Lecture 5 The Big Picture/Language Modeling

Michael Picheny, Stanley F. Chen, Ellen Eide *IBM T.J. Watson Research Center Yorktown Heights, NY, USA* {picheny,stanchen,eeide}@us.ibm.com

October 6, 2005

ELEN E6884: Advanced Speech Recognition

Administrivia

Outline

- The Big Picture (review)
 - The story so far, plus situating Lab 1 and Lab 2
- Ianguage modeling
 - why?
 - how? (grammars, *n*-grams)
 - parameter estimation (smoothing)
 - evaluation

Pattern Classification

- given training samples $(\mathbf{x}_1, \omega_1), \ldots, (\mathbf{x}_N, \omega_N)$
 - feature vector $\mathbf{x} = (x_1, \dots, x_T)$
 - class labels ω
- guess class label of unseen feature vectors x (*i.e.*, from the *test* set)
- example: guess gender of person given height+weight
 - feature vector $\mathbf{x} = (height, weight)$
 - class labels $\omega \in \{M, F\}$

Speech Recognition is Pattern Classification

- *e.g.*, isolated digit recognition
 - feature vector $\mathbf{x} = (x_1, \dots, x_T)$ is acoustic waveform
 - *T*=20000 if 1 sec sample, 20kHz sampling rate
 - class labels $\omega \in \{\text{ONE}, \text{TWO}, \dots, \text{NINE}, \text{ZERO}, \text{OH}\}$

Nearest Neighbor Classification

- to classify a test vector x
 - find nearest sample \mathbf{x}_i in training set
 - select associated class ω_i

Nearest Neighbor Classification

Let's write down some equations

- for each class ω , we have a model M_{ω}
- to classify a test vector \mathbf{x}_{test} , find nearest model M_{ω}

$$class(\mathbf{x}_{test}) = \underset{\omega}{\arg\min} \ distance(\mathbf{x}_{test}, M_{\omega})$$

- nearest neighbor classification
 - let $M_{\omega} = \{$ training samples x labeled with class $\omega \}$
 - distance $(\mathbf{x}_{test}, M_{\omega}) = \min_{\mathbf{x} \in M_{\omega}} \text{distance}(\mathbf{x}_{test}, \mathbf{x})$
 - *e.g.*, distance($\mathbf{x}_{test}, \mathbf{x}$) = Euclidean distance

Speech Recognition as Pattern Classification

Problem 1: acoustic waveform is not good representation for nearest neighbor classification

consider two equal-length acoustic waveforms

$$\mathbf{x} = (x_1, \dots, x_{20000})$$
$$\mathbf{x}' = (x'_1, \dots, x'_{20000})$$

- do we believe that $distance(\mathbf{x}, \mathbf{x}') \dots$
 - will be smaller if $class(\mathbf{x}) = class(\mathbf{x}') \dots$
 - than if $class(\mathbf{x}) \neq class(\mathbf{x}')$?
- Lab 1: windowing only; computing error rate with DTW
 - windows are constant-length acoustic waveforms
 - performance is near random

Speech Recognition as Pattern Classification

Finding a transformation F for samples: $F(\mathbf{x}_{raw}) \Rightarrow \mathbf{x}_{new}$

- want samples \mathbf{x}_{new} in same class to be close to each other
- want samples \mathbf{x}_{new} in different classes to be far apart
- \bullet \Rightarrow signal processing/front end processing

Feature Transformation

What Did We Learn in Lab 1?

- a smoothed frequency-domain representation works well
 - FFT computes energy at each frequency (fine-grained)
 - mel-binning does coarse-grained grouping (93.6% accuracy)
 - log+DCT, Hamming window help
 - not completely unlike human auditory system
- accuracy on "PCM" (pulse code modulation): 89.1%
 - DTW is powerful; speaker-dependent only?
- DTW is OK for speaker-dependent small-voc isolated word ASR
 - >95% accuracy in clean conditions
- data reduction
 - instead of (x_1, \ldots, x_{20000}) for 1 sec sample

•
$$(\vec{x}_1, \dots, \vec{x}_{100})$$
, $\dim(\vec{x}_t) = 12$

Speech Recognition as Pattern Classification

Problem 2: acoustic waveforms have different lengths

• *e.g.*, how to compute:

distance { $(\vec{x}_1, \dots, \vec{x}_{100}), (\vec{x}'_1, \dots, \vec{x}'_{150})$ }

answer: dynamic time warping (asymmetric)

- introduce concept of *alignment* $A = a_1 \cdots a_T$
- map each test frame t to a template frame a_t

Alignments

take minimum distance over all possible alignments A

distance
$$(\mathbf{x}, \mathbf{x}') = \min_{A} \text{ distance}_{A}(\mathbf{x}, \mathbf{x}')$$

distance given an alignment is ...

• sum of distances between each pair of aligned frames \overline{T}

distance_A{
$$(\vec{x}_1, ..., \vec{x}_T), (\vec{x}'_1, ..., \vec{x}'_{T'})$$
} = $\sum_{t=1}^{T}$ distance $(\vec{x}_t, \vec{x}'_{a_t})$

- *dynamic programming* computes min_A distance_A(\cdot , \cdot) efficiently
 - search exponential number of alignments in polynomial time

DTW as Nearest Neighbor Classification

Lab 1: collect only one training sample \mathbf{x}_{ω} per class ω

variation: keep many/all training samples

Long Live Nearest Neighbor?

Issue 1: outliers

- k-nearest neighbors?
 - find k > 1 nearest training samples; pick most frequent class

Long Live *k*-Nearest Neighbors?

Issue 2: different sample densities

averaging all samples in a class to find "canonical" sample?

Long Live Canonical Samples?

Issue 3: bimodal distributions

what if we try to compute several "canonical" samples?

Is There a Better Way?

- using "distance" is too restrictive?
- more generally, want some sort of "score": score $_{\omega}(\mathbf{x})$
 - reflects how strongly point ${f x}$ belongs to class ω
- to classify a sample x, pick class with highest score

Is There a Better Way?

- is there a framework for assigning scores that ...
 - can handle arbitrarily weird sample distributions?
 - outliers, varying sample densities, bimodal, etc.
 - provides guidance on how to find models that perform well at classification?
 - provides tools for finding these models efficiently?
- \Rightarrow probabilistic modeling!

Probability 101

 $\hfill \hfill \hfill$

$$\sum_{x} P(x) = 1 \qquad P(x) \ge 0$$

- semantics: $P(x) \sim$ frequency of event x
- joint probabilities: P(x, y)

$$\sum_{x,y} P(x,y) = 1 \qquad P(x,y) \ge 0$$

Probability 101

marginal probabilities

$$P(x) = \sum_{y} P(x, y) \qquad P(y) = \sum_{x} P(x, y)$$

- probability that I trip is equal to probability I trip and fall plus the probability
 I trip and don't fall
- conditional probabilities

$$P(x,y) = P(x)P(y|x) = P(y)P(x|y)$$

 probability that I trip and fall is equal to probability that I trip times the probability that I fall given that I trip

Probabilistic Modeling as Nearest Neighbor

- for each class ω , we have a model $P_{\omega}(\cdot)$
 - $P_{\omega}(\mathbf{x})$ is a probability distribution over samples \mathbf{x}
 - proportional to frequency that samples from class ω are located at/around ${\bf x}$
- to classify a test vector \mathbf{x}_{test} , find nearest model $P_{\omega}(\cdot)$

$$class(\mathbf{x}_{test}) = \underset{\omega}{\arg\min} \ distance(\mathbf{x}_{test}, P_{\omega}(\cdot))$$

- define distance as negative log probability
 - distance($\mathbf{x}_{\text{test}}, P_{\omega}(\cdot)$) $\equiv -\log P_{\omega}(\mathbf{x}_{\text{test}})$

What Does Probabilistic Modeling Give Us?

- if each of our class probability distributions $P_{\omega}(\mathbf{x})$ are (perfectly) accurate ...
 - we can perform classification optimally!
- *e.g.*, two-class classification $\omega \in {M, F}$ (equally frequent)
 - choose M if $P_M(\mathbf{x}) > P_F(\mathbf{x})$
 - choose F if $P_F(\mathbf{x}) > P_M(\mathbf{x})$
 - this is the best you can do!

What Does Probabilistic Modeling Give Us?

consider a simple (1-D) probability distribution (Gaussian)

•
$$P_{\omega}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- parameters μ , σ
- assume distribution of samples from class ω is truly Gaussian
- maximum likelihood estimate $(\mu_{\text{MLE}}, \sigma_{\text{MLE}})$
 - choose parameter values that maximize likelihood/probability of training data $(\mathbf{x}_1, \omega_1), \ldots, (\mathbf{x}_N, \omega_N)$

$$(\mu_{\mathsf{MLE}}, \sigma_{\mathsf{MLE}}) = \operatorname*{arg\,max}_{(\mu, \sigma)} \prod_{i=1}^{N} P_{\omega_i}(\mathbf{x}_i)$$

What Does Probabilistic Modeling Give Us?

- in the presence of infinite training samples
 - maximum likelihood estimation (MLE) approaches the "true" parameter estimates
 - for most models, MLE is asymptotically consistent, unbiased, and efficient
- maximum likelihood estimation is easy for a wide class of models
 - count and normalize

Long Live Probabilistic Modeling!

- if we choose form of $P_{\omega}(\mathbf{x})$ correctly and have lots of data ...
 - we win!
- ASR moved to probabilistic modeling in mid-70's
- in ASR, no serious challenges to this framework since then
- by and large, probabilistic modeling ...
 - does as well or better than all other techniques ...
 - on all classification problems
 - (not everyone agrees)

What's the Catch?

- guarantees only hold if
 - know form of probability distribution that data comes from
 - MLE tells us how to find parameters only if we know the form of the model
 - can actually find MLE
 - in training HMM's w/ FB, can only find local optimum
 - MLE solution for GMM's is pathological
 - infinite training set
 - "there's no data like more data"
- these are the challenges!

From DTW to Probabilistic Modeling HMM's are natural way to express DTW as probabilistic model

- replace template for each word with an HMM
 - each frame in template corresponds to state in HMM

- alignment $A = a_1 \cdots a_T$
 - DTW: map each test frame t to template frame a_t
 - HMM: map each test frame t to arc a_t in HMM
 - each alignment corresponds to path through HMM
- can design HMM such that (see Holmes, Sec. 9.13, p. 155)

distance^{DTW}(
$$\mathbf{x}_{\text{test}}, \mathbf{x}_{\omega}$$
) $\approx -\log P_{\omega}^{\text{HMM}}(\mathbf{x}_{\text{test}})$

DTW vs. HMM's

DTW	HMM
acoustic template	HMM
frame in template	state in HMM
DTW alignment	path through HMM
move cost	transition (log)prob
distance between frames	output (log)prob
DTW search	Forward/Viterbi algorithm

Key Points for HMM's

- an HMM describes a probability distribution over observation sequences x (*i.e.*, acoustic feature vectors): P(x)
 - separate HMM for each word ω , describing likely acoustic feature vector sequences for that word: $P_{\omega}(\mathbf{x})$
- a path through the HMM
 - alignment $A = a_1 \cdots a_T$ between arcs a_t and observations (frames) x_t
- to calculate probability $P_{\omega}(\mathbf{x}),$ sum (or max) probability for each alignment A
 - Forward algorithm: $P_{\omega}(\mathbf{x}) = \sum_{A} P_{\omega}(\mathbf{x}, A)$
 - Viterbi algorithm: $P_{\omega}(\mathbf{x}) \approx \max_{A} P_{\omega}(\mathbf{x}, A)$

Key Points for HMM's

probability of alignment and observations

$$P_{\omega}(\mathbf{x}, A) = P_{\omega}(A)P_{\omega}(\mathbf{x}|A)$$

- alignment probability $P_{\omega}(A)$: product of transition probabilities along path

$$P_{\omega}(A) = \prod_{t=1}^{T} P_{\text{trans}}(a_t)$$

• observation probability $P_{\omega}(\mathbf{x}|A)$: product of observation probabilities along path

$$P_{\omega}(\mathbf{x}|A) = \prod_{t=1}^{T} P_{\text{obs}}(\vec{x}_t|a_t)$$

Key Points for HMM's

- each observation probability modeled as a Gaussian
 - diagonal covariance

$$P_{\text{obs}}(\vec{x}_t|a_t) = \prod_{\substack{\text{dim } d}}^{D} \frac{1}{\sqrt{2\pi}\sigma_{a_t,d}} \exp\left[-\frac{1}{2}\left(\frac{x_{t,d}-\mu_{a_t,d}}{\sigma_{a_t,d}}\right)^2\right]$$
$$= \prod_{\substack{\text{dim } d}}^{D} \mathcal{N}(x_{t,d};\mu_{a_t,d},\sigma_{a_t,d})$$

or mixture of Gaussians

$$P_{\text{obs}}(\vec{x}_t|a_t) = \sum_{m=1}^M \lambda_{a_t,m} \prod_{\dim d}^D \mathcal{N}(x_{t,d};\mu_{a_t,m,d},\sigma_{a_t,m,d})$$

Why Gaussians and GMM's?

a Gaussian is good at modeling a single cluster of samples

training samples for some arc in HMM

Why Gaussians and GMM's?

 if you sum enough Gaussians, you can approximate any distribution arbitrarily well

Optimizing HMM's for Isolated Word Recognition

- each frame in DTW template for word ω corresponds to state in HMM?
- consecutive frames may be very similar to each other
 - no point having consecutive states in HMM with nearly identical output distributions

- how many states do we really need?
 - rule of thumb: three states per phoneme
 - one for start, middle, and end of phoneme

Word HMM's

- word TWO is composed of phonemes T UW
- two phonemes ⇒ six HMM states

- convention: same output distribution for all arcs exiting a state
 - or place output distributions on states
- parameters: 12 transition probabilities, 6 output distributions

Isolated Word Recognition with HMM's

- training
 - for each class (word) ω , collect all training samples \mathbf{x} with that label
 - to train HMM for word ω , run FB on these samples
- decoding a test sample \mathbf{x}_{test}
 - calculate (Viterbi or Forward) likelihood $P_{\omega}(\mathbf{x}_{\text{test}})$ of sample with each word model $P_{\omega}(\cdot)$, pick best

$$\mathsf{class}(\mathbf{x}_{\mathsf{test}}) = \underset{\omega}{\arg\max} \ P_{\omega}(\mathbf{x}_{\mathsf{test}})$$

Control Flow for Training

For each iteration of Forward-Backward training

- initialize training counts to 0
- for each utterance (\mathbf{x}_i, ω_i) in training data
 - calculate acoustic feature vectors from \mathbf{x}_i using front end
 - construct HMM representing word sequence ω_i
 - run FB algorithm to update training counts for all transitions present in HMM
- reestimate HMM parameters using training counts

Decoding with HMM's

- instead of separate HMM for each word ω
 - merge each word HMM into single big HMM

- use Viterbi algorithm (not Forward algorithm, why?)
 - in backtrace, collect all words along the way
- why one big graph?
 - when move to word sequences, can't have HMM per sequence
 - pruning during search
 - graph minimization

Continuous Speech Recognition with HMM's

- *e.g.*, ASR for digit sequences of arbitrary length
 - set of classes ω for classification is infinite
- instead of separate HMM parameters for each digit string ω
 - have one HMM for each digit as before
 - glue together to make HMM for a digit string

Continuous Speech Recognition with HMM's

- training
 - *e.g.*, reference transcript: ONE TWO

- for each training sample, update counts for each word HMM in transcript
- decoding
 - want HMM that represents all digit strings

Silence is Golden

- what about all those pauses in speech?
 - at begin/end of utterance; in-between words
- add silence word \sim SIL to vocabulary
 - three states? (skip arcs?)
- allow optional silence at beginning/end of utterances and inbetween words

Silence is Golden

• *e.g.*, HMM for training with reference script: ONE TWO

- in practice, often precompute best word sequence using some other model
 - *e.g.*, bootstrap models without using optional silences
- Lab 2: all these graphs are automatically constructed for you
 - silence is also used in isolated word training/decoding

Wreck a Nice Beach?

The story so far:

• to decode a test sample \mathbf{x}_{test} , find best word sequence ω

$$\mathsf{class}(\mathbf{x}_{\mathsf{test}}) = \underset{\omega}{\arg\max} \ P_{\omega}(\mathbf{x}_{\mathsf{test}}) \equiv \underset{\omega}{\arg\max} \ P(\mathbf{x}_{\mathsf{test}}|\omega)$$

- find word sequence ω maximizing likelihood $P_{\omega}(\mathbf{x}_{\text{test}}|\omega)$
- maximum likelihood classification
- well, you know:

THIS IS OUR ROOM FOR A FOUR HOUR PERIOD . THIS IS HOUR ROOM FOUR A FOR OUR . PERIOD