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Outline

■ The Big Picture (review)
● The story so far, plus situating Lab 1 and Lab 2

■ language modeling
● why?
● how? (grammars, n-grams)
● parameter estimation (smoothing)
● evaluation

IBM ELEN E6884: Advanced Speech Recognition 2



Pattern Classification

■ given training samples (x1, ω1), . . . , (xN , ωN)
● feature vector x = (x1, . . . , xT )
● class labels ω

■ guess class label of unseen feature vectors x (i.e., from the test
set)

■ example: guess gender of person given height+weight
● feature vector x = (height, weight)
● class labels ω ∈ {M, F}
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Speech Recognition is Pattern Classification

■ e.g., isolated digit recognition
● feature vector x = (x1, . . . , xT ) is acoustic waveform

● T=20000 if 1 sec sample, 20kHz sampling rate
● class labels ω ∈ {ONE, TWO, . . . , NINE, ZERO, OH}
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Nearest Neighbor Classification
■ to classify a test vector x

● find nearest sample xi in training set
● select associated class ωi
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Nearest Neighbor Classification

Let’s write down some equations

■ for each class ω, we have a model Mω

■ to classify a test vector xtest, find nearest model Mω

class(xtest) = arg min
ω

distance(xtest,Mω)

■ nearest neighbor classification
● let Mω = {training samples x labeled with class ω}
● distance(xtest,Mω) = minx∈Mω distance(xtest,x)
● e.g., distance(xtest,x) = Euclidean distance
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Speech Recognition as Pattern Classification

Problem 1: acoustic waveform is not good representation for
nearest neighbor classification

■ consider two equal-length acoustic waveforms

x = (x1, . . . , x20000)

x′ = (x′1, . . . , x
′
20000)

■ do we believe that distance(x,x′) . . .
● will be smaller if class(x) = class(x′) . . .
● than if class(x) 6= class(x′)?

■ Lab 1: windowing only; computing error rate with DTW
● windows are constant-length acoustic waveforms
● performance is near random
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Speech Recognition as Pattern Classification

Finding a transformation F for samples: F (xraw) ⇒ xnew

■ want samples xnew in same class to be close to each other
■ want samples xnew in different classes to be far apart
■ ⇒ signal processing/front end processing
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Feature Transformation
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What Did We Learn in Lab 1?
■ a smoothed frequency-domain representation works well

● FFT computes energy at each frequency (fine-grained)
● mel-binning does coarse-grained grouping (93.6% accuracy)
● log+DCT, Hamming window help
● not completely unlike human auditory system

■ accuracy on “PCM” (pulse code modulation): 89.1%
● DTW is powerful; speaker-dependent only?

■ DTW is OK for speaker-dependent small-voc isolated word ASR
● >95% accuracy in clean conditions

■ data reduction
● instead of (x1, . . . , x20000) for 1 sec sample
● (~x1, . . . , ~x100), dim(~xt) = 12
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Speech Recognition as Pattern Classification

Problem 2: acoustic waveforms have different lengths

■ e.g., how to compute:

distance{(~x1, . . . , ~x100), (~x′1, . . . , ~x
′
150)}

■ answer: dynamic time warping (asymmetric)
● introduce concept of alignment A = a1 · · · aT

● map each test frame t to a template frame at
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Alignments

■ take minimum distance over all possible alignments A

distance(x,x′) = min
A

distanceA(x,x′)

■ distance given an alignment is . . .
● sum of distances between each pair of aligned frames

distanceA{(~x1, . . . , ~xT ), (~x′1, . . . , ~x
′
T ′)} =

T∑
t=1

distance(~xt, ~x
′
at

)

■ dynamic programming computes minA distanceA(·, ·) efficiently
● search exponential number of alignments in polynomial time
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DTW as Nearest Neighbor Classification
Lab 1: collect only one training sample xω per class ω

■ variation: keep many/all training samples
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Long Live Nearest Neighbor?
Issue 1: outliers
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■ k-nearest neighbors?
● find k > 1 nearest training samples; pick most frequent class
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Long Live k-Nearest Neighbors?
Issue 2: different sample densities
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■ averaging all samples in a class to find “canonical” sample?
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Long Live Canonical Samples?
Issue 3: bimodal distributions
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■ what if we try to compute several “canonical” samples?
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Is There a Better Way?

■ using “distance” is too restrictive?
■ more generally, want some sort of “score”: scoreω(x)

● reflects how strongly point x belongs to class ω

■ to classify a sample x, pick class with highest score
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Is There a Better Way?

■ is there a framework for assigning scores that . . .
● can handle arbitrarily weird sample distributions?

● outliers, varying sample densities, bimodal, etc.
● provides guidance on how to find models that perform well at

classification?
● provides tools for finding these models efficiently?

■ ⇒ probabilistic modeling!
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Probability 101

■ probabilities P (x) are nonnegative scores that sum to 1∑
x

P (x) = 1 P (x) ≥ 0

● semantics: P (x) ∼ frequency of event x

■ joint probabilities: P (x, y)∑
x,y

P (x, y) = 1 P (x, y) ≥ 0
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Probability 101

■ marginal probabilities

P (x) =
∑

y

P (x, y) P (y) =
∑

x

P (x, y)

● probability that I trip is equal to probability I trip and fall plus the probability

I trip and don’t fall

■ conditional probabilities

P (x, y) = P (x)P (y|x) = P (y)P (x|y)

● probability that I trip and fall is equal to probability that I trip times the

probability that I fall given that I trip
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Probabilistic Modeling as Nearest Neighbor

■ for each class ω, we have a model Pω(·)
● Pω(x) is a probability distribution over samples x
● proportional to frequency that samples from class ω are

located at/around x
■ to classify a test vector xtest, find nearest model Pω(·)

class(xtest) = arg min
ω

distance(xtest, Pω(·))

■ define distance as negative log probability
● distance(xtest, Pω(·)) ≡ − log Pω(xtest)
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What Does Probabilistic Modeling Give Us?

■ if each of our class probability distributions Pω(x) are (perfectly)
accurate . . .
● we can perform classification optimally!

■ e.g., two-class classification ω ∈ {M, F} (equally frequent)
● choose M if PM(x) > PF (x)
● choose F if PF (x) > PM(x)
● this is the best you can do!
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What Does Probabilistic Modeling Give Us?

■ consider a simple (1-D) probability distribution (Gaussian)
● Pω(x) = 1√

2πσ
exp

[
−1

2

(
x−µ

σ

)2
]

● parameters µ, σ
● assume distribution of samples from class ω is truly Gaussian

■ maximum likelihood estimate (µMLE, σMLE)
● choose parameter values that maximize likelihood/probability

of training data (x1, ω1), . . . , (xN , ωN)

(µMLE, σMLE) = arg max
(µ,σ)

N∏
i=1

Pωi
(xi)
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What Does Probabilistic Modeling Give Us?

■ in the presence of infinite training samples
● maximum likelihood estimation (MLE) approaches the “true”

parameter estimates
● for most models, MLE is asymptotically consistent, unbiased,

and efficient
■ maximum likelihood estimation is easy for a wide class of

models
● count and normalize
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Long Live Probabilistic Modeling!

■ if we choose form of Pω(x) correctly and have lots of data . . .
● we win!

■ ASR moved to probabilistic modeling in mid-70’s
■ in ASR, no serious challenges to this framework since then
■ by and large, probabilistic modeling . . .

● does as well or better than all other techniques . . .
● on all classification problems
● (not everyone agrees)
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What’s the Catch?

■ guarantees only hold if
● know form of probability distribution that data comes from

● MLE tells us how to find parameters only if we know the
form of the model

● can actually find MLE
● in training HMM’s w/ FB, can only find local optimum
● MLE solution for GMM’s is pathological

● infinite training set
● “there’s no data like more data”

■ these are the challenges!
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From DTW to Probabilistic Modeling
■ HMM’s are natural way to express DTW as probabilistic model
■ replace template for each word with an HMM

● each frame in template corresponds to state in HMM

1

P(x|a1)

2
P(x|a1)

P(x|a2)

3
P(x|a2)

P(x|a3)

4
P(x|a3)

P(x|a4)

5
P(x|a4)

P(x|a5)

6
P(x|a5)

P(x|a6)

7
P(x|a6)

■ alignment A = a1 · · · aT

● DTW: map each test frame t to template frame at

● HMM: map each test frame t to arc at in HMM
● each alignment corresponds to path through HMM

■ can design HMM such that (see Holmes, Sec. 9.13, p. 155)

distanceDTW(xtest,xω) ≈ − log P HMM
ω (xtest)
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DTW vs. HMM’s

DTW HMM
acoustic template HMM
frame in template state in HMM
DTW alignment path through HMM

move cost transition (log)prob
distance between frames output (log)prob

DTW search Forward/Viterbi algorithm
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Key Points for HMM’s

■ an HMM describes a probability distribution over observation
sequences x (i.e., acoustic feature vectors): P (x)
● separate HMM for each word ω, describing likely acoustic

feature vector sequences for that word: Pω(x)
■ a path through the HMM

● alignment A = a1 · · · aT between arcs at and observations
(frames) xt

■ to calculate probability Pω(x), sum (or max) probability for each
alignment A
● Forward algorithm: Pω(x) =

∑
A Pω(x, A)

● Viterbi algorithm: Pω(x) ≈ maxA Pω(x, A)
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Key Points for HMM’s
■ probability of alignment and observations

Pω(x, A) = Pω(A)Pω(x|A)

● alignment probability Pω(A): product of transition probabilities
along path

Pω(A) =
T∏

t=1

Ptrans(at)

● observation probability Pω(x|A): product of observation
probabilities along path

Pω(x|A) =
T∏

t=1

Pobs(~xt|at)
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Key Points for HMM’s

■ each observation probability modeled as a Gaussian
● diagonal covariance

Pobs(~xt|at) =
D∏

dim d

1√
2πσat,d

exp

[
−1

2

(
xt,d − µat,d

σat,d

)2
]

=
D∏

dim d

N (xt,d;µat,d, σat,d)

■ or mixture of Gaussians

Pobs(~xt|at) =
M∑

m=1

λat,m

D∏
dim d

N (xt,d;µat,m,d, σat,m,d)
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Why Gaussians and GMM’s?

■ a Gaussian is good at modeling a single cluster of samples
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Why Gaussians and GMM’s?

■ if you sum enough Gaussians, you can approximate any
distribution arbitrarily well

-10

-5

0

5

10

-10 -5 0 5 10

training samples for some arc in HMM

IBM ELEN E6884: Advanced Speech Recognition 33



Optimizing HMM’s for Isolated Word Recognition

■ each frame in DTW template for word ω corresponds to state in
HMM?

■ consecutive frames may be very similar to each other
● no point having consecutive states in HMM with nearly

identical output distributions

1

P(x|a1)

2
P(x|a1)

P(x|a2)

3
P(x|a2)

P(x|a3)

4
P(x|a3)

P(x|a4)

5
P(x|a4)

P(x|a5)

6
P(x|a5)

P(x|a6)

7
P(x|a6)

■ how many states do we really need?
● rule of thumb: three states per phoneme
● one for start, middle, and end of phoneme
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Word HMM’s

■ word TWO is composed of phonemes T UW

■ two phonemes ⇒ six HMM states

1

P(x|a1)

2
P(x|a1)

P(x|a2)

3
P(x|a2)

P(x|a3)

4
P(x|a3)

P(x|a4)

5
P(x|a4)

P(x|a5)

6
P(x|a5)

P(x|a6)

7
P(x|a6)

■ convention: same output distribution for all arcs exiting a state
● or place output distributions on states

■ parameters: 12 transition probabilities, 6 output distributions
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Isolated Word Recognition with HMM’s

■ training
● for each class (word) ω, collect all training samples x with that

label
● to train HMM for word ω, run FB on these samples

■ decoding a test sample xtest

● calculate (Viterbi or Forward) likelihood Pω(xtest) of sample
with each word model Pω(·), pick best

class(xtest) = arg max
ω

Pω(xtest)
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Control Flow for Training

For each iteration of Forward-Backward training

■ initialize training counts to 0
■ for each utterance (xi, ωi) in training data

● calculate acoustic feature vectors from xi using front end
● construct HMM representing word sequence ωi

● run FB algorithm to update training counts for all transitions
present in HMM

■ reestimate HMM parameters using training counts
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Decoding with HMM’s

■ instead of separate HMM for each word ω
● merge each word HMM into single big HMM

1 2

ONE

TWO

...

■ use Viterbi algorithm (not Forward algorithm, why?)
● in backtrace, collect all words along the way

■ why one big graph?
● when move to word sequences, can’t have HMM per

sequence
● pruning during search
● graph minimization
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Continuous Speech Recognition with HMM’s

■ e.g., ASR for digit sequences of arbitrary length
● set of classes ω for classification is infinite

■ instead of separate HMM parameters for each digit string ω
● have one HMM for each digit as before
● glue together to make HMM for a digit string
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Continuous Speech Recognition with HMM’s

■ training
● e.g., reference transcript: ONE TWO

1 2
ONE

3
TWO

● for each training sample, update counts for each word HMM
in transcript

■ decoding
● want HMM that represents all digit strings

1

...
THREE
TWO
ONE
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Silence is Golden

■ what about all those pauses in speech?
● at begin/end of utterance; in-between words

■ add silence word ∼SIL to vocabulary
● three states? (skip arcs?)

■ allow optional silence at beginning/end of utterances and in-
between words
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Silence is Golden

■ e.g., HMM for training with reference script: ONE TWO

1 3

TWO

2

~SIL 4

ONE

5

~SILTWO 6
~SIL

ONE

■ in practice, often precompute best word sequence using some
other model
● e.g., bootstrap models without using optional silences

■ Lab 2: all these graphs are automatically constructed for you
● silence is also used in isolated word training/decoding
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Wreck a Nice Beach?

The story so far:

■ to decode a test sample xtest, find best word sequence ω

class(xtest) = arg max
ω

Pω(xtest) ≡ arg max
ω

P (xtest|ω)

● find word sequence ω maximizing likelihood Pω(xtest|ω)
● maximum likelihood classification

■ well, you know:

THIS IS OUR ROOM FOR A FOUR HOUR PERIOD .
THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD
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