it doesn’t take that much memory, but . . .
● easy to expand any part of it that we need

■ observation: composition is associative

(A ◦ T1) ◦ T2 = A ◦ (T1 ◦ T2)

■ observation: decoding graph is composition of LM with a bunch
of FST’s

Gdecode = ALM ◦ Twd→pn ◦ TCI→CD ◦ TCD→HMM

= ALM ◦ (Twd→pn ◦ TCI→CD ◦ TCD→HMM)
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Dynamic Graph Expansion

Computing composition

A 1 2a 3b

T 1 2a:A 3b:B

A ◦ T

1,1

2,2

A

3,3

B

1,2

1,3

2,1

2,3

3,1

3,2
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Dynamic Graph Expansion

■ for a graph G = A ◦ T . . .
● easy to calculate outgoing arcs of a state sG = (sA, sT )

Gdecode = ALM ◦ (Twd→pn ◦ TCI→CD ◦ TCD→HMM)

■ idea: just store graphs ALM and T = Twd→pn ◦ TCI→CD ◦ TCD→HMM

● easy to calculate outgoing arcs of any state in Gdecode

● in active state list, each state is represented as pair of states
(sA, sT )

■ instead of storing one big graph, store two smaller graphs
● minimize each of the smaller graphs
● other decompositions are possible
● dynamic graph expansion was really complicated before FSM

perspective
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Where Are We?

■ Unit V: other decoding paradigms
● dynamic graph expansion

● stack search
● two-pass decoding
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Stack Search

■ Viterbi search — synchronous search
● extend all paths and calculate all scores synchronously
● expand states with mediocre scores in case they improve

later

■ stack search — asynchronous search
● pursue best-looking path first!
● if lucky, expand very few states at each frame

■ pioneered at IBM in mid-1980’s; first real-time dictation system

■ may be competitive at low-resource operating points
● going out of fashion
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Stack Search

■ extend hypotheses word-by-word

■ use fast match to decide which word to extend best path with
● decode single word with simpler acoustic model

THE

THIS

THUD

DIG

DOG

DOG

ATE

EIGHT

MAY

MY
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Stack Search

■ advantages
● if best path pans out, very little computation

■ disadvantages
● difficult to decide which path to extend

● hypotheses are of different lengths in frames
● in synchronous search, pruning is straightforward

● may need to recompute the same values multiple times
● in DP terminology, not evaluating cells in topological order

■ point: in practice, have enough compute power for Viterbi
● fewer search errors
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Where Are We?

■ Unit V: other decoding paradigms
● dynamic graph expansion
● stack search
● two-pass decoding
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What About My Fuzzy Logic 15-Phone Acoustic
Model and 7-Gram Neural Net Language Model

with SVM Boosting?

■ some of the ASR models we develop in research are . . .
● too expensive to implement in normal (first-pass) decoding

■ first-pass decoding
● find best word sequence from among “all” word sequences

■ rescoring
● find best word sequence from constrained search space

● namely, best-scoring word sequences from first pass
● large enough set to hopefully contain “correct” hypothesis
● small enough set that not too expensive to rescore
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Two-Pass Decoding

■ for interactive applications, one-pass near-real-time decoding is
ideal
● start processing when audio signal starts, be done soon after

audio signal ends

■ two-pass decoding generally yields better accuracy
● 1st pass: decode, but return many likely hypotheses rather

than single most likely
● 2nd pass: choose best of returned hypotheses using more

complex models
● e.g., N -best list rescoring in Lab 3

● can still be used for interactive apps if 2nd pass really fast
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Lattice Rescoring

■ first pass: return likely hypotheses as a graph or lattice
● in Viterbi, store k-best tracebacks at each word-end cell

THE

THIS

THUD

DIG

DOG

DOG

DOGGY

ATE

EIGHT

MAY

MY

MAY

■ can use models that are impractical with first-pass decoding
● e.g., 5-gram LM’s, sesquiphone phonetic decision trees, etc.

■ some techniques need lattices
● e.g., confidence estimation, consensus decoding, lattice

MLLR, etc.
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N -Best List Rescoring

■ for exotic models, evaluating on lattices may be too slow
● lattice encodes exponential number of paths (in length of

utterance)
● for some models, computation linear in number of hypotheses

■ easy to generate N -best lists from lattices
● A∗ algorithm

■ harder to judge quality of model used for rescoring in this
paradigm
● first-pass model biases results
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Two-Pass Decoding

Recap

■ great for doing research
● generate lattices once
● lattice/N -best rescoring is cheap
● reasonable indicator of value of model

■ in real-world apps, value less clear
● performance gain from 2nd pass usually not perceptible by

users
● increases latency
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The Road Ahead

■ weeks 1–4: small vocabulary ASR

■ weeks 5–8: large vocabulary ASR

■ weeks 9–12: advanced topics
● adaptation; robustness
● discriminative training; ROVER; consensus
● advanced language modeling
● audiovisual speech recognition

■ week 13: final presentations
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Course Feedback

1. Was this lecture mostly clear or unclear? What was the
muddiest topic?

2. Comments on lab 2?

3. Other feedback (pace, content, atmosphere)?
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