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Administrivia

■ today is picture day!
■ will hand out hardcopies of slides and readings for now

● don’t take something if you don’t want it
■ main feedback from last lecture

● a little fast?
● went through signal processing quickly

● will try to make sure you’re OK for lab 1
■ Lab 0 due tomorrow
■ Lab 1 out today, due on Friday in two weeks
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Outline of Today’s Lecture

■ Feature Extraction
■ Brief Break
■ Dynamic Time Warping
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Goals of Feature Extraction

■ Capture essential information for sound and word identification
■ Compress information into a manageable form
■ Make it easy to factor out irrelevant information to recognition

● Long-term channel transmission characteristics
● Speaker-specific information such as pitch, vocal-tract length

■ Would be nice to find features that are i.i.d. and are well-
modeled by simple distributions so that our models will perform
well.

Figures from Holmes, HAH or R+J unless indicated otherwise.
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What are some possibilities?

■ Model speech signal with a parsimonious set of parameters that
intuitively describe the signal
● Acoustic-phonetic features

■ Use some type of function approximation such as Taylor or
Fourier series

■ Ignore pitch
● Cepstral Coefficients
● Linear Prediction (LPC)

■ Match human perception of frequency bands
● Mel-Scale Cepstral Coefficients (MFCCs)
● Perceptual Linear Prediction (PLP)

■ Ignore other speaker dependent characteristics e.g. vocal tract
length
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● Vocal-tract length normalized Mel-Scale Cepstral Coefficients
■ Incorporate dynamics

● Deltas and Double-Deltas
● Principal component analysis
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Pre-processor to Many Feature Calculations:
Pre-Emphasis

Purpose: Compensate for 6dB/octave falloff due to glottal-source
and lip-radiation combination.

Assume our input signal is x[n]. Pre-emphasis is implemented via
very simple filter:

y[n] = x[n] + ax[n− 1]

To analyze this, let’s use the “Z-Transform” introduced in Lecture
1. Since Z(x[n− 1]) = z−1Z(x[n]) we can write

Y (z) = X(z)H(z) = X(z)(1 + az−1)
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If we substitute z = ejω, we can write

|H(ejω)|2 = |1 + a(cos ω − j sinω)|2

= 1 + a2 + 2a cos ω

or in dB

10 log10 |H(ejω)|2 = 10log10(1 + a2 + 2a cos ω)
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For a > 0 we have a low-pass filter and for a < 0 we have a
high-pass filter, also called a “pre-emphasis” filter because the
frequency response rises smoothly from low to high frequencies.
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Uses are:

■ Improve LPC estimates (works better with “flatter” spectra)
■ Reduce or eliminate DC offsets
■ Mimic equal-loudness contours (higher frequency sounds

appear “louder” than low frequency sounds for the same
amplitude)
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Basic Speech Processing Unit - the Frame

The speech waveform is changing over time. We need to focus
on short-time segments over which the signal is more or less
representing a single phoneme, since our models are phoneme-
based.

Define

xm[n] = x[n−mF ]w[n]

as frame m to be processed where F is the spacing between
frames and w[n] is our window of length N .
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How do we choose the window type w[n], the frame spacing, F ,
and the window length, N?

■ Experiments in speech coding suggest that F should be around
10 msec. For F greater than 20 msec and one starts hearing
noticeable distortion. Less and things do not appreciably
improve.

■ From last week, we know that both Hamming and Hanning
windows are good.
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h[n] = .5− .5 cos 2πn/N (Hanning)

h[n] = .54− .46 cos 2πn/N (Hamming)
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So what window length should we use?

■ If too long, vocal tract will be non-stationary; smooth out
transients like stops.

■ If too short, spectral output will be too variable with respect to
window placement.

Usually choose 20-25 msec window length as a compromise.
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Effects of Windowing
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Acoustic-phonetic features

Goal is to parameterize each frame in terms of speaker actions
(nasality frication, voicing, etc.) or physical properties related to
source-filter model (formant locations, formant bandwidths, ratio
of high-frequency to low-frequency energy, etc.)

Haven’t proven as effective as some other feature sets such as
MFCC’s

Conjecture: This could be because of our model’s assumption that
observations are independent...probably a worse fit for acoustic-
phonetic features than for MFCC’s.
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Spectral Features

Could use features such as DFT coefficients directly, such as what
is used in spectrograms.

Recall that the source-filter model says the pitch signal is
convolved with the vocal tract filter

In the frequency domain, that convolution equates to multiplication

Bad aspect: pitch and spectral envelope characteristics
intertwined... not easy to throw away just the pitch information
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Cepstral Coefficients

Recall that the source-filter model says the pitch signal is
convolved with the vocal tract filter

In the frequency domain, that convolution equates to multiplication

Taking the logarithm of the spectrum converts multiplication to
addition
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NOTE: Because the log magnitude spectrum of a real signal is
real and symmetric, the cepstrum can be obtained by doing a
discrete cosine transform (DCT) on the log magnitude spectrum
rather than doing the IDFT
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Fortunately the pitch signal and vocal-tract filter are easily
separted after taking the logarithm ... the pitch signal corresponds
to high-time part of the cepstra, the vocal tract to the low-time part.

Truncation of the cepstra results in spectral envelope without pitch
info.

Aside: Truncating the cepstral vector can be used for estimating
formants.
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Linear Prediction - Motivation

The above model of the vocal tract matches observed data quite
well, at least for speech signals recorded in clean environments.
It is associated with a filter H(z) with a particularly simple time-
domain interpretation.
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Linear Prediction

The linear prediction model assumes that x[n] is a linear
combination of the p previous samples and an excitation Gu[n]

x[n] =
p∑

j=1

a[j]x[n− j] + Gu[n]

u[n] is either a string of (unit) impulses spaced at the fundamental
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frequency (pitch) for voiced sounds such as vowels or (unit) white
noise for unvoiced sounds such as fricatives.

Taking the Z-transform,

X(z) = U(z)H(z) = U(z)
G

1−
∑p

j=1 a[j]z−j

where H(z) can be associated with the (time-varying) filter
associated with the vocal tract and an overall gain G.
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Solving the Linear Prediction Equations

It seems reasonable to find the set of a[j]s that minimize the
energy in the prediction error:

∞∑
n=−∞

e2[n] = G2
∞∑

n=−∞
u2[n] = E

Why is it reasonable to assign Gu[n] to the prediction error?

Hand-wave 1: For voiced speech, u is an impulse train so it is
small most of the time

Hand-wave 2: Doing this leads to a nice solution

E =
∞∑

n=−∞
(x[n]−

p∑
j=1

a[j]x[n− j])2

IBM ELEN E6884: Speech Recognition 26



If we take derivatives with respect to each a[i] in the above
equation and set the results equal to zero we get a set of p

equations indexed by i:

p∑
j=1

a[j]R(i, j) = R(i, 0), 1 ≤ i ≤ p

where R(i, j) =
∑

n x[n− i]x[n− j].

In practice, we would not use the potentially infinite signal x[n] but
the individual windowed frames xm[n]. Since xm[n] is zero outside
the window, R(i, j) = R(j, i) = R(|i − j|) where R(i) is just the
autocorrelation sequence corresponding to xm(n). This allows us
to write the previous equation as

p∑
j=1

a[j]R(|i− j|) = R(i), 1 ≤ i ≤ p
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a much simpler and regular form known as “Toeplitz.”
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The Levinson-Durbin Recursion

The Toeplitz matrix associated with the previous set of equations
can easily be solved using the “Levinson-Durbin recursion”

Initialization. E0 = R(0) Iteration. For i = 1, . . . , p do:

k[i] = (R(i)−
i−1∑
j=1

ai−1[j]R(|i− j|))/Ei−1

ai[i] = k[i]

ai[j] = ai−1[j]− k[i]ai−1[i− j], 1 ≤ j < i

Ei = (1− k[i]2)Ei−1

End. a[j] = ap[j] and G2 = Ep.
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LPC Examples

Here the spectra of the original sound and the LP model are
compared. Note how the LP model follows the peaks and
ignores the “dips” present in the actual spectrum of the signal as
computed from the DFT.
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Observe the prediction error. It clearly is NOT a single impulse.
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As the model order p increases the LP model progressively
approaches the original spectrum. As a rule of thumb, one
typically sets p to be the sampling rate (divided by 1 KHz) + 2-
4, so for a 10 KHz sampling rate one would use p = 12 or p = 14.
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LPC and Speech Recognition

How should one use the LP coefficients in speech recognition?

■ The a[j]s themselves have an enormous dynamic range,
are highly intercorrelated in a nonlinear fashion, and vary
substantially with small changes in the input signal frequencies.

■ One can generate the spectrum from the LP coefficients but
that is hardly a compact representation of the signal.

■ Can use various transformations, such as the reflection
coefficients k[i] or the log area ratios log(1 − k[i])/(1 + k[i]) or
LSP parameters (yet another transformation related to the roots
of the LP filter).

■ The transformation that works best is the LPC Cepstrum.
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LPC Cepstrum

The complex cepstrum is defined as the IDFT of the logarithm of
the spectrum:

h̃[n] =
1
2π

∫
lnH(ejω)ejωndω

Therefore,
lnH(ejω) =

∑
h̃[n]e−jωn

or equivalently
lnH(z) =

∑
h̃[n]z−n

Let us assume correponding to our LPC filter is a cepstrum h̃[n].
If so we can write

∞∑
n=−∞

h̃[n]z−n = ln G− ln(1−
p∑

j=1

a[j]z−j)

IBM ELEN E6884: Speech Recognition 34



Taking the derivative of both sides with respect to z we get

−
∞∑

n=−∞
nh̃[n]z−n−1 =

−
∑p

l=1 la[l]z−l−1

1−
∑p

j=1 a[j]z−j

Multiplying both sides by −z(1 −
∑p

j=1 a[j]z−j) and equating
coefficients of z we can show with some manipulations that h̃[n]
is

0 n < 0
lnG n = 0

a[n] +
∑n−1

j=1
j
nh̃[j]a[n− j] 0 < n ≤ p∑n−1

j=n−p
j
nh̃[j]a[n− j] n > p

Notice the number of cepstrum coefficients is infinite but
practically speaking 12-20 (depending upon the sampling rate
and whether you are doing LPC or PLP) is adequate for speech
recognition purposes.
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Simulating Filterbanks with the FFT

A common operation in speech recognition feature extraction is
the implementation of filter banks.

The simplest technique is brute force convolution. Assuming i

filters hi[n]

xi[n] = x[n] ∗ hi[n] =
Li−1∑
m=0

hi[m]x[n−m]

The computation is on the order of Li for each filter for each output
point n, which is large.

Say now hi[n] = h[n]ejωin, a fixed length low pass filter
heterodyned up (remember, multiplication in the time domain is
the same as convolution in the frequency domain) to be centered
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at different frequencies. In such a case

xi[n] =
∑

h[m]ejωimx[n−m]

= ejωin
∑

x[m]h[n−m]e−jωim

The last term on the right is just Xn(ejω), the Fourier transform
of a windowed signal, where now the window is the same as the
filter. So we can interpret the FFT as just the instantaneous filter
outputs of a uniform filter bank whose bandwidths corresponding
to each filter are the same as the main lobe width of the window.

Notice that by combining various filter bank channels we can
create non-uniform filterbanks in frequency.
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What is typically done in speech processing for recognition is to
sum the magnitudes or energies of the FFT outputs rather than
the raw FFT outputs themselves. This corresponds to a crude
estimate of the magnitude/energy of the filter output over the time
duration of the window and is not the filter output itself, but the
terms are used interchangeably in the literature.
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Mel-Frequency Scaling

Goal: Develop perceptually based set of features.

Psychophysical studies have shown that human perception of
tones does not follow a linear scale.

Divide frequency axis into m filters spaced in equal perceptual
IBM ELEN E6884: Speech Recognition 39



increments. Each filter is defined in terms of the FFT bins k as

Hm(k)


0 k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) f(m− 1) ≤ k ≤ f(m)

f(m+1)−k
f(m+1)−f(m) f(m) ≤ k ≤ f(m + 1)

0 k > f(m + 1)

Define fl and fh to be lowest and highest frequencies of the
filterbank, Fs the sampling frequency, M , the number of filters,
and N the size of the FFT. The boundary points f(m) are spaced
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in equal increments in the mel-scale:

f(m) =
N

FS
B−1(B(fl) + m

B(fh)−B(fl)
m + 1

)

where the mel-scale, B, is given by

B(f) = 2595 log10(1 + f/700)

Some authors prefer to use 1127 ln rather than 2595 log10 but they
are obviously the same thing. The filter outputs for a given frame
are computed as

S(m) = 20 log10(
N−1∑
k=0

|X(k)|Hm(k)), 0 < m < M

where X(k) is the N-Point FFT of the current frame of the input
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signal, x[n]. N is chosen as the largest power of two greater than
the window length; the rest of the input FFT is padded with zeros.
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Mel-frequency Cepstral Coefficients

The mel-cepstrum can then be defined as the DCT of the M filter
outputs

The DCT can be interpreted as the DFT of a symmetrized signal.
There are many ways of creating this symmetry:
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The DCT-II scheme above concentrates the energy at lower
frequencies thus making it somewhat easier to get by with fewer
coefficients.

Taking the DCT-II yields:

c[n] =
M−1∑
m=0

S(m) cos(πn(m− 1/2)/M)
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Perceptual Linear Prediction

Reference: H. Hermansky, (1990) “Perceptual Linear Predictive
Analysis of Speech”, J. Acoust. Soc. Am., 87(4) pp. 1738-1752

Perceptual linear prediction tries to merge the best features of
Linear Prediction and MFCCs.

■ Smooth spectral fit that matches higher amplitude components
better than lower amplitude components (LP)

■ Perceptually based frequency scale (MFCCs)
■ Perceptually based amplitude scale (neither)

We compute the mel-warped power spectrum and take the cube
root of power:

S(m) = (
N−1∑
k=0

|X(k)|2Hm(k)).33
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Then, the IDFT of a symmetrized version of S(m) is taken:

R(m) = IDFT(Ssym(m))

This symmetrization ensures the result of the IDFT is real (the
IDFT of a symmetric function is real).

We can now pretend that R(m) are the autocorrelation coefficients
of a genuine signal and compute LPC coefficients and cepstra as
in “normal” LPC processing.

IBM ELEN E6884: Speech Recognition 46



Vocal-tract length normalized features

Goal: Try to eliminate speaker-specific variability. Leave only
variation due to differences in acoustics for each phoneme

In the following figure, we will see first and second formant
positions for English vowels for a variety of speakers. Note that
the inter-speaker variability causes overlap in the vowels, which is
undesirable from a recognition point of view.
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The following table indicates typical formant positions for male
speakers.
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The following diagram shows what the spectra look like for these
vowels as spoken by a male speaker.
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We can use a simple approximation of a vocal tract being a
uniform tube of length L. For this model formant frequencies
occur at odd multiples of 1/L.

Scaling the tube by a factor k, so that the new length L′ = kL,
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results in formant frequencies being scaled linearly by a factor
1/k.

Typically female speakers have formants which are roughly 20%
higher than the formants for male speakers.

VTLN features try various scale factors and warp the frequency
axis linearly during the FFT computation so as to fit some
“canonical” speaker.

After the signal is transformed to the warped frequency domain,
any feature computation e.g. MFCC’s can proceed normally.
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Deltas and Double Deltas

Dynamic characteristics of sounds often convey significant
information

■ Stop closures and releases
■ Formant transitions

Bright idea: augment normal “static” feature vector with dynamic
features (first and second derivatives of the parameters). If yt is
the feature vector at time t, then compute

∆yt = yt+D − yt−D

and create a new feature vector

y′t = (yt,∆yt)
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D is typically set to one or two frames. It is truly amazing that this
relatively simple “hack” actually works quite well.

A more robust measure of the time derivative of the parameter can
be computed using linear regression: A good five point derivative
estimate is given by:

y′[t] = (y[t− 2]− 8y[t− 1] + 8y[t + 1]− y[t + 2])/12

A good five point estimate of the 2nd derivative is:

y′′[t] = y[t− 1]− 2y[t] + y[t + 1]
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What Feature Representation Works Best?

Evidence for the value of adding delta and delta-delta parameters
are buried in old DARPA proceedings.

Many experiments comparing PLP and MFCC parameters are
somewhat inconsistent - sometimes better, sometimes worse,
depending on the task. The general consensus is PLP is slightly
better, but it is always safe to stay with MFCC parameters.
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Speech Recognition as Pattern Classification

A simple scenario

■ for each word w, collect a single audio example Araw
w

■ to recognize audio signal Araw, find word w that minimizes
DISTANCE(Araw, Araw

w )
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Speech Recognition as Pattern Classification

Signal processing

■ convert raw audio signals Araw into salient features A

● such that similar sounds have similar feature values
● goal: want simple distance measures to work well

■ example: MFCC features with ∆’s and ∆∆’s (13×3 = 39
dimensional)
● Araw ⇔ 16000 samples/sec
● A ⇔ 39 features/frame × 100 frames/sec
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What Is a Reasonable Distance Measure?

■ a simple scenario
● for each word w, collect a single audio example Aw

● to recognize audio signal A, find word w that minimizes
DISTANCE(A,Aw)

■ case 1: A, Aw are all the same length, say, T frames
● A(t) ≡ 39-dimensional feature vector for A at frame t

DISTANCE(A,Aw) =
T∑

t=1

FRAMEDIST(A(t), Aw(t))
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What Is a Reasonable Frame Distance Measure?

■ see what works well

■ popular distances
● Euclidean distance (L2 norm):

√∑
i(Ai −A′i)2

● Lp norm: p
√∑

i |Ai −A′i|p
● weighted Lp norm: weight contributions from each dimension

differently
● e.g., liftering for cepstra

● Itakura; symmetrized Itakura

■ whatever
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Time is The Enemy

case 2: A, Aw have different lengths

■ what to do?

■ solution 1: make everything the same length
● e.g., linear time normalization
● omit/duplicate frames uniformly in Aw so same length as A

DISTANCE(A,Aw) =
T∑

t=1

FRAMEDIST(A(t), Aw(t′))

where

t′ = t× length(Aw)
length(A)
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Time is The Enemy

Is linear time normalization a good model of reality?

■ do vowels and consonants stretch equally in time?

■ handling silence
● utterance 1: silence CAT silence
● utterance 2: silence CAT silence

■ want a nonlinear alignment scheme!
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Dynamic Time Warping

DISTANCE(A1, A2) =
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

■ introduce warping functions τ1(t), τ2(t)
● frame τ1(t) in A1 is aligned to frame τ2(t) in A2

● a frame in A1 can potentially align to any frame in A2
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Dynamic Time Warping

DISTANCE(A1, A2) =
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

■ given a pair of warping functions τ1(t), τ2(t), distance is well-
defined
● how to constrain warping functions?
● which particular pair of warping functions to pick?
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Constraining Warping Functions
■ begin at the beginning; end at the end

● τ1(1) = 1, τ1(T ) = length(A1), τ2(1) = 1, τ2(T ) = length(A2)

■ don’t move backwards (monotonicity)
● τ1(t + 1) ≥ τ1(t), τ2(t + 1) ≥ τ2(t)

■ don’t move forwards too far (locality)
● τ1(t + 1) ≤ τ1(t) + 1, τ2(t + 1) ≤ τ2(t) + 1
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Constraining Warping Functions

■ even better: constrain alignment to be comprised of sequence
of moves

■ e.g., three possible moves
● τ1(t + 1) = τ1(t) + 1, τ2(t + 1) = τ2(t) + 1
● τ1(t + 1) = τ1(t) + 1, τ2(t + 1) = τ2(t)
● τ1(t + 1) = τ1(t), τ2(t + 1) = τ2(t) + 1
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■ alignment must consist only of segments of these types
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Selecting Warping Functions

DISTANCE(A1, A2) =
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

■ which (legal) warping function to use to calculate the distance
between A1, A2?

■ consider all of them; pick the one with the smallest distance

DISTANCE(A1, A2) = min
τ1,τ2

{
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

}
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Dynamic Programming

DISTANCE(A1, A2) = min
τ1,τ2

{
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

}

■ wait! how can we efficiently compute the minimum distance
over all warping functions?
● there are an exponential number of warping functions τ1, τ2

● computation exponential in time?

■ no: dynamic programming!
● computation quadratic in time (∝ length(A1)× length(A2))

■ why the name “dynamic programming”?
● boss of author (Richard Bellman) had phobia of mathematics
● author invented term to hide what he was really working on
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Shortest Path Problems

■ DTW can be framed as instance of shortest path problem

■ solvable using dynamic programming

■ concepts useful in other speech algorithms (HMM’s, finite-state
machines)
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Make A Bee-line for Great Taste!

Buzz along with the bee and see how many O’s you can touch
without flying over the same path twice. Add up your score,
then go back and try for more.

■ how can we solve this baffling conundrum?

■ we want shortest paths, so how few O’s can you touch?
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10

1
1
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Shortest Path Problems

■ key observation 1
● shortest distance d(S) from start state to state S can be

expressed as . . .
● shortest distance d(S′) from start state to state S′ plus

DISTANCE(S′, S), for some immediate predecessor of S
● if know d(S′) for all immediate predecessors of S, easy to

compute d(S)
d(S) = min

S′→S
{d(S′) + DISTANCE(S′, S)}

1 2
3

4

19

1

3

3

10

1
1
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Shortest Path Problems

■ proposed algorithm
● loop through all states S in some order
● compute distance to start state d(S) for each state in order

● need d(S′) already computed for all predecessors
● can we always come up with such an ordering?

● i.e., an ordering such that all arcs go “forward”

■ key observation 2
● this is always possible for acyclic graphs

● via topological sorting
● in many cases, can come up with topological sorting manually
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Shortest Path Problems
Algorithm

■ sort states topologically: number from 1, . . . , N

● number start state as state 1; final start as state N

● for all arcs A, source(A) < dest(A)

■ d(1) = 0

■ for S = 2, . . . , N do

d(S) = min
S′→S

{d(S′) + DISTANCE(S′, S)}

■ final answer: d(N)

0 11 32
3
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DTW and Shortest Path Problems

DISTANCE(A1, A2) = min
τ1,τ2

{
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

}

■ can we translate dynamic time warping into a shortest path
problem?

■ or was the whole dynamic programming discussion just our way
of psyching you out?
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DTW and Shortest Path Problems

Consider the following problem

■ align two frame utterance A1 (A-T) with three frame utterance
A2 (A-A-T)

■ frame distances FRAMEDIST(A1(t1), A2(t2))
A2(1) A2(2) A2(3)

A1(1) 0 0 10
A1(2) 10 10 0

■ move set

v

v

v

v

�
�

�
�

�
�

��

-

6● τ1(t + 1) = τ1(t) + 1, τ2(t + 1) = τ2(t) + 1
● τ1(t + 1) = τ1(t) + 1, τ2(t + 1) = τ2(t)
● τ1(t + 1) = τ1(t), τ2(t + 1) = τ2(t) + 1
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DTW and Shortest Path Problems

Is this a shortest path problem?

■ we have the states of the graph; start state, final state

■ a particular τ1(t), τ2(t) represents path from start to final state

■ what are arcs of graph, and what are distances on each arc?

-

6

u u u

u u u

1 2 3
A A T

1

2

A

T
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DTW and Shortest Path Problems

What are the arcs of the graph?

■ at each state of the graph, you can take each move
● these are the arcs!
● discard arcs that go out of bounds

-
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DTW and Shortest Path Problems

What are the distances on the arcs?

A2(1) A2(2) A2(3)
A1(1) 0 0 10
A1(2) 10 10 0

■ take corresponding frame distance (at arc source)
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DTW and Shortest Path Problems

Is DTW and shortest path on this graph equivalent?

DISTANCE(A1, A2) = min
τ1,τ2

{
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

}

■ one-to-one correspondence between . . .
● legal alignments τ1(t), τ2(t)
● paths in graph from start to final state

■ distance associated with alignment is same as distance along
corresponding path in graph?

■ yes!
● minimum distance alignment ⇔ shortest path in graph
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DTW and Shortest Path Problems

■ sort states topologically
● for all arcs A, source(A) < dest(A)
● (t1, t2) → (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)

■ for t1 = 1, . . . , 2 do
● for t2 = 1, . . . , 3 do

d(t1, t2) = min{
d(t1 − 1, t2 − 1) + FRAMEDIST(A1(t1 − 1), A2(t2 − 1)),

d(t1 − 1, t2) + FRAMEDIST(A1(t1 − 1), A2(t2)),

d(t1, t2 − 1) + FRAMEDIST(A1(t1), A2(t2 − 1)) }

■ final answer: d(2, 3) + FRAMEDIST(A1(2), A2(3))
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DTW and Shortest Path Problems

■ let’s simulate this algorithm on a 100Hz human brain

-
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Recovering the Best Alignment

■ what if we want to know which alignment produced the shortest
distance?
● keep traceback information

d(t1, t2) = min{
d(t1 − 1, t2 − 1) + FRAMEDIST(A1(t1 − 1), A2(t2 − 1)),

d(t1 − 1, t2) + FRAMEDIST(A1(t1 − 1), A2(t2)),

d(t1, t2 − 1) + FRAMEDIST(A1(t1), A2(t2 − 1)) }
traceback(t1, t2) = which source state was best
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Recovering the Best Alignment

■ trace back from final state to get best path: (3,2), (2,1), (1, 1)
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Different Move Sets and Weighting

One move set

v

v

v

v

�
�
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-

6

1

1

1

d(t1, t2) = min{
d(t1 − 1, t2 − 1) + FRAMEDIST(A1(t1 − 1), A2(t2 − 1)),

d(t1 − 1, t2) + FRAMEDIST(A1(t1 − 1), A2(t2)),

d(t1, t2 − 1) + FRAMEDIST(A1(t1), A2(t2 − 1)) }
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Different Move Sets and Weighting

Another move set (Sakoe and Chiba)

v v v

v v v
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d(t1, t2) = min{
d(t1 − 1, t2 − 1) + 2× FRAMEDIST(A1(t1 − 1), A2(t2 − 1)),

d(t1 − 2, t2 − 1) + 2× FRAMEDIST(A1(t1 − 2), A2(t2 − 1)) +

FRAMEDIST(A1(t1 − 1), A2(t2 − 1)),

d(t1 − 1, t2 − 2) + 2× FRAMEDIST(A1(t1 − 1), A2(t2 − 2)) +

FRAMEDIST(A1(t1 − 1), A2(t2 − 1)) }
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Normalization

DISTANCE(A1, A2) =
T∑

t=1

FRAMEDIST(A1(τ1(t)), A2(τ2(t)))

■ correct bias for longer utterances to have longer distances

DISTANCE(A1, A2) =
∑T

t=1 FRAMEDIST(A1(τ1(t)), A2(τ2(t)))
length(A1) + length(A2)
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Summary

■ DTW is effective way to calculate distance between two signals
● can do nonlinear time alignment
● frame distance and move set selection is ad hoc
● dynamic programming can implement DTW efficiently

■ can be extended to multiple training examples per word
● select “best” examples or do averaging

■ can be extended to connected speech
● align sequence of templates to single utterance

■ signal processing and DTW are all you need for simple ASR
● e.g., cell phone name dialer
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A Simple Recognizer

■ training
● for each word w, collect a single audio example Araw

w , or
template
● do signal processing to get features Aw

■ recognition
● process audio signal Araw to get features A

● find closest word w∗ from training examples

w∗ = arg min
w

DISTANCE(A,Aw)

● DISTANCE(A,Aw) can be computed using DTW, dynamic
programming
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The Big Picture

■ signal processing and dynamic time warping
● all you need for a simple speech recognizer (e.g., Lab 1)

● very small number of training examples
● pat yourself on the back

■ what’s next
● instead of ad hoc distance measures
● start putting things on a sounder mathematical foundation
● probabilistic modeling! (GMM’s, HMM’s)

● large training sets
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Course Feedback

1. Was this lecture mostly clear or unclear? What was the
muddiest topic?

2. Other feedback (pace, content, atmosphere)?
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