ELEN E6884/COMS 86884
Speech Recognition
Lecture 8

Michael Picheny, Ellen Eide, Stanley F. Chen
IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
{picheny,eeide,stanchen }@us.ibm.com

27 October 2005

ELEN E6884. Speech Recognition

Administrivia

= main feedback from last lecture
. a little too fast

- FST’s still unclear
= Lab 2 not graded yet, will be handed back next week

= Lab 3 out, due Sunday after next

(RIH]
il

ELEN E6884: Speech Recognition

Lab 2 Review

= output distributions on states vs. arcs?
- advantages of either representation?

= computing total likelihood for each word HMM separately vs.
using Viterbi algorithm on one big HMM?

- hint: what about computing Viterbi likelihood for each word
HMM separately?

iE5E ELEN E6884: Speech Recognition 2

Lab 2 Review

Viterbi algorithm as shortest distance problem

= for arc a, frame ¢, distance from (src(a), t) to (dst(a),t+1)is...

» —log [P(a)P(x¢|a)]

frame
0) 1 2 3 4
S1—(A A A 0
$2 OO O<—PO<—0O
83 (O OO O<—0
4 O—O—O—0O—0
5 O—O—O—0—0O—

iE5E ELEN E6884: Speech Recognition

Viterbi As Shortest Distance Problem

= need to traverse chart in an order such that . ..
. all chart arcs go from cell traversed earlier ...
- to cell traversed later

= loop first through frames, then through states

(RIH]

ELEN E6884: Speech Recognition

Viterbi As Shortest Distance Problem

What if we add skip arcs?

= for skip arc a, distance from (src(a),t) to (dst(a),t)is ...

» —log [P(a)]

frame
0) 1 2 3 4
S1—(A A A 0
s2 OO O<—"O<—-O
RSISOSIS!
NN NN
s5 O—O—O—0O—>0O—

Viterbi As Shortest Distance Problem

Handling skip arcs

= at a given frame, for all skip arcs a, must visit . ..
- state src(a) before state dst(a)

= topologically sort states with respect to skip arcs only
- then, natural ordering will work

for ¢ in [0...(T—1)
for sg. In [1...85]:

= In practice, may process skip arcs and emitting arcs in separate
stages

= recap: beware of skip arcs

(RIH]
il

ELEN E6884: Speech Recognition 6

Lab 2 Review

= Q: if an HMM were a fruit, what type of fruit would it be?
- A: a Hidden Markov Banana

[J]
||:||:II
i

ELEN E6884: Speech Recognition

Viterbi Algorithm

Cl0...7T,1...5].vProb = 0
C'|0, start].vProb = 1
for ¢ in [0...(T—1):
for sgq. In [1...5]:
for a In OUtArcs(syc):
Sest = dest(a)
curProb = Clt, sqc |.VProb x arcProb(a,t)
If curProb > Clt + 1, s4 |.VProb:
Ct + 1, s4q |].VProb = curProb
Clt+1,sq4q |.trace = a
(do backtrace starting froi¥|T’, final] to find best path)

Il
[H[&

ELEN E6884: Speech Recognition

Forward Algorithm

Cl0...7T,1...5].fProb = 0O
C'|0, start].fProb = 1
for ¢ in [0...(T—1):
for sgq. In [1...5]:
for a In OUtArcs(syc):
Sest = dest(a)
curProb = Clt, sqc |.fProb x arcProb(a,t)
Clt+ 1, s4q |.FProb += curProb
totProb = C|T,final].fProb

EES ELEN E6884: Speech Recognition

Backward Algorithm

Cl0...7T,1...5].bProb = 0
C|T,final].bProb = 1
for ¢t in [(T—1)...0]
for sgqe In [1...5]:
for a In OUtArcs(syc):
Sest = dest(a)
curProb = C[t + 1, s4g |.bProb x arcProb(a,t)
C'|t, ssc |.DProb += curProb
foCount = C|t, s |.fProb x curProb / totProb
addCount(a, t, foCount)

Il
[H[&

ELEN E6884: Speech Recognition

Gaussian Update

= occupancy count v, for given arc at frame ¢ of utterance
- posterior prob of arc at that frame, i.e., foCount

= collect counts (for each dimension d)

SO — S: y: Yu,t

utt v frame ¢

Sl,d — SJ SJ Yu,t Tu,t,d

utt v frame ¢

_ 2
Sod = SJ SJ Yu,t Toyt.d

utt « frame ¢

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

11

Mean Update

SO — S: S: Yu,t

utt v frame ¢

Sl,d — SJ SJ Yu,t Lu,t,d

utt v frame ¢

2
SZ,d — SJ SJ Yu,t Loy t.d

utt v frame ¢

Iy = Zu Zt Yu,t Lu,t,d _ Sl,d

(RIH]
u

ELEN E6884: Speech Recognition

Variance Update

SO — S: S: Yu,t

utt v frame ¢

Sl,d — SJ SJ Yu,t Tu,t,d

utt v frame ¢

2
SQ,d — SJ SJ Yu,t Loy t.d

utt v frame ¢

= update only diagonal terms %, 4 In covariance matrix

Dt Yut(Tut,d —)’

7 Z’U,,t /Y’U,,t

1
B S_o {Zut Wu,txi,t,d — 2fiq Zu,t Vu,tTu,t,d T 'u?l Z“at Tt

S2,d — 21aS1,a + 1158 _ S2,a — 11350
So SO

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

The Big Picture

= weeks 1-4: small vocabulary ASR

= weeks 5—-8: large vocabulary ASR
- week 5: language modeling

- week 6: pronunciation modeling
- week 7: training

« | week 8: FST’s; search

= weeks 9-13: advanced topics

[J]
||:||:II
i

ELEN E6884: Speech Recognition

14

Where Were We? = LVCSR Decoding

What did we do for small vocabulary tasks?
UH

= graph/FSA representing language model %
- I.e., all allowed word sequences @

= expand to underlying HMM
SR R S A B A

)
000003

QO

= run the Viterbi algorithm!

Il
[

ELEN E6884: Speech Recognition

15

Decoding

Well, can we do the same thing for LVCSR?

= |Issue 1. Can we express an n-gram model as an FSA?
° Yyup

wl/P(wllwl) w2/P(w2lw?2)

w2/P(w2lwl) -
wl/P(wllw?2)

wl/P(wllw2,w2)
wl/P(wllwl,wl)

w2/P(w2lwl,wl)

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

16

Decoding

Issue 2: How can we expand a word graph to its underlying HMM?

= word models
- replace each word with its HMM

= Cl phone models
- replace each word with its phone sequence(s)

- replace each phone with its HMM

() ())
LIKE/P(LIKEIUH) . . . 3
() () ()) UH/P(UHIUH) () () ()
UH/P(UHILIKE) 3
.
NN AN

()
LIKE/P(LIKEILIKE) .
3

ELEN E6884: Speech Recognition 17

[J]
(FTH]
1Ll
]

Graph Expansion with Context-Dependent Models

= how can we do context-dependent expansion?
- handling branch points is tricky

= example of triphone expansion
AO G D AO_G_DH _@ G_DH_AH

G_D_AO D_AO_G

DH_AH_DH

AH_D_AO

(RIH]
il

ELEN E6884: Speech Recognition 18

Graph Expansion with Context-Dependent Models

|s there a better way?
= IS there some elegant theoretical framework . ..
= that makes it easy to do this type of expansion ...

= and also makes it easy to do lots of other graph operations
useful in ASR?

= = finite-state transducers (FST's)!

(RIH]
il

ELEN E6884: Speech Recognition 19

Outline

Unit I: finite-state transducers

- how do we build decoding graphs for LVCSR?
Unit Il: introduction to search

Unit I1l: making decoding graphs smaller

Unit IV: efficient Viterbi decoding

Unit V: other decoding paradigms

Il
[H[&

ELEN E6884: Speech Recognition

Remix: A Reintroduction to FSA’s and FST's

The semantics of (unweighted) finite-state acceptors

= the meaning of an FSA is the set of strings (i.e., token
sequences) it accepts

- set may be infinite
= two FSA'’s are equivalent if they accept the same set of strings

= things that don’t affect semantics
- how labels are distributed along a path

- invalid paths (paths that don’t connect initial and final states)

= See board

(RIH]
il

ELEN E6884: Speech Recognition 21

You Say Tom-ay-to; | Say Tom-ah-to

= a finite-state acceptoris...
. a set of strings ...

- expressed (compactly) using a finite-state machine

= what Is a finite-state transducer?
- a one-to-many mapping from strings to strings
. expressed (compactly) using a finite-state machine

(RIH]
il

ELEN E6884: Speech Recognition 22

The Semantics of Finite-State Transducers

= the meaning of an (unweighted) FST is the string mapping it
represents

- a set of strings (possibly infinite) it can accept
- all other strings are mapped to the empty set

- for each accepted string ...
- the set of strings (possibly infinite) mapped to

= two FST's are equivalent if they represent the same mapping

= things that don’t affect semantics
- how labels are distributed along a path

- invalid paths (paths that don’t connect initial and final states)

= See board

Il
[H[&

ELEN E6884: Speech Recognition 23

The Semantics of Composition

= for a set of strings A (FSA) ...

= for a mapping from strings to strings 7' (FST) ...
- let T'(s) = the set of strings that s is mapped to

= the composition A o T'is the set of strings (FSA) ...

AoT = | J T(s)

sEA

= maps all strings in A simultaneously

[J]
||:||:II
i

ELEN E6884: Speech Recognition

24

Graph Expansion as Repeated Composition

= want to expand from set of strings (LM) to set of strings
(underlying HMM)
- how is an HMM a set of strings? (ignoring arc probs)

= can be decomposed into sequence of composition operations
- words = pronunciation variants

- pronunciation variants = CIl phone sequences
- Cl phone sequences = CD phone sequences
- CD phone sequences = GMM sequences

= to do graph expansion
- design several FST’s

- Implement one operation: composition!

(RIH]
il

ELEN E6884: Speech Recognition 25

FST Design and The Power of FST's

= flgure out which strings to accept (i.e., which strings should be
mapped to non-empty sets)
- (and what “state” we need to keep track of, e.g., for CD
expansion)
- design corresponding FSA

= add in output tokens
- creating additional states/arcs as necessary

Il
[

ELEN E6884: Speech Recognition 26

FST Design and The Power of FST's

Context-independent examples (1-state)

= 1:0 mapping
- removing swear words (two ways)

= 1:1 mapping
- mapping pronunciation variants to phone sequences
- one label per arc?

= 1:many mapping
- mapping from words to pronunciation variants

= 1l:infinite mapping
- Inserting optional silence

(RIH]
il

ELEN E6884: Speech Recognition

27

FST Design and The Power of FST's

= can do more than one “operation” in single FST

= can be applied just as easily to whole LM (infinite set of strings)
as to single string

[J]
||:||:II
i

ELEN E6884: Speech Recognition 28

FST Design and The Power of FST's

How to express context-dependent phonetic expansion via FST’s?

= step 1: rewrite each phone as a triphone
- rewrite AXas DHAX R if DHto left, Rto right

= what information do we need to store in each state of FST?
- strategy: delay output of each phone by one arc

[J]
||:||:II
i

ELEN E6884: Speech Recognition 29

How to Express CD Expansion via FST’s?

OO OO0

30

How to Express CD Expansion via FST’s?

Example

= point: composition automatically expands FSA to correctly
handle context!

- makes multiple copies of states in original FSA ...
- that can exist in different triphone contexts

- (and makes multiple copies of only these states)

[J]
(RIH]

ELEN E6884: Speech Recognition

31

How to Express CD Expansion via FST’s?

= step 1: rewrite each phone as a triphone
- rewrite AXas DHAX_Rif DHto left, Rto right

= Step 2. rewrite each triphone with correct context-dependent
HMM for center phone

- how to do this?
- note: OK if FST accepts more strings than it needs

[J]
||:||:II
i

ELEN E6884: Speech Recognition 32

Graph Expansion

= final decoding graph: Lo T o015 015301}

L = language model FSA
T7 = FST mapping from words to pronunciation variants

T, = FST mapping from pronunciation variants to Cl phone
sequences

T3 = FST mapping from CI phone sequences to CD phone
seguences

T, = FST mapping from CD phone sequences to GMM
sequences

= we know how to design each FST

= how do we implement composition?

ELEN E6884: Speech Recognition 33

Computing Composition

A
:

OO
AOT@ @ @

@@

= optimization: start from initial state, build outward

(RIH]
il

ELEN E6884: Speech Recognition

34

Composition and e-Transitions

= basic idea: can take e-transition in one FSM without moving in
other FSM

- a little tricky to do exactly right
- do the readings if you care: (Pereira, Riley, 1997)

A , T G <epsilon> a B) <epsilon>:B 5 B:B

(RIH]
il

ELEN E6884: Speech Recognition 35

What About Those Probability Thingies?

= e.g., to hold language model probs, transition probs, etc.

= FSM’s = weighted FSM'’s
- weighted acceptors (WFSA's), transducers (WFST's)

= each arc has a score or cost
« SO do final states

(RIH]
il

ELEN E6884: Speech Recognition 36

Semantics

= total cost of path is sum of its arc costs plus final cost

() o/l () b/2 () 2/0 () b/0

= typically, we take costs to be negative log probabilities
- (total probability of path is product of arc probabilities)

(RIH]
il

ELEN E6884: Speech Recognition 37

Semantics of Weighted FSA’s

The semantics of weighted finite-state acceptors

= the meaning of an FSA is the set of strings (i.e., token
sequences) it accepts

. each string additionally has a cost

= two FSA’s are equivalent if they accept the same set of strings
with same costs

= things that don’t affect semantics
- how costs or labels are distributed along a path

- invalid paths (paths that don’t connect initial and final states)

= See board

(RIH]
il

ELEN E6884: Speech Recognition 38

Semantics of Weighted FSA’s

each string has a single cost

what happens if two paths in FSA labeled with same string?
- how to compute cost for this string?

usually, use min operator to compute combined cost (Viterbi)

- can combine paths with same labels into one without
changing semantics

.— O~

operations (4, min) form a semiring (the tropical semiring)
- other semirings are possible

(RIH]
il

ELEN E6884: Speech Recognition 39

Which Of These Is Different From the Others?

= FSM'’s are equivalent if same label sequences with same costs

O—=~)

‘ a/O.S
1 () a/0
b/l

O
/1

<epsilon>/
o))

ELEN E6884: Speech Recognition 40

o

[J]
||:u:|l
i

The Semantics of Weighted FST's

= the meaning of an (unweighted) FST is the string mapping it
represents

- a set of strings (possibly infinite) it can accept
- for each accepted string ...

- the set of strings (possibly infinite) mapped to ...
- and a cost for each string mapped to

= two FST’s are equivalent if they represent the same mapping
with the same costs

= things that don’t affect semantics
- how costs and labels are distributed along a path

- Invalid paths (paths that don’t connect initial and final states)

ELEN E6884: Speech Recognition 41

The Semantics of Weighted Composition

= for a set of strings A (WFSA) ...

= for a mapping from strings to strings 7' (WFST) ...
- let T'(s) = the set of strings that s is mapped to

= the composition A o T'is the set of strings (WFSA) ...

AoT = | J T(s)

sEA

- cost associated with output string is “sum” of . ..

- cost of input string in A
- cost of mapping in T°

Il
[H[&

ELEN E6884: Speech Recognition 42

Computing Weighted Composition

Just add arc costs

A a/l b/0 dr2

AoT A/3 B/1 D/2

[Jrm]]
K
{{IIII
ull])

ELEN E6884: Speech Recognition

43

Why is Weighted Composition Useful?

= probability of a path is product of probabilities along path
- LM probs; arc probs; pronunciation probs; etc.

= if costs are negative log probabilities . ..

- and use addition to combine scores along paths and in
composition . ..

- probabillities will be combined correctly

= = composition can be used to combine scores from different
models

(RIH]
il

ELEN E6884: Speech Recognition 44

Welighted Graph Expansion

= final decoding graph: Lo T o015 015301}

L = language model FSA (w/ LM costs)

T7 = FST mapping from words to pronunciation variants (w/
pronunciation costs)

T, = FST mapping from pronunciation variants to Cl phone
sequences

T3 = FST mapping from Cl phone sequences to CD phone
sequences

Ty FST mapping from CD phone sequences to GMM
sequences (w/ HMM transition costs)

= In final graph, each path has correct “total” cost

ELEN E6884: Speech Recognition 45

Recap

= WFSA’s and WFST’s can represent many important structures
In ASR

= graph expansion can be expressed as series of composition

operations

- need to build FST to represent each expansion step, e.g.,
1 2 THE
2 3 DOG
3

- With composition operation, we're done!

= composition is efficient

= context-dependent expansion can be handled effortlessly

EE—?—_‘:?: ELEN E6884: Speech Recognition 46

Unit Il: Introduction to Search

Where are we?

class(x)

argur)nax P(w|x)
P(w)P(x|w)

arg max Px)

= argmax P(w)P(x|w)

w

= can build the one big HMM we need for decoding
= use the Viterbi algorithm on this HMM

= how can we do this efficiently?

[J]
||:||:II
i

ELEN E6884: Speech Recognition

47

Just How Bad Is It?

= trigram model (e.g., vocabulary size |V| = 2)

wl/P(wllwl,w2)

w2/P(w2lw2,w2)

[V'|? word arcs in FSA representation

each word expands to ~4 phones = 4x3 = 12-state HMM
if |V| = 50000, 50000% x 12 ~ 10'° states in graph

PC’s have ~ 10” bytes of memory

(RIH]
il

ELEN E6884: Speech Recognition

48

Just How Bad Is It?

= decoding time for Viterbi algorithm
- in each frame, loop through every state in graph

. if 100 frames/sec, 10'° states ...
- how many cells to compute per second?

- PC’s can do ~ 10'? floating-point ops per second

= point. cannot use small vocabulary technigues “as is”

(RIH]
il

ELEN E6884: Speech Recognition

49

Unit Il: Introduction to Search

What can we do about the memory problem?

= Approach 1: don'’t store the whole graph in memory

* pruning
- at each frame, keep states with the highest Viterbi scores
.- < 100000 active states out of 10'° total states

- only keep parts of the graph with active states in memory

= Approach 2: shrink the graph
- use a simpler language model
- graph-compaction techniques (w/o changing semantics!)

- compact representation of n-gram models
- graph determinization and minimization

EEE ELEN E6884: Speech Recognition ”

Two Paradigms for Search

= Approach 1: dynamic graph expansion
- since late 1980’s
- can handle more complex language models
.- decoders are incredibly complex beasts

. e.d., cross-word CD expansion without FST’s
- everyone knew the name of everyone else’s decoder

= Approach 2: static graph expansion
- pioneered by AT&T In late 1990’s
- enabled by minimization algorithms for WFSA'’s, WFST's

- static graph expansion is complex
- theory is clean; doing expansion in <2GB RAM is difficult

- decoding is relatively simple

EEE: ELEN E6884: Speech Recognition 51

Static Graph Expansion

= In recent years, more commercial focus on limited-domain
systems
- telephony applications, e.g., replacing directory assistance
operators

- No need for gigantic language models

= static graph decoders are faster
- graph optimization is performed off-line

= Static graph decoders are much simpler
- not entirely unlike small vocabulary Viterbi decoder

==5E ELEN E6884: Speech Recognition 52

Static Graph Expansion

Outline

= | Unit Ill: making decoding graphs smaller

- shrinking n-gram models
- graph optimization

= Unit |V: efficient Viterbi decoding

= Unit V: other decoding paradigms
- dynamic graph expansion revisited
. stack search (asynchronous search)
- two-pass decoding

Il
KR

ELEN E6884: Speech Recognition

Unit Ill: Making Decoding Graphs Smaller

Compactly representing n-gram models

= for trigram model, |V'|* states, |V|® arcs in naive representation

wl/P(wllwl,w2)

w2/P(w2lw2,w2)

wl/P(wllwl,wl)
w2/P(w2lwl,wl)

wl/P(wllw2,wl)

= only a small fraction of the possible |V|? trigrams will occur in
the training data

- IS It possible to keep arcs only for occurring trigrams?

Ex ELEN E6884: Speech Recognition 54

Compactly Representing N-Gram Models

= can express smoothed n-gram models via backoff distributions

Primary(w;|w; 1) if count(w;_qw;) > 0
P Jwi_q) = primary\ We¢ | Wq - () ()
smoon (Wi Wi—1) { Q,_ Psmoon(w;) Otherwise

= e.g., Witten-Bell smoothing

ch(wi—1)
ch(wi—1) + N1y (wi—1)
Ny (wi—1)
ch(wi—1) + Nig(wi—1)

Pos(w;|w;—1) = Pyie(w;|w; 1) +

PWB(wz')

[J]
||:||:II
i

ELEN E6884: Speech Recognition 55

Compactly Representing N-Gram Models

Pprimary(wz-|w7;_1) If COUﬂt(wi_l’wi) > ()
Qy, _ Psmootn(w;) Otherwise

wl/P(wl) .

w2/P(w2)
<eps>/alpha_w

w3/P(w3) .

Psmooth(wi|wi—1) — {

wl/P(wllw)

w2/P(w2lw)
w3/P(w3lw)

[J]
[HIK]]
1Ll
]

=S ELEN E6884: Speech Recognition

Compactly Representing N-Gram Models

= by introducing backoff states
- only need arcs for n-grams with nonzero count

- compute probabilities for n-grams with zero count by
traversing backoff arcs

= does this representation introduce any error?
- hint: are there multiple paths with same label sequence?
- hint: what is “total” cost of label sequence in this case?

= can we make the LM even smaller?

(RIH]
il

ELEN E6884: Speech Recognition

57

Pruning N-Gram Language Models

Can we make the LM even smaller?

= Sure, jUSt remove some maore arcs

= which arcs to remove?
- count cutoffs
- e.g., remove all arcs corresponding to bigrams w;_jw;
occurring fewer than 10 times In the training data
- likelihood/entropy-based pruning

- choose those arcs which when removed, change the
likelihood of the training data the least
- (Seymore and Rosenfeld, 1996), (Stolcke, 1998)

(RIH]
il

ELEN E6884: Speech Recognition 58

Pruning N-Gram Language Models

Language model graph sizes

= original: trigram model, |V]? = 50000° ~ 10** word arcs

= backoff: >100M unique trigrams = ~100M word arcs

= pruning: keep <5M n-grams = ~5M word arcs
. 4 phones/word = 12 states/word = ~60M states?

- we're done?

[J]
||:||:II
i

ELEN E6884: Speech Recognition

59

Pruning N-Gram Language Models

Wait, what about cross-word context-dependent expansion?

= with word-internal models, each word really is only ~12 states

O SIH ‘Q S_IH_K ‘Q IH_K_S ‘Q K_S_ _@

= with cross-word models, each word is hundreds of states?
« 50 CD variations of first three states, last three states

S IH K _@ IH K_S

(RIH]
il

ELEN E6884: Speech Recognition 60

Unit Ill: Making Decoding Graphs Smaller

What can we do?

= prune the LM word graph even more?
- will degrade performance

= can we shrink the graph further without changing its meaning?

[J]
||:||:II
i

ELEN E6884: Speech Recognition 61

Graph Compaction

= consider word graph for isolated word recognition
- expanded to phone level: 39 states, 38 arcs

o

AX

AX

AX

AE

AE

AA

>
tr
o3

=

=

= =
g g

AO

c
=

c
z

esl
~

>
oe)
c

>
oe)
c

D

D

wnn

N

)
)

=)
)

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

00000

ELEN E6884: Speech Recognition

62

Determinization

= share common prefixes: 29 states, 28 arcs

e

==

ER

DD

DD

DD

ABROAD

ABUSE

00

ABUSE

ABSURD

oJe

ABSURD

O

63

Minimization

= share common suffixes: 18 states, 23 arcs

ABROAD

ABSURD

iE5E ELEN E6884: Speech Recognition

64

Determinization and Minimization

by sharing arcs between paths ...
- we reduced size of graph by half ...

- without changing semantics of graph
- Speeds search (even more than size reduction implies)

determinization — prefix sharing
. produce deterministic version of an FSM

minimization — suffix sharing

- given a deterministic FSM, find equivalent FSM with minimal
number of states

can apply to weighted FSM’s and transducers as well
- e.g., on fully-expanded decoding graphs

Ex ELEN E6884: Speech Recognition 65

Determinization

= what Is a deterministic FSM?
- No two arcs exiting the same state have the same input label

* NO € AlICS

- |.e., for any input label sequence ...
- at most one path from start state labeled with that sequence

= why determinize?
- may reduce number of states, or may increase number
(drastically)

. Speeds search
- required for minimization algorithm to work as expected

fE5E ELEN E6884: Speech Recognition 66

Determinization

= basic idea

- for an input label sequence, find set of all states you can reach
from start state with that sequence in original FSM

- collect all such state sets (over all input sequences)
- map each unique state set into state in new FSM

- by construction, each label sequence will reach single state
In new FSM

iE5E ELEN E6884: Speech Recognition 67

Determinization

= Start from start state

= keep list of state sets not yet expanded

. for each, find outgoing arcs, creating new state sets as
needed

= must follow ¢ arcs when computing state sets

(RIH]
il

ELEN E6884: Speech Recognition 68

Example 2

Determinization

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

69

Determinization

Example 3
AEB
AAB

(=

=<

=<

=
3

-
g

AO

Uw

c
3

OOOOE

ER

ER

ABU

ABU

ABROAD

[\
o)

S @ ABUSE
Z 34 ABUSE
DD a1 ABSURD
DD ABSURD

32

olofelo]le:

[

ELEN E6884: Speech Recognition

70

Determinization

Example 3, cont'd

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

00000

Il
[

ELEN E6884: Speech Recognition

71

Determinization

= are all unweighted FSA’s determinizable?
- i.e., will the determinization algorithm always terminate?

- for an FSA with s states, what are the maximum number of
states In its determinization?

(RIH]
il

ELEN E6884: Speech Recognition 72

Weighted Determinization
= same idea, but need to keep track of costs

= instead of states in new FSM mapping to state sets {s;} ...

- they map to sets of state/cost pairs {s;, c;}
- need to track leftover costs

(RIH]
il

ELEN E6884: Speech Recognition

73

Weighted Determinization

= will the weighted determinization algorithm always terminate?

(RIH]
il

ELEN E6884: Speech Recognition

74

Weighted Determinization

What about determinizing finite-state transducers?

= why would we want to?
« SO wWe can minimize them; smaller < faster?

- composing a deterministic FSA with a deterministic FSM
often produces a (near) deterministic FSA

= instead of states in new FSM mapping to state sets {s;} ...
- they map to sets of state/output-sequence pairs {s;, 0;}
- need to track leftover output tokens

(RIH]
il

ELEN E6884: Speech Recognition 75

Minimization

= given a deterministic FSM . ..
- find equivalent FSM with minimal number of states
- number of arcs may be nowhere near minimal
- minimizing number of arcs is NP-complete

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

76

Minimization

= merge states with same set of following strings (or follow sets)
- with acyclic FSA’s, can list all strings following each state

states | following strings

1 ABC, ABD, BC, BD
2 BC, BD
3,6 C,D
4,5,7,8 €

(]
||:||:II
i

ELEN E6884: Speech Recognition 77

Minimization

= for cyclic FSA’s, need a smarter algorithm
- may be difficult to enumerate all strings following a state

= Strategy

- keep current partitioning of states into disjoint sets
- each partition holds a set of states that may be mergeable

- start with single partition

- whenever find evidence that two states within a partition have
different follow sets ...
- split the partition

- at end, each partition contains states with identical follow sets

iE5E ELEN E6884: Speech Recognition 78

Minimization

= invariant: if two states are in different partitions ...
- they have different follow sets

« converse does not hold

= first split: final and non-final states
 final states have ¢ In their follow sets: non-final states do not

= if two states in same partition have ...
- different number of outgoing arcs, or different arc labels ...
- Or arcs go to different partitions . ..
- the two states have different follow sets

iE5E ELEN E6884: Speech Recognition 79

Minimization

action | evidence partitioning
{1,2,3,4,5,6}
split 3,6 final {1,2,4,5}, {3,6}
splitl |hasaarc| {1}, {2,4,5},{3,6}
split4 | nobarc

11}, 14}, 12,5}, {3,6}

Il
[

ELEN E6884: Speech Recognition

80

Welighted Minimization

= want to somehow normalize scores such that ...
- If two arcs can be merged, they will have the same cost

= then, apply regular minimization where cost is part of label

= push operation
- move scores as far forward (backward) as possible

b/Oa/O I b/Oa/O

ELEN E6884: Speech Recognition 81

[J]
(RIH]
il

Welighted Minimization

What about minimization of FST's?
= yeah, It’'s possible

= Use push operation, except on output labels rather than costs
- move output labels as far forward as possible

= enough said

Pop quiz

= does minimization always terminate?

(RIH]
il

ELEN E6884: Speech Recognition

82

Unit Ill: Making Decoding Graphs Smaller

Recap
= backoff representation for n-gram LM’s
= n-gram pruning

= use finite-state operations to further compact graph
- determinization and minimization

= 101° states = 10-20M states/arcs
« 2—4M n-grams kept in LM

(RIH]
il

ELEN E6884: Speech Recognition

83

Practical Considerations

graph expansion
- start with word graph expressing LM
- compose with series of FST’s to expand to underlying HMM

strategy: build big graph, then minimize at the end?
. problem: can’t hold big graph in memory

better strategy: minimize graph after each expansion step
- never let the graph get too big

It's an art
- recipes for efficient graph expansion are still evolving

[J]
||:||:II
i

ELEN E6884: Speech Recognition 84

Where Are We?

Unit I: finite-state transducers
Unit II; introduction to search

Unit I1l: making decoding graphs smaller

- now know how to make decoding graphs that can fit in
memory

Unit IV: efficient Viterbi decoding

- making decoding fast
- saving memory during decoding

Unit V: other decoding paradigms

(RIH]
|

= ELEN E6884: Speech Recognition 85

Viterbi Algorithm

Cl0...7T,1...5].vProb = 0
C'|0, start].vProb = 1
for ¢ in [0...(T—1):
for sgq. In [1...5]:
for a In OUtArcs(syc):
Sest = dest(a)
curProb = Clt, sqc |.VProb x arcProb(a,t)
If curProb > Clt + 1, s4 |.VProb:
Ct + 1, s4q |].VProb = curProb
Clt+1,sq4q |.trace = a
(do backtrace starting froi¥|T’, final] to find best path)

Il
[H[&

ELEN E6884: Speech Recognition

Real-Time Decoding

= real-time decoding
- decoding k£ seconds of speech in k£ seconds (e.g., 0.1x RT)

- why Is this desirable?

= decoding time for Viterbi algorithm, 10M states in graph
- In each frame, loop through every state in graph
- say 100 CPU cycles to process each state
. for each second of audio, 100 x 10M x 100 = 10*! CPU cycles
- PC's do ~ 10” cycles/second (e.g., 3GHz P4)

= Wwe cannot afford to evaluate each state at each frame
- = pruning!

iE5E ELEN E6884: Speech Recognition 87

Pruning

= at each frame, only evaluate states with best scores
- at each frame, have a set of active states
- loop only through active states at each frame
- for states reachable at next frame, keep only those with best
scores
- these are active states at next frame

for ¢ in [0...(T—1):
for sgc N [1...85]:
for a In OUtArcs(sgc):
Sest = dest(a)
update Clt+ 1,54] from CI[t, ssc], arcProb(a,t)

£=5E ELEN E6884: Speech Recognition 88

Pruning

= when not considering every state at each frame ...
- We may make search errors

- I.e., we may not find the path with the highest likelihood

= tradeoff: the more states we evaluate ...
- the fewer the number of search errors

- the more computation required

= the field of search in ASR
- minimizing search errors while minimizing computation

iE5E ELEN E6884: Speech Recognition

89

Basic Pruning
= beam pruning
- In a frame, keep only those states whose logprobs are within
some distance of best logprob at that frame

- Intuition: if a path’s score is much worse than current best, it
will probably never become best path

- weakness: if poor audio, overly many states within beam?

= rank or histogram pruning
- In a frame, keep £ highest scoring states for some &

- intuition: if the correct path is ranked very poorly, the chance
of picking it out later is very low

- bounds computation per frame
- weakness: if clean audio, keeps states with bad scores?

iE5E ELEN E6884: Speech Recognition 90

Pruning Visualized

= active states are small fraction of total states (<1%)

- tend to be localized in small regions in graph

e

==

ER

DD

DD

DD

ABROAD

ABUSE

ABUSE

ABSURD

ABSURD

00000

91

Pruning and Determinization

= most uncertainty occurs at word starts
- determinization drastically reduces branching at word starts

w A0 . O

B
AX

B
AX

AE
AE

B

AE

AA

o

<

0]

N

= =
g g

U

=
g

W

T
~

es!
~

> >
w
c

vs]
cC

DD ABROAD

S ABUSE

SO0

Z ABUSE

DD ABSURD

DD

ABSURD

ELEN E6884: Speech Recognition

92

Language Model Lookahead

= In practice, word labels and LM scores at word ends
- S0 determinization works
- what's wrong with this picture? (hint: think beam pruning)

DD/0
AO/0 ‘

ABROAD/4.3

ABUSE/3.5

S/0

UW/0 7/0

00000

‘ ‘ ABUSE/3.5
AX/O ‘ ER/0 DD/0 ABSURD/4.7

S/0
. AL ‘ B0 ‘ ‘ ER/0 ‘ DD/0 ABSURD/4.7

UW/0

ABU/7
@=L
()._ows
‘ ABU/7 @

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

Language Model Lookahead

= move LM scores as far ahead as possible
- at each point, total cost < min LM cost of following words

- push operation does this

ABROAD/0

DD/0
AO/0 ‘
R/0.8 ‘ ABUSE/0
S/0

Y/0 UW/0 7/0
o = gutiy

ER/0 DD/0 ABSURD/0
S/0

B/0 ‘ Z/0 ‘ ER/0 ‘ DD/0 ABSURD/0
UW2.3

ABU/0
B/0
‘ UW/0
‘ ABU/O @

AX/3.5

. AFE/A4.7
AA/7.0

00000

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition

Historical Note

= in the old days (pre-AT&T-style decoding)
- people determinized their decoding graphs

- did the push operation for LM lookahead

- ... without calling it determinization or pushing
- ASR-specific implementations

= nowadays (late 1990’s—)
- Implement general finite-state operations

- FSM toolkits
- can apply finite-state operations in many contexts in ASR

ELEN E6884: Speech Recognition

95

Efficient Viterbl Decoding

= saving computation
. pruning
- determinization
- LM lookahead

- = process ~10000 states/frame in < 1x RT on PC’s

- much faster with smaller LM’s or allowing more search
errors

= saving memory (e.g., 10M state decoding graph)
« 10 second utterance = 1000 frames

« 1000 frames x 10M states = 10 billion cells in DP chart

[J]
||:||:II
i

ELEN E6884: Speech Recognition 96

Saving Memory in Viterbl Decoding

= to compute Viterbi probability (ignoring backtrace) ...
- do we need to remember whole chart throughout?

= do we need to keep cells for all states or just active states?
- depends how hard you want to work

for ¢ in [0...(T —1)]:
for sge In [1...5]:
for a In OUtArcs(sgc):
Sest = dest(a)
update C[t+ 1,54] from CI|t,sqc |, arcProb(a,t)

[J]
||:||:II
i

ELEN E6884: Speech Recognition

97

Saving Memory in Viterbl Decoding

What about backtrace information?

= need to remember whole chart?

= conventional Viterbi backtrace
- remember arc at each frame in best path

- really, all we want are the words

= Instead of keeping pointer to best incoming arc
- keep pointer to best incoming word sequence

. can store word sequences compactly in tree

(RIH]
il

ELEN E6884: Speech Recognition

98

Token Passing
= maintain “word tree”; each node corresponds to word segquence

= backtrace pointer points to node in tree ...
- holding word sequence labeling best path to cell

= set backtrace to same node as at best last state ...
- unless cross word boundary

Ex: ELEN E6884: Speech Recognition 99

Saving Memory in Viterbl Decoding

Memory usage

= pbefore
- static decoding graph
- (# states) x (# frames) cells

= after
. static decoding graph (shared memory) <« the biggie
- (# (active) states) x (2 frames) cells
- backtrace word tree

Il
[

ELEN E6884: Speech Recognition

100

Where Are We?

= Unit V: other decoding paradigms

- | dynamic graph expansion | — saving memory
- stack search — best-first search
- two-pass decoding — enable complex models

[J]
RIH]
il

ELEN E6884: Speech Recognition 101

Two Approaches to Decoding

= Approach 1: dynamic graph expansion
- don’t store the whole graph in memory
- only keep parts of the graph with active states in memory
. can use more complex LM’s

= Approach 2: static graph expansion
- just shrink the graph

- use a simpler language model
- faster

[J]
||:||:II
i

ELEN E6884: Speech Recognition

102

Dynamic Graph Expansion

= how can we store a really big graph such that ...
- it doesn’t take that much memory, but ...

- easy to expand any part of it that we need

= observation: composition is associative

(AoTy)oTy = Ao (T 0T5)

= observation: decoding graph is composition of LM with a bunch
of FST’s

Gaecode = Amo© de—>pn o Te1~cp © Lep_Hvm

= ALI\/I O (de—>pn O TCI—>CD O TCD—>H|\/||\/|)

(RIH]
il

ELEN E6884: Speech Recognition 103

Dynamic Graph Expansion

Computing composition

Aab

EEE: ELEN E6884: Speech Recognition

104

Dynamic Graph Expansion

= foragraphG =AoT ...
- easy to calculate outgoing arcs of a state sg = (s4, s7)

Gecode = ALm © (de—>pn o lcicp © TCD—>HMIVI)

= idea: just store graphs A,y and 7' = Tiq_.pn © Tci—cp © T mmm
- easy to calculate outgoing arcs of any state In Gecoge
- In active state list, each state is represented as pair of states
(SAa ST)

= instead of storing one big graph, store two smaller graphs
- minimize each of the smaller graphs
- other decompositions are possible

- dynamic graph expansion was really complicated before FSM
perspective

EEE: ELEN E6884: Speech Recognition 105

Where Are We?

= Unit V: other decoding paradigms
- dynamic graph expansion

- | stack search
. two-pass decoding

[J]
||:u:|l
i

ELEN E6884: Speech Recognition 106

Stack Search

Viterbi search — synchronous search
- extend all paths and calculate all scores synchronously

- expand states with mediocre scores in case they improve
later

stack search — asynchronous search
- pursue best-looking path first!

- If lucky, expand very few states at each frame

pioneered at IBM in mid-1980’s; first real-time dictation system

may be competitive at low-resource operating points
- going out of fashion

iE5E ELEN E6884: Speech Recognition 107

Stack Search

= extend hypotheses word-by-word

= use fast match to decide which word to extend best path with
- decode single word with simpler acoustic model

(RIH]
il

ELEN E6884: Speech Recognition

108

Stack Search

= advantages
- If best path pans out, very little computation

= disadvantages
- difficult to decide which path to extend

- hypotheses are of different lengths in frames
- In synchronous search, pruning is straightforward

- may need to recompute the same values multiple times
- in DP terminology, not evaluating cells in topological order

= point: in practice, have enough compute power for Viterbi
- fewer search errors

==5E ELEN E6884: Speech Recognition 109

Where Are We?

= Unit V: other decoding paradigms
- dynamic graph expansion
- stack search

. | two-pass decoding

[[n]]
[
4,{{|II|

ull])

ELEN E6884: Speech Recognition 110

What About My Fuzzy Logic 15-Phone Acoustic
Model and 7-Gram Neural Net Language Model
with SVM Boosting?

= some of the ASR models we develop in research are ...
- too expensive to implement in normal (first-pass) decoding

= first-pass decoding
- find best word sequence from among “all” word sequences

= rescoring
- find best word sequence from constrained search space
- namely, best-scoring word sequences from first pass

- large enough set to hopefully contain “correct” hypothesis
- small enough set that not too expensive to rescore

(RIH]
il

ELEN E6884: Speech Recognition 111

Two-Pass Decoding

= for interactive applications, one-pass near-real-time decoding is
ideal
- start processing when audio signal starts, be done soon after
audio signal ends

= two-pass decoding generally yields better accuracy
- 1st pass: decode, but return many likely hypotheses rather
than single most likely
- 2nd pass. choose best of returned hypotheses using more
complex models
. e.d., N-best list rescoring in Lab 3

- can still be used for interactive apps if 2nd pass really fast

iE5E ELEN E6884: Speech Recognition 112

Lattice Rescoring

= first pass: return likely hypotheses as a graph or lattice
« In Viterbl, store k-best tracebacks at each word-end cell

= can use models that are impractical with first-pass decoding
. e.g., 5-gram LM'’s, sesquiphone phonetic decision trees, etc.

= some techniques need lattices

- e.g., confidence estimation, consensus decoding, lattice
MLLR, etc.

iE5E ELEN E6884: Speech Recognition 113

N-Best List Rescoring

= for exotic models, evaluating on lattices may be too slow

- lattice encodes exponential number of paths (in length of
utterance)

- for some models, computation linear in number of hypotheses

= easy to generate N-best lists from lattices
- A* algorithm

= harder to judge quality of model used for rescoring in this
paradigm
- first-pass model biases results

iE5E ELEN E6884: Speech Recognition 114

Two-Pass Decoding

Recap

= great for doing research
- generate lattices once

- lattice/N-best rescoring is cheap
- reasonable indicator of value of model

= in real-world apps, value less clear

- performance gain from 2nd pass usually not perceptible by
users

- Increases latency

[J]
(FTH]
1Ll
]

ELEN E6884: Speech Recognition 115

The Road Ahead

weeks 1-4: small vocabulary ASR

weeks 5-8: large vocabulary ASR

weeks 9-12: advanced topics

- adaptation; robustness

- discriminative training; ROVER; consensus
- advanced language modeling

- audiovisual speech recognition

week 13: final presentations

(RIH]
|

TR ELEN E6884: Speech Recognition 116

Course Feedback

1. Was this lecture mostly clear or unclear? What was the
muddiest topic?

2. Comments on lab 27

3. Other feedback (pace, content, atmosphere)?

(RIH]
il

ELEN E6884: Speech Recognition 117

