ELEN E6884/COMS 86884 Speech Recognition Lecture 8

Michael Picheny, Ellen Eide, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, NY, USA

{picheny,eeide,stanchen}@us.ibm.com

27 October 2005

IEM

ELEN E6884: Speech Recognition

Administrivia

- main feedback from last lecture
 - a little too fast
 - FST's still unclear
- Lab 2 not graded yet, will be handed back next week
- Lab 3 out, due Sunday after next

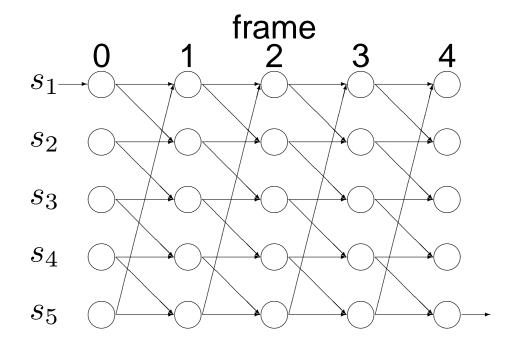
Lab 2 Review

- output distributions on states vs. arcs?
 - advantages of either representation?
- computing total likelihood for each word HMM separately vs. using Viterbi algorithm on one big HMM?
 - hint: what about computing Viterbi likelihood for each word HMM separately?

Lab 2 Review

Viterbi algorithm as shortest distance problem

- for arc a, frame t, distance from (src(a), t) to (dst(a), t+1) is . . .
 - $-\log\left[P(a)P(x_t|a)\right]$



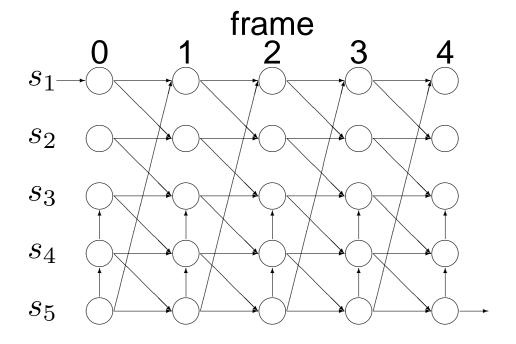
Viterbi As Shortest Distance Problem

- need to traverse chart in an order such that ...
 - all chart arcs go from cell traversed earlier . . .
 - to cell traversed later
- loop first through frames, then through states

Viterbi As Shortest Distance Problem

What if we add skip arcs?

- for skip arc a, distance from (src(a), t) to (dst(a), t) is . . .
 - \bullet $-\log[P(a)]$



Viterbi As Shortest Distance Problem

Handling skip arcs

- at a given frame, for all skip arcs a, must visit . . .
 - state src(a) before state dst(a)
- topologically sort states with respect to skip arcs only
 - then, natural ordering will work

```
for t in [0...(T-1)]: for s_{\rm src} in [1...S]:
```

- in practice, may process skip arcs and emitting arcs in separate stages
- recap: beware of skip arcs

Lab 2 Review

- Q: if an HMM were a fruit, what type of fruit would it be?
 - A: a Hidden Markov Banana

Viterbi Algorithm

```
C[0...T,1...S].vProb = 0
C[0, start].vProb = 1
for t in [0...(T-1)]:
   for s_{\rm src} in [1...S]:
      for a in outArcs(s_{\rm src}):
        s_{\text{dst}} = dest(a)
        curProb = C[t, s_{src}].vProb \times arcProb(a, t)
         if curProb > C[t+1, s_{dst}].vProb:
           C[t+1, s_{\text{dst}}].vProb = curProb
           C[t+1,s_{\text{dst}}].trace = a
(do backtrace starting from C[T, final] to find best path)
```

Forward Algorithm

```
C[0...T,1...S].fProb = 0 C[0,start].fProb = 1 for t in [0...(T-1)]: for s_{\rm src} in [1...S]: for a in outArcs(s_{\rm src}): s_{\rm dst} = dest(a) curProb = C[t,s_{\rm src}].fProb \times arcProb(a,t) C[t+1,s_{\rm dst}].fProb += curProb totProb = C[T,final].fProb
```

Backward Algorithm

```
C[0...T,1...S].bProb = 0
C[T, final].bProb = 1
for t in [(T-1)...0]:
  for s_{\rm src} in [1...S]:
     for a in outArcs(s_{\tt src}):
        s_{\rm dst} = dest(a)
        curProb = C[t+1, s_{dst}].bProb \times arcProb(a, t)
        C[t, s_{\rm src}].bProb += curProb
        fbCount = C[t, s_{src}].fProb \times curProb / totProb
        addCount(a, t, fbCount)
```

Gaussian Update

- occupancy count $\gamma_{u,t}$ for given arc at frame t of utterance u
 - posterior prob of arc at that frame, i.e., fbCount
- collect counts (for each dimension d)

$$S_0 = \sum_{ ext{utt } u} \sum_{ ext{frame } t} \gamma_{u,t}$$
 $S_{1,d} = \sum_{ ext{utt } u} \sum_{ ext{frame } t} \gamma_{u,t} \; x_{u,t,d}$ $S_{2,d} = \sum_{ ext{utt } u} \sum_{ ext{frame } t} \gamma_{u,t} \; x_{u,t,d}^2$

Mean Update

$$\begin{array}{lcl} S_0 & = & \displaystyle \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t} \\ S_{1,d} & = & \displaystyle \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t} \; x_{u,t,d} \\ S_{2,d} & = & \displaystyle \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t} \; x_{u,t,d}^2 \end{array}$$

$$\mu_d = \frac{\sum_{u} \sum_{t} \gamma_{u,t} \ x_{u,t,d}}{\sum_{u} \sum_{t} \gamma_{u,t}} = \frac{S_{1,d}}{S_0}$$

Variance Update

$$S_0 = \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t}$$

$$S_{1,d} = \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t} \ x_{u,t,d}$$

$$S_{2,d} = \sum_{\text{utt } u} \sum_{\text{frame } t} \gamma_{u,t} \ x_{u,t,d}^2$$

• update only diagonal terms $\Sigma_{d,d}$ in covariance matrix

$$\Sigma_{d,d} = \frac{\sum_{u,t} \gamma_{u,t} (x_{u,t,d} - \mu_d)^2}{\sum_{u,t} \gamma_{u,t}}$$

$$= \frac{1}{S_0} \Big[\sum_{u,t} \gamma_{u,t} x_{u,t,d}^2 - 2\mu_d \sum_{u,t} \gamma_{u,t} x_{u,t,d} + \mu_d^2 \sum_{u,t} \gamma_{u,t} \Big]$$

$$= \frac{S_{2,d} - 2\mu_d S_{1,d} + \mu_d^2 S_0}{S_0} = \frac{S_{2,d} - \mu_d^2 S_0}{S_0}$$

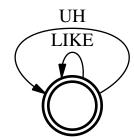
The Big Picture

- weeks 1–4: small vocabulary ASR
- weeks 5–8: large vocabulary ASR
 - week 5: language modeling
 - week 6: pronunciation modeling
 - week 7: training
 - week 8: FST's; search
- weeks 9–13: advanced topics

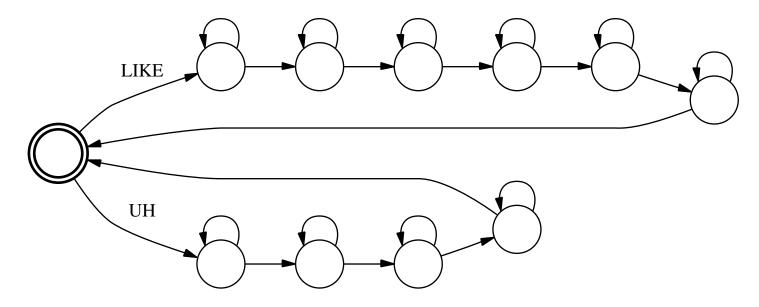
Where Were We? ⇒ LVCSR Decoding

What did we do for small vocabulary tasks?

- graph/FSA representing language model
 - *i.e.*, all allowed word sequences



expand to underlying HMM



run the Viterbi algorithm!

Decoding

Well, can we do the same thing for LVCSR?

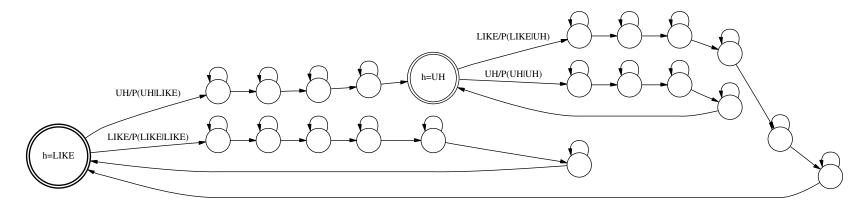
■ Issue 1: Can we express an *n*-gram model as an FSA?

yup w1/P(w1|w1)w2/P(w2|w2)w2/P(w2|w1)h=w1h=w2w1/P(w1|w2)w1/P(w1|w1,w2)w2/P(w2|w2,w2)h=w2,w2w2/P(w2|w1,w2)w1/P(w1|w2,w2)w1/P(w1|w1,w1)h=w1,w2 w2/P(w2|w1,w1)h=w2,w1 w2/P(w2|w2,w1)w1/P(w1|w2,w1)h=w1,w1

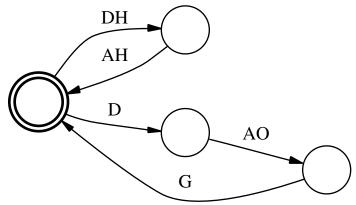
Decoding

Issue 2: How can we expand a word graph to its underlying HMM?

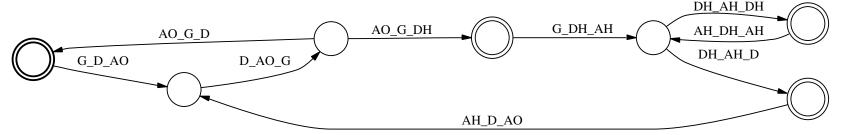
- word models
 - replace each word with its HMM
- CI phone models
 - replace each word with its phone sequence(s)
 - replace each phone with its HMM



Graph Expansion with Context-Dependent Models



- how can we do context-dependent expansion?
 - handling branch points is tricky
- example of triphone expansion



Graph Expansion with Context-Dependent Models

Is there a better way?

- is there some elegant theoretical framework . . .
- that makes it easy to do this type of expansion . . .
- and also makes it easy to do lots of other graph operations useful in ASR?
- ⇒ finite-state transducers (FST's)!

Outline

- Unit I: finite-state transducers
 - how do we build decoding graphs for LVCSR?
- Unit II: introduction to search
- Unit III: making decoding graphs smaller
- Unit IV: efficient Viterbi decoding
- Unit V: other decoding paradigms

Remix: A Reintroduction to FSA's and FST's

The semantics of (unweighted) finite-state acceptors

- the meaning of an FSA is the set of strings (i.e., token sequences) it accepts
 - set may be infinite
- two FSA's are equivalent if they accept the same set of strings
- things that don't affect semantics
 - how labels are distributed along a path
 - invalid paths (paths that don't connect initial and final states)
- see board

You Say Tom-ay-to; I Say Tom-ah-to

- a finite-state acceptor is . . .
 - a set of strings . . .
 - expressed (compactly) using a finite-state machine
- what is a finite-state transducer?
 - a one-to-many mapping from strings to strings
 - expressed (compactly) using a finite-state machine

The Semantics of Finite-State Transducers

- the meaning of an (unweighted) FST is the string mapping it represents
 - a set of strings (possibly infinite) it can accept
 - all other strings are mapped to the empty set
 - for each accepted string . . .
 - the set of strings (possibly infinite) mapped to
- two FST's are equivalent if they represent the same mapping
- things that don't affect semantics
 - how labels are distributed along a path
 - invalid paths (paths that don't connect initial and final states)
- see board

The Semantics of Composition

- for a set of strings A (FSA) . . .
- for a mapping from strings to strings T (FST) ...
 - let T(s) = the set of strings that s is mapped to
- the composition $A \circ T$ is the set of strings (FSA) ...

$$A \circ T = \bigcup_{s \in A} T(s)$$

maps all strings in A simultaneously

Graph Expansion as Repeated Composition

- want to expand from set of strings (LM) to set of strings (underlying HMM)
 - how is an HMM a set of strings? (ignoring arc probs)
- can be decomposed into sequence of composition operations
 - words ⇒ pronunciation variants
 - pronunciation variants ⇒ CI phone sequences
 - CI phone sequences ⇒ CD phone sequences
 - CD phone sequences ⇒ GMM sequences
- to do graph expansion
 - design several FST's
 - implement one operation: composition!

- figure out which strings to accept (i.e., which strings should be mapped to non-empty sets)
 - (and what "state" we need to keep track of, e.g., for CD expansion)
 - design corresponding FSA
- add in output tokens
 - creating additional states/arcs as necessary

Context-independent examples (1-state)

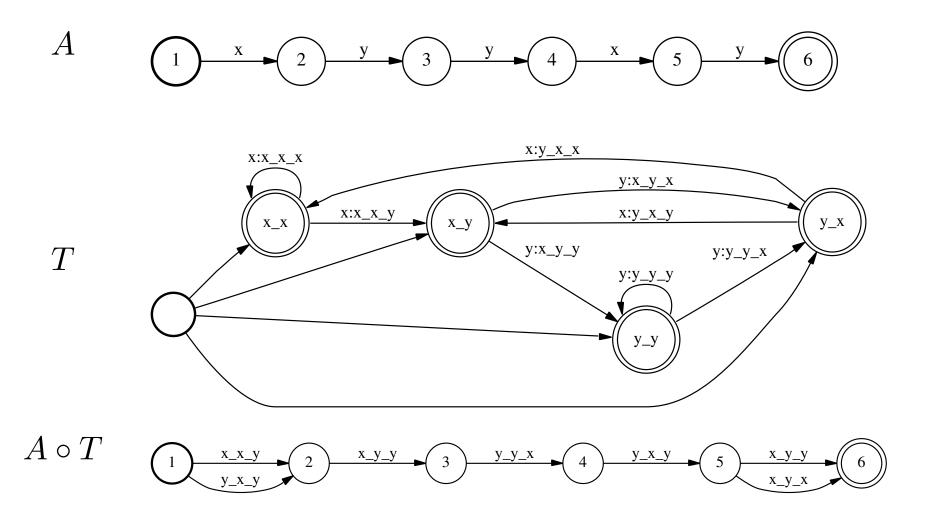
- 1:0 mapping
 - removing swear words (two ways)
- 1:1 mapping
 - mapping pronunciation variants to phone sequences
 - one label per arc?
- 1:many mapping
 - mapping from words to pronunciation variants
- 1:infinite mapping
 - inserting optional silence

- can do more than one "operation" in single FST
- can be applied just as easily to whole LM (infinite set of strings) as to single string

How to express context-dependent phonetic expansion via FST's?

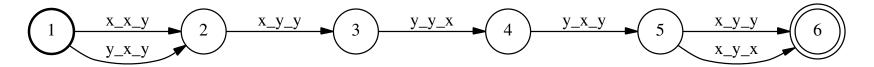
- step 1: rewrite each phone as a triphone
 - rewrite AX as DH_AX_R if DH to left, R to right
- what information do we need to store in each state of FST?
 - strategy: delay output of each phone by one arc

How to Express CD Expansion via FST's?



How to Express CD Expansion via FST's?

Example



- point: composition automatically expands FSA to correctly handle context!
 - makes multiple copies of states in original FSA . . .
 - that can exist in different triphone contexts
 - (and makes multiple copies of only these states)

How to Express CD Expansion via FST's?

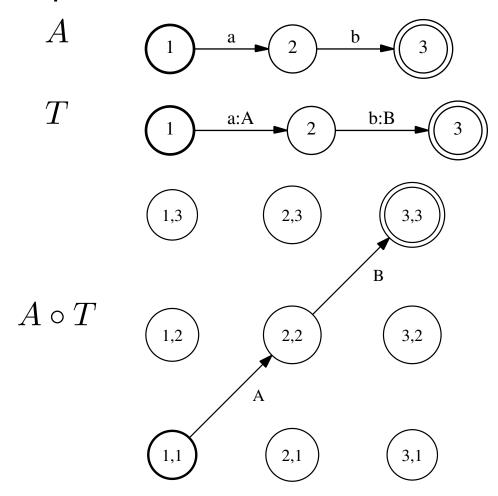
- step 1: rewrite each phone as a triphone
 - rewrite AX as DH_AX_R if DH to left, R to right
- step 2: rewrite each triphone with correct context-dependent HMM for center phone
 - how to do this?
 - note: OK if FST accepts more strings than it needs

Graph Expansion

- final decoding graph: $L \circ T_1 \circ T_2 \circ T_3 \circ T_4$
 - L = language model FSA
 - T_1 = FST mapping from words to pronunciation variants
 - T_2 = FST mapping from pronunciation variants to CI phone sequences
 - T₃ = FST mapping from CI phone sequences to CD phone sequences
 - T_4 = FST mapping from CD phone sequences to GMM sequences
- we know how to design each FST
- how do we implement composition?

Computing Composition

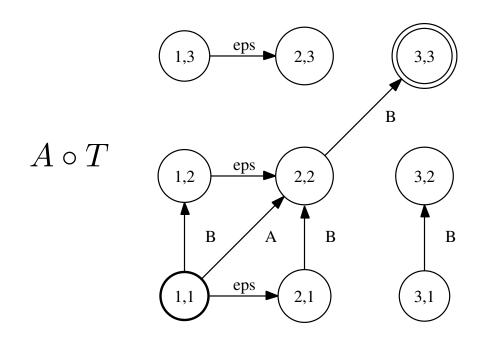
Example



optimization: start from initial state, build outward

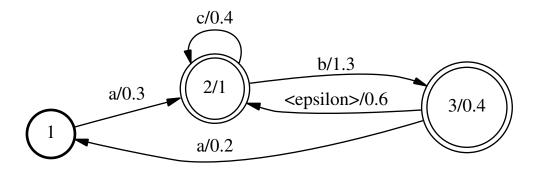
Composition and ϵ -Transitions

- basic idea: can take ϵ -transition in one FSM without moving in other FSM
 - a little tricky to do exactly right
 - do the readings if you care: (Pereira, Riley, 1997)



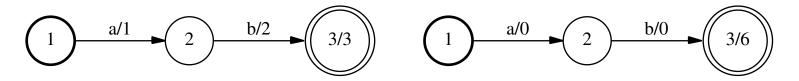
What About Those Probability Thingies?

- *e.g.*, to hold language model probs, transition probs, etc.
- FSM's ⇒ weighted FSM's
 - weighted acceptors (WFSA's), transducers (WFST's)
- each arc has a score or cost
 - so do final states



Semantics

total cost of path is sum of its arc costs plus final cost



- typically, we take costs to be negative log probabilities
 - (total probability of path is product of arc probabilities)

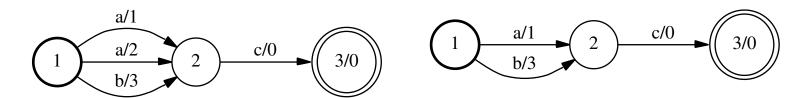
Semantics of Weighted FSA's

The semantics of weighted finite-state acceptors

- the meaning of an FSA is the set of strings (i.e., token sequences) it accepts
 - each string additionally has a cost
- two FSA's are equivalent if they accept the same set of strings with same costs
- things that don't affect semantics
 - how costs or labels are distributed along a path
 - invalid paths (paths that don't connect initial and final states)
- see board

Semantics of Weighted FSA's

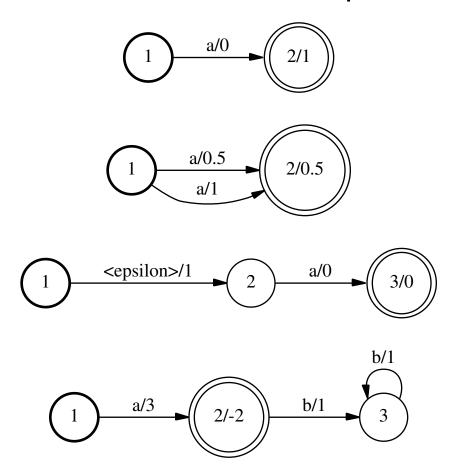
- each string has a single cost
- what happens if two paths in FSA labeled with same string?
 - how to compute cost for this string?
- usually, use min operator to compute combined cost (Viterbi)
 - can combine paths with same labels into one without changing semantics



- operations (+, min) form a semiring (the tropical semiring)
 - other semirings are possible

Which Of These Is Different From the Others?

FSM's are equivalent if same label sequences with same costs



The Semantics of Weighted FST's

- the meaning of an (unweighted) FST is the string mapping it represents
 - a set of strings (possibly infinite) it can accept
 - for each accepted string . . .
 - the set of strings (possibly infinite) mapped to . . .
 - and a cost for each string mapped to
- two FST's are equivalent if they represent the same mapping with the same costs
- things that don't affect semantics
 - how costs and labels are distributed along a path
 - invalid paths (paths that don't connect initial and final states)

The Semantics of Weighted Composition

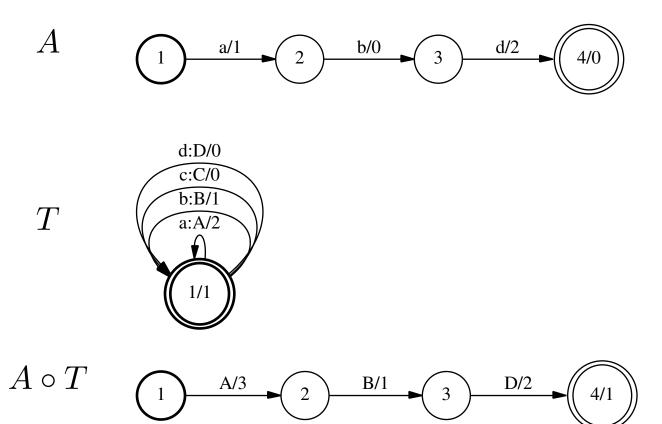
- for a set of strings A (WFSA) ...
- for a mapping from strings to strings T (WFST) . . .
 - let T(s) = the set of strings that s is mapped to
- the composition $A \circ T$ is the set of strings (WFSA) ...

$$A \circ T = \bigcup_{s \in A} T(s)$$

- cost associated with output string is "sum" of ...
 - cost of input string in A
 - cost of mapping in T

Computing Weighted Composition

Just add arc costs



Why is Weighted Composition Useful?

- probability of a path is product of probabilities along path
 - LM probs; arc probs; pronunciation probs; etc.
- if costs are negative log probabilities . . .
 - and use addition to combine scores along paths and in composition...
 - probabilities will be combined correctly
- ⇒ composition can be used to combine scores from different models

Weighted Graph Expansion

- final decoding graph: $L \circ T_1 \circ T_2 \circ T_3 \circ T_4$
 - L = language model FSA (w/ LM costs)
 - T_1 = FST mapping from words to pronunciation variants (w/pronunciation costs)
 - T₂ = FST mapping from pronunciation variants to CI phone sequences
 - T_3 = FST mapping from CI phone sequences to CD phone sequences
 - T_4 = FST mapping from CD phone sequences to GMM sequences (w/ HMM transition costs)
- in final graph, each path has correct "total" cost

Recap

- WFSA's and WFST's can represent many important structures in ASR
- graph expansion can be expressed as series of composition operations
 - need to build FST to represent each expansion step, e.g.,
 - 1 2 THE
 - 2 3 DOG

3

- with composition operation, we're done!
- composition is efficient
- context-dependent expansion can be handled effortlessly

Unit II: Introduction to Search

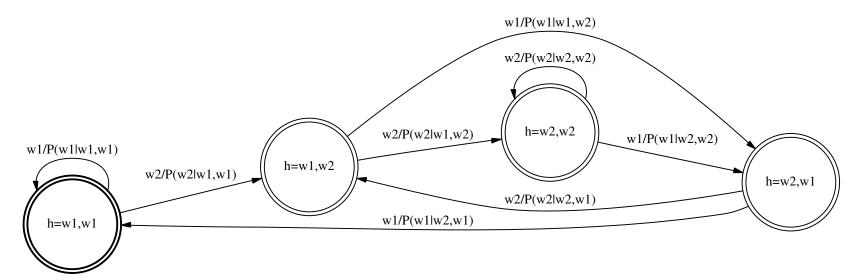
Where are we?

$$\begin{aligned} \mathsf{class}(\mathbf{x}) &= \underset{\omega}{\operatorname{arg\,max}} \; P(\omega|\mathbf{x}) \\ &= \underset{\omega}{\operatorname{arg\,max}} \; \frac{P(\omega)P(\mathbf{x}|\omega)}{P(\mathbf{x})} \\ &= \underset{\omega}{\operatorname{arg\,max}} \; P(\omega)P(\mathbf{x}|\omega) \end{aligned}$$

- can build the one big HMM we need for decoding
- use the Viterbi algorithm on this HMM
- how can we do this efficiently?

Just How Bad Is It?

• trigram model (e.g., vocabulary size |V|=2)



- $|V|^3$ word arcs in FSA representation
- each word expands to ~4 phones ⇒ 4×3 = 12-state HMM
- if |V| = 50000, $50000^3 \times 12 \approx 10^{15}$ states in graph
- PC's have $\sim 10^9$ bytes of memory

Just How Bad Is It?

- decoding time for Viterbi algorithm
 - in each frame, loop through every state in graph
 - if 100 frames/sec, 10^{15} states ...
 - how many cells to compute per second?
 - ullet PC's can do $\sim 10^{10}$ floating-point ops per second
- point: cannot use small vocabulary techniques "as is"

Unit II: Introduction to Search

What can we do about the memory problem?

- Approach 1: don't store the whole graph in memory
 - pruning
 - at each frame, keep states with the highest Viterbi scores
 - < 100000 active states out of 10^{15} total states
 - only keep parts of the graph with active states in memory
- Approach 2: shrink the graph
 - use a simpler language model
 - graph-compaction techniques (w/o changing semantics!)
 - compact representation of n-gram models
 - graph determinization and minimization

Two Paradigms for Search

- Approach 1: dynamic graph expansion
 - since late 1980's
 - can handle more complex language models
 - decoders are incredibly complex beasts
 - e.g., cross-word CD expansion without FST's
 - everyone knew the name of everyone else's decoder
- Approach 2: static graph expansion
 - pioneered by AT&T in late 1990's
 - enabled by minimization algorithms for WFSA's, WFST's
 - static graph expansion is complex
 - theory is clean; doing expansion in <2GB RAM is difficult
 - decoding is relatively simple

Static Graph Expansion

- in recent years, more commercial focus on limited-domain systems
 - telephony applications, e.g., replacing directory assistance operators
 - no need for gigantic language models
- static graph decoders are faster
 - graph optimization is performed off-line
- static graph decoders are much simpler
 - not entirely unlike small vocabulary Viterbi decoder

Static Graph Expansion

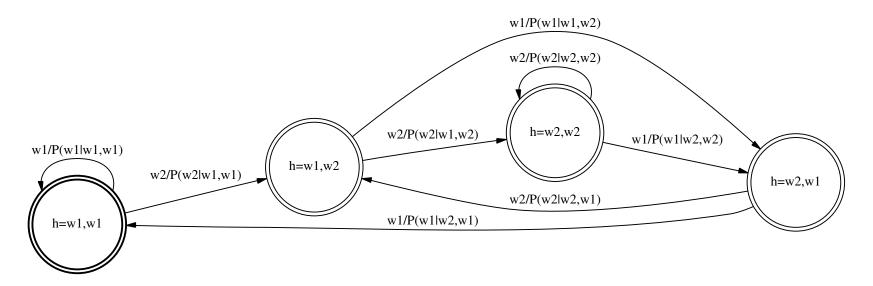
Outline

- Unit III: making decoding graphs smaller
 - shrinking n-gram models
 - graph optimization
- Unit IV: efficient Viterbi decoding
- Unit V: other decoding paradigms
 - dynamic graph expansion revisited
 - stack search (asynchronous search)
 - two-pass decoding

Unit III: Making Decoding Graphs Smaller

Compactly representing *n*-gram models

• for trigram model, $|V|^2$ states, $|V|^3$ arcs in naive representation



- only a small fraction of the possible $|V|^3$ trigrams will occur in the training data
 - is it possible to keep arcs only for occurring trigrams?

Compactly Representing N-Gram Models

can express smoothed n-gram models via backoff distributions

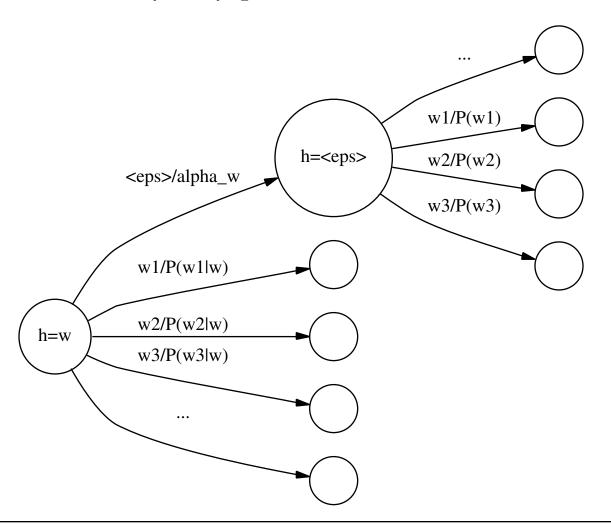
$$P_{\text{smooth}}(w_i|w_{i-1}) = \left\{ \begin{array}{ll} P_{\text{primary}}(w_i|w_{i-1}) & \text{if } \operatorname{count}(w_{i-1}w_i) > 0 \\ \alpha_{w_{i-1}}P_{\text{smooth}}(w_i) & \text{otherwise} \end{array} \right.$$

e.g., Witten-Bell smoothing

$$P_{\text{WB}}(w_i|w_{i-1}) = \frac{c_h(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{MLE}}(w_i|w_{i-1}) + \frac{N_{1+}(w_{i-1})}{c_h(w_{i-1}) + N_{1+}(w_{i-1})} P_{\text{WB}}(w_i)$$

Compactly Representing N-Gram Models

$$P_{\text{smooth}}(w_i|w_{i-1}) = \left\{ \begin{array}{ll} P_{\text{primary}}(w_i|w_{i-1}) & \text{if } \operatorname{count}(w_{i-1}w_i) > 0 \\ \alpha_{w_{i-1}}P_{\text{smooth}}(w_i) & \text{otherwise} \end{array} \right.$$



Compactly Representing N-Gram Models

- by introducing backoff states
 - only need arcs for n-grams with nonzero count
 - compute probabilities for n-grams with zero count by traversing backoff arcs
- does this representation introduce any error?
 - hint: are there multiple paths with same label sequence?
 - hint: what is "total" cost of label sequence in this case?
- can we make the LM even smaller?

Pruning N-Gram Language Models

Can we make the LM even smaller?

- sure, just remove some more arcs
- which arcs to remove?
 - count cutoffs
 - e.g., remove all arcs corresponding to bigrams $w_{i-1}w_i$ occurring fewer than 10 times in the training data
 - likelihood/entropy-based pruning
 - choose those arcs which when removed, change the likelihood of the training data the least
 - (Seymore and Rosenfeld, 1996), (Stolcke, 1998)

Pruning N-Gram Language Models

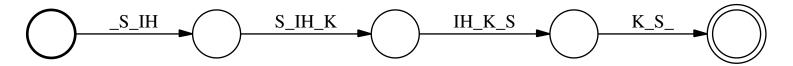
Language model graph sizes

- original: trigram model, $|V|^3 = 50000^3 \approx 10^{14}$ word arcs
- backoff: >100M unique trigrams ⇒ ~100M word arcs
- pruning: keep <5M n-grams $\Rightarrow \sim$ 5M word arcs
 - 4 phones/word ⇒ 12 states/word ⇒ ~60M states?
 - we're done?

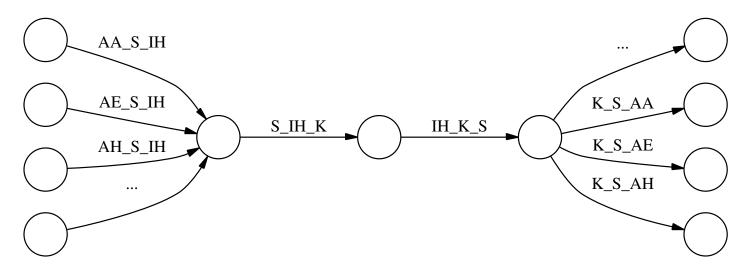
Pruning N-Gram Language Models

Wait, what about cross-word context-dependent expansion?

• with word-internal models, each word really is only \sim 12 states



- with cross-word models, each word is hundreds of states?
 - 50 CD variations of first three states, last three states



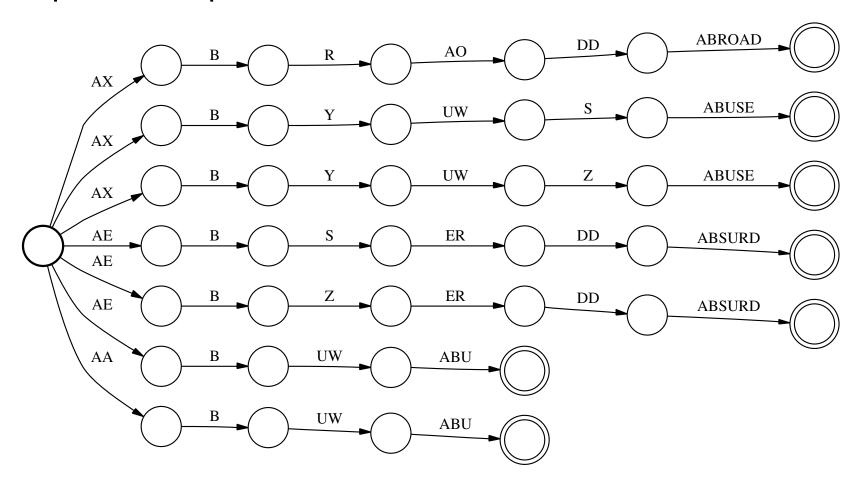
Unit III: Making Decoding Graphs Smaller

What can we do?

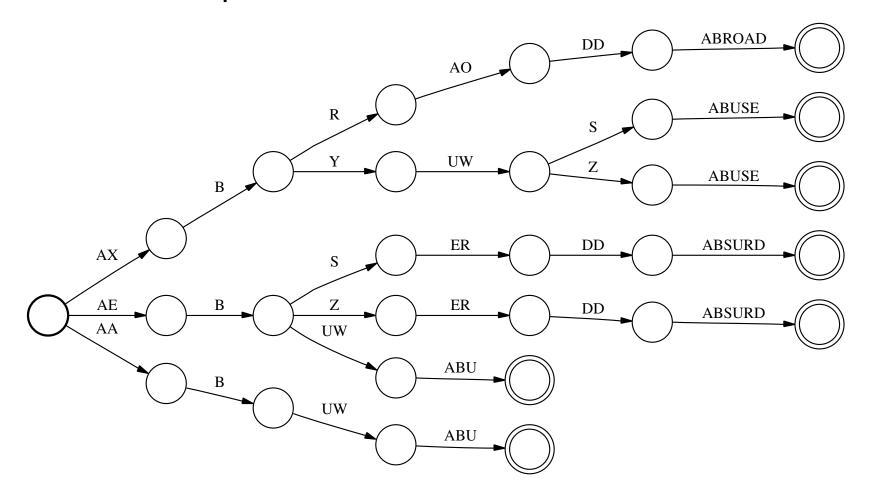
- prune the LM word graph even more?
 - will degrade performance
- can we shrink the graph further without changing its meaning?

Graph Compaction

- consider word graph for isolated word recognition
 - expanded to phone level: 39 states, 38 arcs

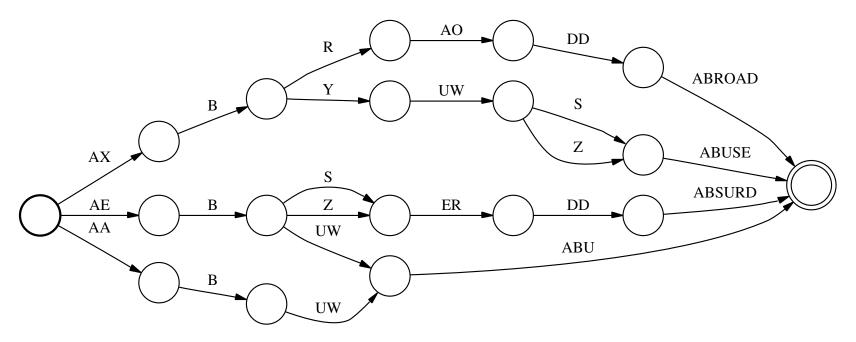


share common prefixes: 29 states, 28 arcs



Minimization

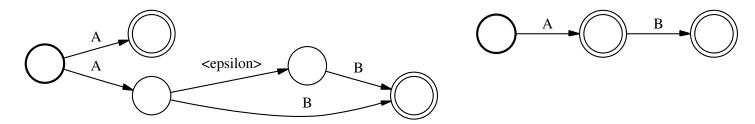
share common suffixes: 18 states, 23 arcs



Determinization and Minimization

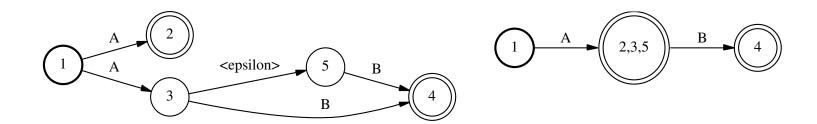
- by sharing arcs between paths . . .
 - we reduced size of graph by half ...
 - without changing semantics of graph
 - speeds search (even more than size reduction implies)
- determinization prefix sharing
 - produce deterministic version of an FSM
- minimization suffix sharing
 - given a deterministic FSM, find equivalent FSM with minimal number of states
- can apply to weighted FSM's and transducers as well
 - e.g., on fully-expanded decoding graphs

- what is a deterministic FSM?
 - no two arcs exiting the same state have the same input label
 - no ∈ arcs
 - *i.e.*, for any input label sequence . . .
 - at most one path from start state labeled with that sequence

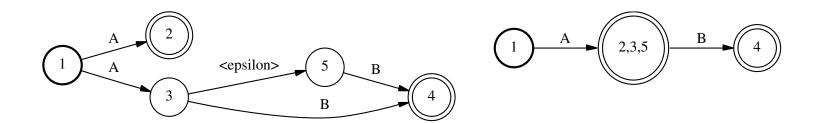


- why determinize?
 - may reduce number of states, or may increase number (drastically)
 - speeds search
 - required for minimization algorithm to work as expected

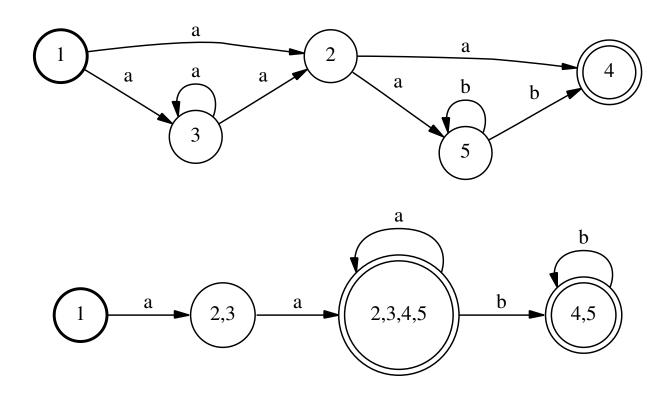
- basic idea
 - for an input label sequence, find set of all states you can reach from start state with that sequence in original FSM
 - collect all such state sets (over all input sequences)
 - map each unique state set into state in new FSM
 - by construction, each label sequence will reach single state in new FSM



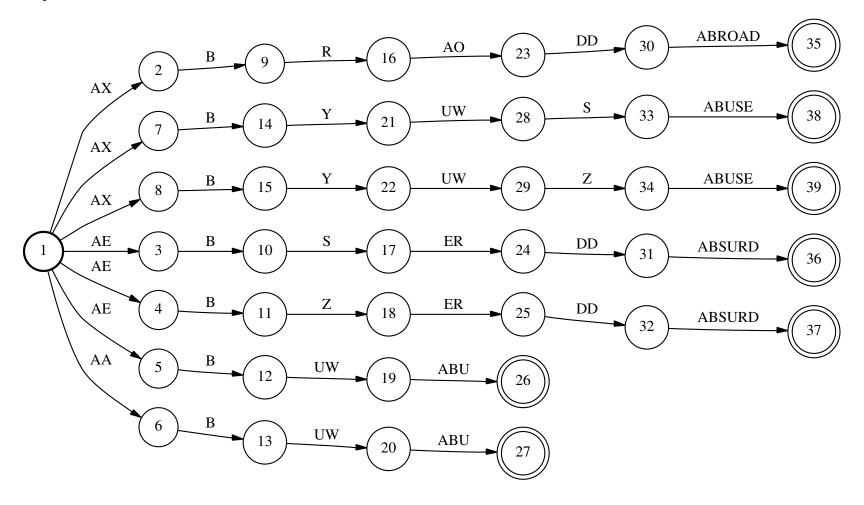
- start from start state
- keep list of state sets not yet expanded
 - for each, find outgoing arcs, creating new state sets as needed
- ullet must follow ϵ arcs when computing state sets



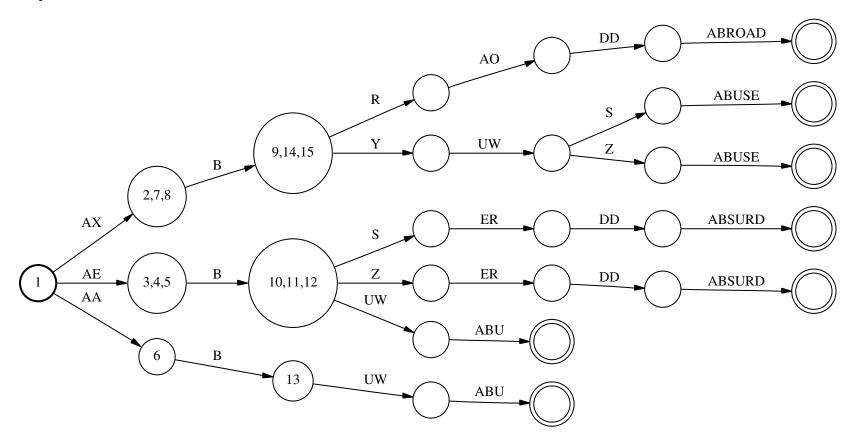
Example 2



Example 3



Example 3, cont'd

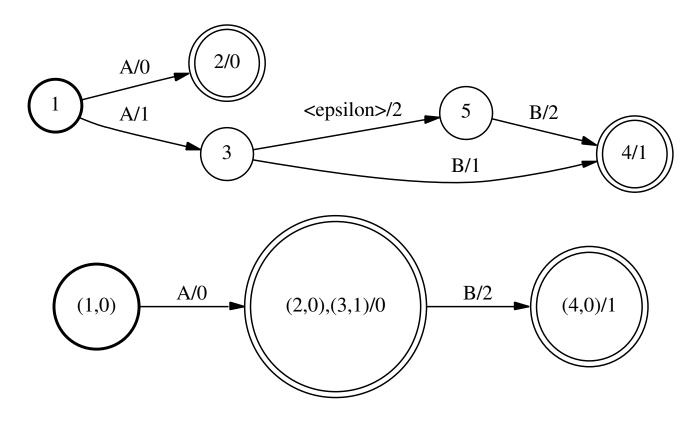


Determinization

- are all unweighted FSA's determinizable?
 - *i.e.*, will the determinization algorithm always terminate?
 - for an FSA with s states, what are the maximum number of states in its determinization?

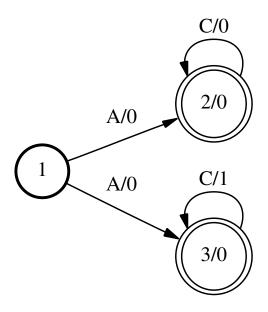
Weighted Determinization

- same idea, but need to keep track of costs
- instead of states in new FSM mapping to state sets $\{s_i\}$...
 - they map to sets of state/cost pairs $\{s_i, c_i\}$
 - need to track leftover costs



Weighted Determinization

will the weighted determinization algorithm always terminate?



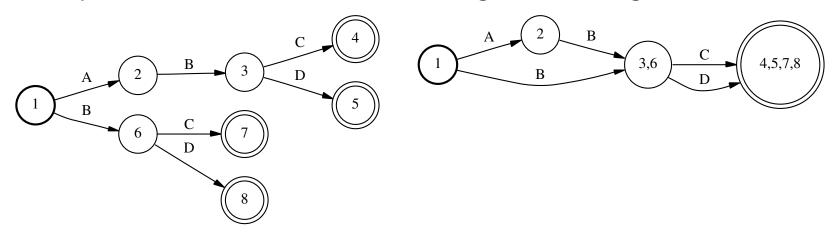
Weighted Determinization

What about determinizing finite-state transducers?

- why would we want to?
 - so we can minimize them; smaller ⇔ faster?
 - composing a deterministic FSA with a deterministic FSM often produces a (near) deterministic FSA
- instead of states in new FSM mapping to state sets $\{s_i\}$...
 - they map to sets of state/output-sequence pairs $\{s_i, o_i\}$
 - need to track leftover output tokens

- given a deterministic FSM . . .
 - find equivalent FSM with minimal number of states
 - number of arcs may be nowhere near minimal
 - minimizing number of arcs is NP-complete

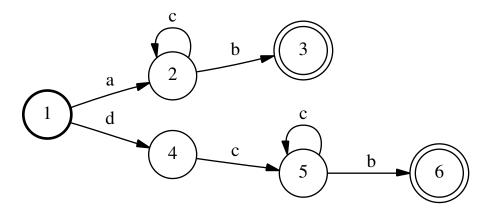
- merge states with same set of following strings (or follow sets)
 - with acyclic FSA's, can list all strings following each state



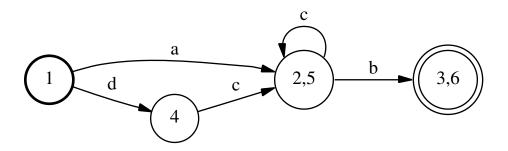
states	following strings
1	ABC, ABD, BC, BD
2	BC, BD
3, 6	C, D
4,5,7,8	ϵ

- for cyclic FSA's, need a smarter algorithm
 - may be difficult to enumerate all strings following a state
- strategy
 - keep current partitioning of states into disjoint sets
 - each partition holds a set of states that may be mergeable
 - start with single partition
 - whenever find evidence that two states within a partition have different follow sets . . .
 - split the partition
 - at end, each partition contains states with identical follow sets

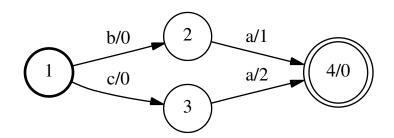
- invariant: if two states are in different partitions . . .
 - they have different follow sets
 - converse does not hold
- first split: final and non-final states
 - final states have ϵ in their follow sets; non-final states do not
- if two states in same partition have . . .
 - different number of outgoing arcs, or different arc labels . . .
 - or arcs go to different partitions . . .
 - the two states have different follow sets



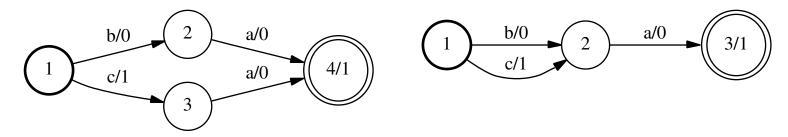
action	evidence	partitioning
		{1,2,3,4,5,6}
split 3,6	final	{1,2,4,5}, {3,6}
split 1	has a arc	{1}, {2,4,5}, {3,6}
split 4	no b arc	$\{1\}, \{4\}, \{2,5\}, \{3,6\}$



Weighted Minimization



- want to somehow normalize scores such that . . .
 - if two arcs can be merged, they will have the same cost
- then, apply regular minimization where cost is part of label
- push operation
 - move scores as far forward (backward) as possible



Weighted Minimization

What about minimization of FST's?

- yeah, it's possible
- use push operation, except on output labels rather than costs
 - move output labels as far forward as possible
- enough said

Pop quiz

does minimization always terminate?

Unit III: Making Decoding Graphs Smaller

Recap

- backoff representation for n-gram LM's
- n-gram pruning
- use finite-state operations to further compact graph
 - determinization and minimization
- 10^{15} states \Rightarrow 10–20M states/arcs
 - 2–4M n-grams kept in LM

Practical Considerations

- graph expansion
 - start with word graph expressing LM
 - compose with series of FST's to expand to underlying HMM
- strategy: build big graph, then minimize at the end?
 - problem: can't hold big graph in memory
- better strategy: minimize graph after each expansion step
 - never let the graph get too big
- it's an art
 - recipes for efficient graph expansion are still evolving

Where Are We?

- Unit I: finite-state transducers
- Unit II: introduction to search
- Unit III: making decoding graphs smaller
 - now know how to make decoding graphs that can fit in memory
- Unit IV: efficient Viterbi decoding
 - making decoding fast
 - saving memory during decoding
- Unit V: other decoding paradigms

Viterbi Algorithm

```
C[0...T,1...S].vProb = 0
C[0, start].vProb = 1
for t in [0...(T-1)]:
   for s_{\rm src} in [1...S]:
      for a in outArcs(s_{\rm src}):
        s_{\text{dst}} = dest(a)
        curProb = C[t, s_{src}].vProb \times arcProb(a, t)
         if curProb > C[t+1, s_{dst}].vProb:
           C[t+1, s_{\text{dst}}].vProb = curProb
           C[t+1,s_{\text{dst}}].trace = a
(do backtrace starting from C[T, final] to find best path)
```

Real-Time Decoding

- real-time decoding
 - decoding k seconds of speech in k seconds (e.g., $0.1 \times RT$)
 - why is this desirable?
- decoding time for Viterbi algorithm, 10M states in graph
 - in each frame, loop through every state in graph
 - say 100 CPU cycles to process each state
 - for each second of audio, $100 \times 10M \times 100 = 10^{11}$ CPU cycles
 - PC's do $\sim 10^9$ cycles/second (e.g., 3GHz P4)
- we cannot afford to evaluate each state at each frame
 - \Rightarrow pruning!

Pruning

- at each frame, only evaluate states with best scores
 - at each frame, have a set of active states
 - loop only through active states at each frame
 - for states reachable at next frame, keep only those with best scores
 - these are active states at next frame

```
for t in [0...(T-1)]:
  for s_{\rm src} in [1...S]:
  for a in \textit{outArcs}(s_{\rm src}):
  s_{\rm dst} = \textit{dest}(a)
  update C[t+1,s_{\rm dst}] from C[t,s_{\rm src}], \textit{arcProb}(a,t)
```

Pruning

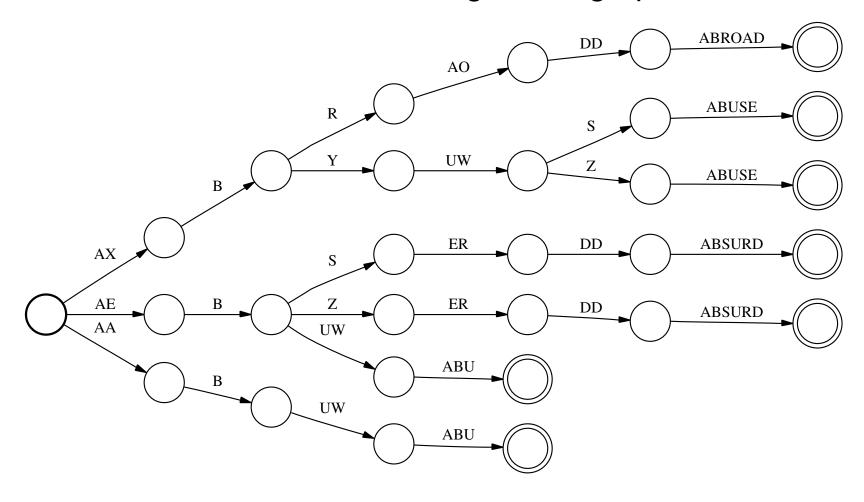
- when not considering every state at each frame . . .
 - we may make search errors
 - i.e., we may not find the path with the highest likelihood
- tradeoff: the more states we evaluate . . .
 - the fewer the number of search errors
 - the more computation required
- the field of search in ASR
 - minimizing search errors while minimizing computation

Basic Pruning

- beam pruning
 - in a frame, keep only those states whose logprobs are within some distance of best logprob at that frame
 - intuition: if a path's score is much worse than current best, it will probably never become best path
 - weakness: if poor audio, overly many states within beam?
- rank or histogram pruning
 - in a frame, keep k highest scoring states for some k
 - intuition: if the correct path is ranked very poorly, the chance of picking it out later is very low
 - bounds computation per frame
 - weakness: if clean audio, keeps states with bad scores?
- do both

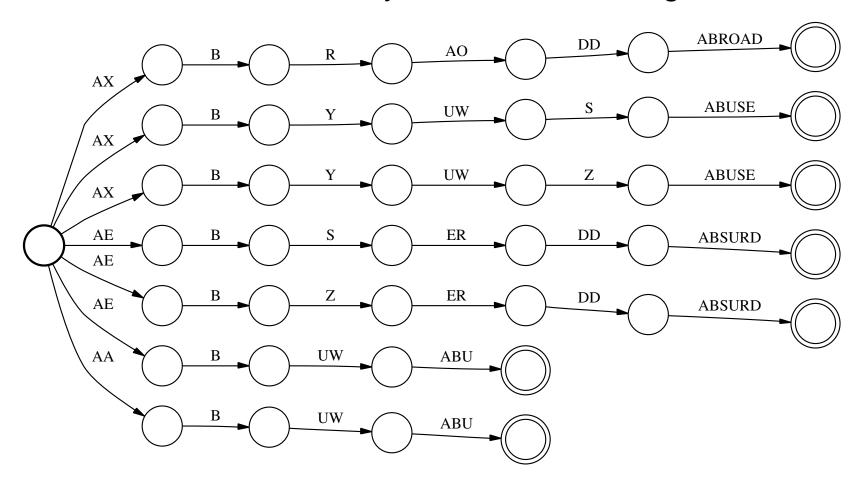
Pruning Visualized

- active states are small fraction of total states (<1%)
 - tend to be localized in small regions in graph



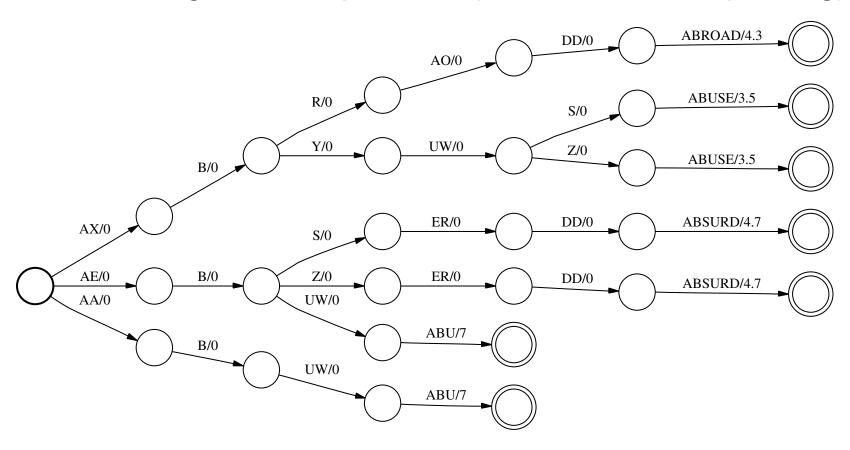
Pruning and Determinization

- most uncertainty occurs at word starts
 - determinization drastically reduces branching at word starts



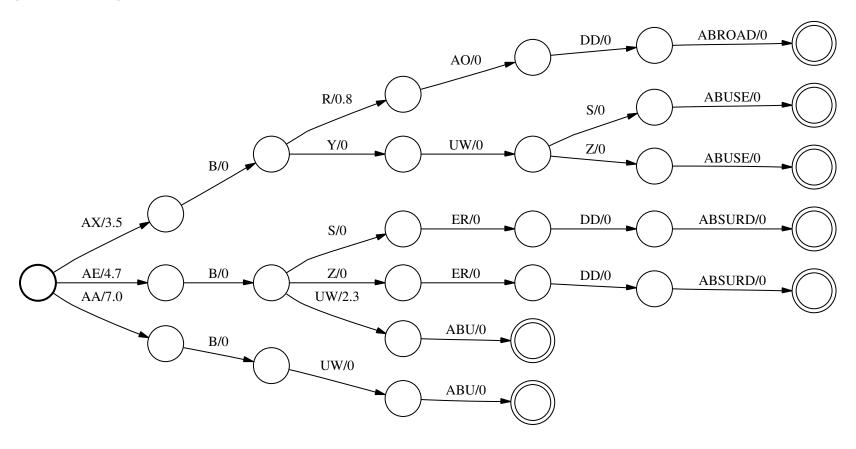
Language Model Lookahead

- in practice, word labels and LM scores at word ends
 - so determinization works
 - what's wrong with this picture? (hint: think beam pruning)



Language Model Lookahead

- move LM scores as far ahead as possible
 - at each point, total cost ⇔ min LM cost of following words
 - push operation does this



Historical Note

- in the old days (pre-AT&T-style decoding)
 - people determinized their decoding graphs
 - did the push operation for LM lookahead
 - ... without calling it determinization or pushing
 - ASR-specific implementations
- nowadays (late 1990's-)
 - implement general finite-state operations
 - FSM toolkits
 - can apply finite-state operations in many contexts in ASR

Efficient Viterbi Decoding

- saving computation
 - pruning
 - determinization
 - LM lookahead
 - ⇒ process ~10000 states/frame in < 1x RT on PC's
 - much faster with smaller LM's or allowing more search errors
- saving memory (e.g., 10M state decoding graph)
 - 10 second utterance ⇒ 1000 frames
 - 1000 frames × 10M states = 10 billion cells in DP chart

Saving Memory in Viterbi Decoding

- to compute Viterbi probability (ignoring backtrace) ...
 - do we need to remember whole chart throughout?
- do we need to keep cells for all states or just active states?
 - depends how hard you want to work

```
for t in [0...(T-1)]:
  for s_{
m src} in [1...S]:
  for a in \textit{outArcs}(s_{
m src}):
  s_{
m dst} = \textit{dest}(a)
  update C[t+1,s_{
m dst}] from C[t,s_{
m src}], \textit{arcProb}(a,t)
```

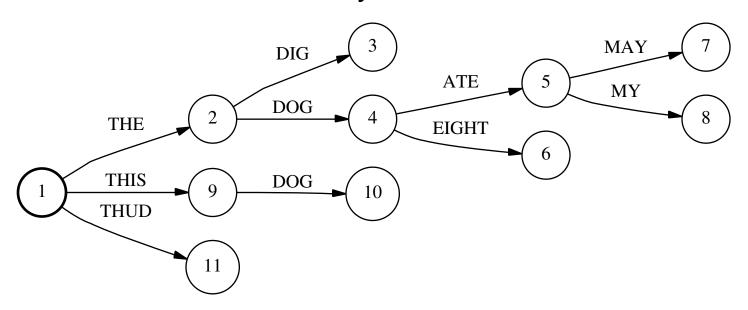
Saving Memory in Viterbi Decoding

What about backtrace information?

- need to remember whole chart?
- conventional Viterbi backtrace
 - remember arc at each frame in best path
 - really, all we want are the words
- instead of keeping pointer to best incoming arc
 - keep pointer to best incoming word sequence
 - can store word sequences compactly in tree

Token Passing

- maintain "word tree"; each node corresponds to word sequence
- backtrace pointer points to node in tree . . .
 - holding word sequence labeling best path to cell
- set backtrace to same node as at best last state . . .
 - unless cross word boundary



Saving Memory in Viterbi Decoding

Memory usage

- before
 - static decoding graph
 - (# states) × (# frames) cells
- after

 - (# (active) states) × (2 frames) cells
 - backtrace word tree

Where Are We?

- Unit V: other decoding paradigms
 - dynamic graph expansion saving memory
 - stack search best-first search
 - two-pass decoding enable complex models

Two Approaches to Decoding

- Approach 1: dynamic graph expansion
 - don't store the whole graph in memory
 - only keep parts of the graph with active states in memory
 - can use more complex LM's
- Approach 2: static graph expansion
 - just shrink the graph
 - use a simpler language model
 - faster

Dynamic Graph Expansion

- how can we store a really big graph such that ...
 - it doesn't take that much memory, but
 - easy to expand any part of it that we need
- observation: composition is associative

$$(A \circ T_1) \circ T_2 = A \circ (T_1 \circ T_2)$$

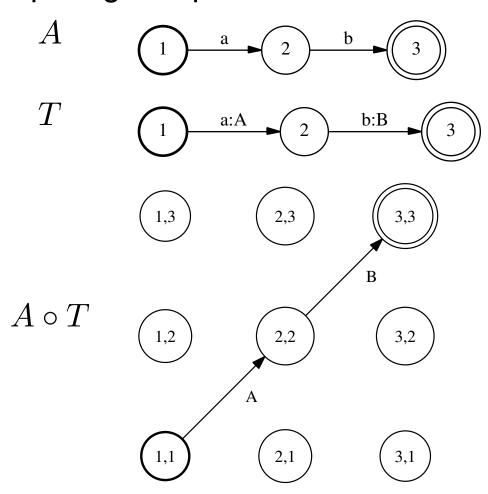
observation: decoding graph is composition of LM with a bunch of FST's

$$G_{ ext{decode}} = A_{ ext{LM}} \circ T_{ ext{wd} o ext{pn}} \circ T_{ ext{Cl} o ext{CD}} \circ T_{ ext{CD} o ext{HMM}}$$

$$= A_{ ext{LM}} \circ (T_{ ext{wd} o ext{pn}} \circ T_{ ext{Cl} o ext{CD}} \circ T_{ ext{CD} o ext{HMM}})$$

Dynamic Graph Expansion

Computing composition



Dynamic Graph Expansion

- for a graph $G = A \circ T \dots$
 - easy to calculate outgoing arcs of a state $s_G = (s_A, s_T)$

$$G_{\mathsf{decode}} = A_{\mathsf{LM}} \circ (T_{\mathsf{wd} \to \mathsf{pn}} \circ T_{\mathsf{CI} \to \mathsf{CD}} \circ T_{\mathsf{CD} \to \mathsf{HMM}})$$

- idea: just store graphs A_{LM} and $T = T_{\mathsf{wd} o \mathsf{pn}} \circ T_{\mathsf{CI} o \mathsf{CD}} \circ T_{\mathsf{CD} o \mathsf{HMM}}$
 - ullet easy to calculate outgoing arcs of any state in $G_{
 m decode}$
 - in active state list, each state is represented as pair of states (s_A,s_T)
- instead of storing one big graph, store two smaller graphs
 - minimize each of the smaller graphs
 - other decompositions are possible
 - dynamic graph expansion was really complicated before FSM perspective

Where Are We?

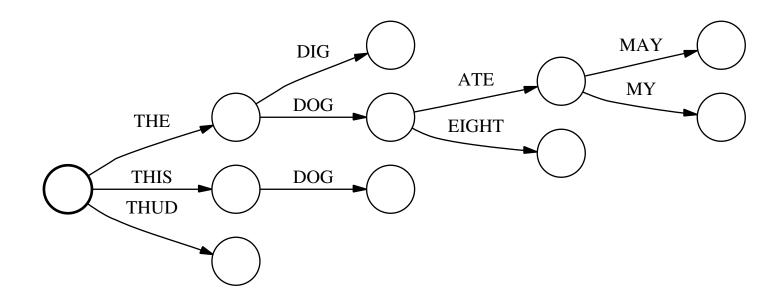
- Unit V: other decoding paradigms
 - dynamic graph expansion
 - stack search
 - two-pass decoding

Stack Search

- Viterbi search synchronous search
 - extend all paths and calculate all scores synchronously
 - expand states with mediocre scores in case they improve later
- stack search asynchronous search
 - pursue best-looking path first!
 - if lucky, expand very few states at each frame
- pioneered at IBM in mid-1980's; first real-time dictation system
- may be competitive at low-resource operating points
 - going out of fashion

Stack Search

- extend hypotheses word-by-word
- use fast match to decide which word to extend best path with
 - decode single word with simpler acoustic model



Stack Search

- advantages
 - if best path pans out, very little computation
- disadvantages
 - difficult to decide which path to extend
 - hypotheses are of different lengths in frames
 - in synchronous search, pruning is straightforward
 - may need to recompute the same values multiple times
 - in DP terminology, not evaluating cells in topological order
- point: in practice, have enough compute power for Viterbi
 - fewer search errors

Where Are We?

- Unit V: other decoding paradigms
 - dynamic graph expansion
 - stack search
 - two-pass decoding

What About My Fuzzy Logic 15-Phone Acoustic Model and 7-Gram Neural Net Language Model with SVM Boosting?

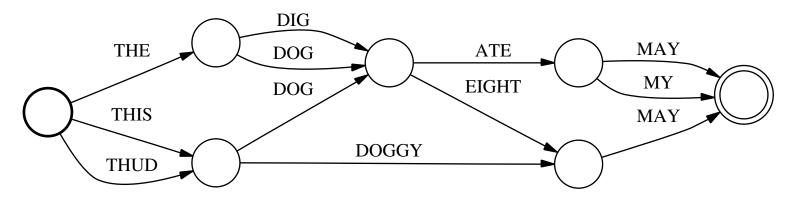
- some of the ASR models we develop in research are ...
 - too expensive to implement in normal (first-pass) decoding
- first-pass decoding
 - find best word sequence from among "all" word sequences
- rescoring
 - find best word sequence from constrained search space
 - namely, best-scoring word sequences from first pass
 - large enough set to hopefully contain "correct" hypothesis
 - small enough set that not too expensive to rescore

Two-Pass Decoding

- for interactive applications, one-pass near-real-time decoding is ideal
 - start processing when audio signal starts, be done soon after audio signal ends
- two-pass decoding generally yields better accuracy
 - 1st pass: decode, but return many likely hypotheses rather than single most likely
 - 2nd pass: choose best of returned hypotheses using more complex models
 - e.g., N-best list rescoring in Lab 3
 - can still be used for interactive apps if 2nd pass really fast

Lattice Rescoring

- first pass: return likely hypotheses as a graph or lattice
 - in Viterbi, store k-best tracebacks at each word-end cell



- can use models that are impractical with first-pass decoding
 - e.g., 5-gram LM's, sesquiphone phonetic decision trees, etc.
- some techniques need lattices
 - e.g., confidence estimation, consensus decoding, lattice MLLR, etc.

N-Best List Rescoring

- for exotic models, evaluating on lattices may be too slow
 - lattice encodes exponential number of paths (in length of utterance)
 - for some models, computation linear in number of hypotheses
- easy to generate N-best lists from lattices
 - A* algorithm
- harder to judge quality of model used for rescoring in this paradigm
 - first-pass model biases results

Two-Pass Decoding

Recap

- great for doing research
 - generate lattices once
 - lattice/N-best rescoring is cheap
 - reasonable indicator of value of model
- in real-world apps, value less clear
 - performance gain from 2nd pass usually not perceptible by users
 - increases latency

The Road Ahead

- weeks 1–4: small vocabulary ASR
- weeks 5–8: large vocabulary ASR
- weeks 9–12: advanced topics
 - adaptation; robustness
 - discriminative training; ROVER; consensus
 - advanced language modeling
 - audiovisual speech recognition
- week 13: final presentations

Course Feedback

- 1. Was this lecture mostly clear or unclear? What was the muddiest topic?
- 2. Comments on lab 2?
- 3. Other feedback (pace, content, atmosphere)?