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I.  Introduction and motivation
Next generation of Human-Computer Interaction will require perceptual intelligence:

What is the environment?
Who is in the environment?
Who is speaking?
What is being said?
What is the state of the speaker?
How can the computer speak back?
How can the activity be summarized, indexed, and retrieved?

Operation on basis of traditional audio-only information:
Lacks robustness to noise.
Lags human performance significantly, even in ideal environments.

Joint audio + visual processing can help bridge the usability gap; e.g:

Audio

Improved ASR+
Visual (labial)
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Introduction and motivation – Cont.

Vision of the HCI of the future?

A famous exchange (HAL’s “premature” 
audio-visual speech processing capability):

HAL: I knew that you and David were planning 
to disconnect me, and I’m afraid that’s 
something I cannot allow to happen.
Dave: Where the hell did you get that idea, 
HAL?
HAL: Dave – although you took very thorough 
precautions in the pod against my hearing you, 
I could see your lips move.

(From HAL’s Legacy, David G. Stork, ed., MIT Press: 
Cambridge, MA, 1997).
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I.A. Why audio-visual speech?

Schematic representation of speech production
(J.L. Flanagan, Speech Analysis, Synthesis, and 
Perception, 2nd ed., Springer-Verlag, New York, 1972.)

Human speech production is bimodal:
Mouth cavity is part of vocal tract. 
Lips, teeth, tongue, chin, and lower 
face muscles play part in speech 
production and are visible.
Various parts of the vocal tract play 
different role in the production of the 
basic speech units. E.g., lips for 
bilabial phone set  B=/p/,/b/,/m/.
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Why audio-visual speech – Cont.
Human speech perception is bimodal:

We lip-read in noisy environments to 
improve intelligibility.

E.g., human speech perception 
experiment by Summerfield (1979): 
Noisy word recognition at low SNR.

We integrate audio and visual stimuli, 
as demonstrated by the McGurk
effect (McGurk and McDonald, 1976).

Audio /ba/ + Visual /ga/ -> AV /da/
Visual speech cues can dominate 
conflicting audio.

Audio: My bab pope me pu brive.
Visual/AV: My dad taught me to drive.

Hearing impaired people lip-read.

0

10

20

30

40

50

60

70

Word regognition

Audio only (A)
A+4 mouth points
A+lip region
A+full face



Dec 1, 2005 6

Why audio-visual speech – Cont.
Although the visual speech information content is less than audio …

Phonemes: Distinct speech units that convey linguistic information; about 47 in English.
Visemes: Visually distinguishable classes of phonemes: 6-20.

… the visual channel provides important complementary information to audio:
Consonant confusions in audio are due to same manner of articulation, in visual due to same place
of articulation. 
Thus, e.g., /t/,/p/ confusions drop by 76%, /n/,/m/ by 66%, compared to audio (Potamianos et al., ‘01).
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Why audio-visual speech – Cont.

Correlation between original and 
estimated features; upper: visual from 
audio; lower: audio from visual (Jiang
et al.,2003).

1.0

0.1

Au2Vi - 4 spk.

Vi2Au - 4 spk.
1.0
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Audio and visual speech observations 
are correlated: Thus, for example, one can 
recover part of the one channel from using 
information from the other.

Correlation between audio and visual                
features (Goecke et al., 2002).
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I.B. Audio-visual speech used in HCI

Audio-visual automatic speech recognition (AV-ASR):
Utilizes both audio and visual signal inputs from the video of a speaker’s face to 
obtain the transcript of the spoken utterance. 
AV-ASR system performance should be better than traditional audio-only ASR.
Issues: Audio, visual feature extraction, audio-visual integration.

Audio-Visual
ASR

Audio input

Visual input

Acoustic features

Visual features

Audio-visual 
integration SPOKEN TEXT

Audio-Only
ASR
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Audio-visual speech used in HCI

Audio-visual speech synthesis (AV-TTS):
Given text, create a talking head (audio + visual TTS).
Should be more natural and intelligible 
than audio-only TTS.

Audio-visual speaker recognition (identification/verification):

Audio-visual speaker localization:
Etc…

Audio output

Visual output

TEXT +

Audio

Authenticate 
or  recognize        
speaker

+ +

Visual (labial) Face

Who is
talking?
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I.C. Outline

I.I. Introduction / motivation for AV speech.Introduction / motivation for AV speech.
II. Visual feature extraction for AV speech applications.
III. Audio-visual combination (fusion) for AV-ASR.
IV. Other AV speech applications.
V. Summary.

Experiments will be presented along the way.
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II. Visual speech feature extraction.

A. Where is the talking face in the video?
B. How to extract the speech informative section of it?
C. What visual features to extract?
D. How valuable are they for recognizing human speech?
E. How do video degradations affect them?

Region-of
-interestVisual 

features

Face and facial
feature tracking

ASR
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II.A. Face and facial feature tracking.

Main question: Is there a face present in 
the video, and if so, where? Need:

Face detection.
Head pose estimation.
Facial feature localization (mouth 
corners). See for example MPEG-4 facial 
activity parameters (FAPs).
Lip/face shape (contour).

Successful face and facial feature tracking is a 
prerequisite for incorporating audio-visual 
speech in HCI.
In this section, we discuss:

Appearance based face detection.
Shape face estimation.
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II.A.1 Appearance-based face detection.

TWO APPROACHES:

Non-statistical (not discussed further):
Use image processing techniques to 
detect presence of typical face 
characteristics (mouth edges, nostrils, 
eyes, nose), e.g.: Low-pass filtering, 
edge detection, morphological filtering, 
etc. Obtain candidate regions of such 
features.
Score candidate regions based on their 
relative location and orientation.
Improve robustness by using additional 
information based on skin-tone and 
motion in color videos. From: Graf, Cosatto, and Potamianos, 1998
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Appearance-based face detection – Cont.

Standard statistical approach – steps:

View face detection as a 2-class
classification problem (into faces/
non-faces).
Decide on a “face template” (e.g., 
11x11 pixel rectangle).
Devise a trainable scheme to “score”/classify
candidates into the 2 classes.
Search image using a pyramidal scheme (over locations, scales, orientations) to 
obtain set of face candidates and score them to detect any faces.
Can speed-up search by eliminating face candidates in terms of skin-tone
(based on color information on the R,G,B or transformed space), or location/scale 
(in the case of a video sequence). Use thresholds or statistics.

end

start

ratio
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Appearance-based face detection – Cont.

Statistical face models (for face “vector” x).
Fisher discriminant detector (Senior, 1999).

Also known as linear discriminant analysis – LDA (discussed in Section III.C).

One-dimensional projection of 121-dimensional vector x:  yF = P1 x 121 x
Achieves best discrimination (separation) between the two classes of interest in the 
projected space; P is trainable on basis of annotated (face/non-face) data vectors.

Distance from face space (DFFS).
Obtain a principal components analysis (PCA) of the training set (Section III.C).

Resulting projection matrix Pdx121 achieves best information “compression”.

Projected vectors y = Pdx121 x have a

DFFS score: 

Combination of two can score a face 

candidate vector:
Example PCA eigenvectors

thDFFS    
F FaceNon

Facey −<
>

−

TDFFS P y x  −=
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Appearance-based face detection – Cont.

Additional statistical face models:
Gaussian mixture classifier (GMM):

Vector y is obtained by a dimensionality reduction projection of x (PCA, or other 
image compression transform), y = P x .

Two GMMs are used to model:

GMM means/variances/weights are estimated by the EM algorithm.

Vector x is scored by likelihood ratio:

Artificial neural network classifier 
(ANN – Rowley et al., 1998).

Support vector machine
classifier (SVM – Osuna et al., 1997).
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Appearance-based face detection – Cont.
Face detection experiments:

Results on 4 in-house IBM databases, recorded in:
STUDIO: Uniform background, lighting, pose.
OFFICE: Varying background and lighting.
AUTOMOBILES: Extreme lighting and head pose 
change.
BROADCAST NEWS: Digitized broadcast videos, 
varying head-pose, background, lighting.

Face detection accuracy:
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Appearance-based face detection – Cont.
From faces to facial features:

Facial features are required for visual speech applications!
Feature detection is similar to face detection:

Create individual facial feature templates. Feature vectors 
can be scored using trained Fisher, DFFS, GMMs, ANN, etc.
Limited search, due to prior  feature location information.

Examples of detected facial features: Remains challenging 
under varying lighting and head pose variations. STUDIO

AUTOMOBILE
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II.A.2. Face shape & lip contour extraction

Four popular methods for lip contour extraction:

Snakes (Kass, Witkin, Terzopoulos, 1988):
A snake is an open or closed elastic curve defined by control points.
An energy function of the control points and the image / or edge map values is 
iteratively optimized.
Correct snake initialization is crucial.

Deformable templates (Yuille, Cohen, Hallinan, 1989):
A template is a geometric model, described by few parameters.
Minimizing a cost function (which is the sum of curve and surface integrals) 
matches the template to the lips.
Typically two or more parabolas are used as the template.
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Face shape & lip contour extraction – Cont.

Active shape models (Cootes, Taylor, Cooper, Graham, 1995):

A point distribution model of the lip shape is built.
First, a set of images with annotated (marked) lip contours is given.
A PCA based model of the vector of the lip contour point coordinates is obtained.
Lip tracking is based on minimizing a distance between the lip model and the given 
image.

From: Luettin, Thacker, and Beet, 1996.
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Face shape & lip contour extraction – Cont.

Active appearance models (AAMs- Cootes, Walker, Taylor, 2000):
In addition to shape, it also considers a model of face texture (appearance).
A PCA based model of the R,G,B pixel values of normalized face regions is obtained.
Thus, a face is encoded by means of its mean shape, appearance, and the PCA 
coefficients of both.
Facial shape (and face!) detection becomes an optimization problem where the joint 
shape/appearance parameters are iteratively obtained, by minimizing a residual error.
We will re-visit AAMs in the next section.

AAM  tracking on IBM “studio” data (credit: I. Matthews) AAM  modes trained on IBM data
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II.B. Region-of-interest for visual speech.
Region-of-interest (ROI):

Assumed to contain “all” visual speech information.
Key to appearance based visual features, described in II.C.
Can be used to limit search of “expensive” shape tracking.
Typically is a rectangle containing the mouth, but could be
circle, lip profiles, etc.

ROI extraction:
Smooth mouth center, size, orientation estimates 
using median or Kalman filter.
Extract size and intensity normalized (e.g., by histogram 
equalization) mouth ROI.
Including parts of “beard region” is beneficial to ASR.
ROI “quality” is function of the face tracking accuracy.

Best for ASR
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II.C. Visual speech features.
What are the right visual features to extract from the ROI?
Three types of / approaches to feature extraction:
Lip- and face-contour (shape) based:

Height, width, area of mouth. 
Moments, Fourier descriptors. 
Mouth template parameters.

Video pixel (appearance) based features:
Lip contours do not capture oral cavity information!
Use compressed representation of mouth ROI instead.
E.g.: DCT, PCA,  DWT, whole ROI.

Joint shape and appearance features:
Active appearance models.
Active shape models.
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II.C.1. Shape based visual features

Geometric lip contour features: Assume that lip contour 
(points) are available (extracted as discussed in III.A), and are 
properly normalized using an affine transform (to compensate for
head pose and speaker specifics). 

Feature extraction:
Contour is denoted by
Lip-interior membership function:
Some “sensible” lip-features are then:

Height:

Width:

Area:

Perimeter:

Lip-contour Fourier descriptors.
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Shape based visual features – Cont.

Lip model based features: Various lip models can be used for lip 
contour tracking (as discussed in III.A). The resulting lip contour points can 
be used to derive geometric features, or alternatively, in the case of:

Snakes :
Use distances or other function of snake control points as features.

Deformable templates :
Use the parabola parameters.

Active shape models :
Use the PCA coefficients corresponding to the lip shape as features.
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II.C.2. Appearance based visual features
Main idea: Lip contours fail to capture speech information from the oral 
cavity (tongue, teeth visibility, etc.). Instead, use a compressed representation
of the mouth region-of-interest (ROI) as features.
2D or 3D ROI vector consists of d=MNK pixels, lexicographically ordered in:

Seek dimensionality
reduction transform:

E.g.: DCT:   Discrete cosine transform.
DWT: Discrete wavelet transform.
PCA:   Principal components analysis.
LDA:   Linear discriminant analysis.
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II.D. Visual feature comparisons.

Geometric (shape) vs. appearance features (Potamianos et al., 1998).

Comparisons are based on single-subject, connected-digit ASR 
experiments.

Outer lip
features

%, Word 
accuracy

h , w 55.8

+ a 61.9

+ p 64.7

+ FD2-5 73.4

Lip contour
features

%, Word
accuracy

Outer-only 73.4

Inner-only 64.0

2 contours 83.9

Feature
type

%, Word
accuracy

Lip-contour based 83.9

Appearance (LDA) 97.0

• Thus, appearance based modeling is preferable!
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Visual feature comparisons – Cont.
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II.E. Video degradation effects. 

Frame rate decimation:
Limit of acceptable video rate for 
automatic speechreading is 15 Hz.

Video noise:
Robustness to noise only in a 
matched training/testing scenario.

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

FIELD RATE [Hz]

W
O

R
D

 A
C

C
U

R
A

C
Y

 [%
]

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

SNR [dB]

W
O

R
D

 A
C

C
U

R
A

C
Y

 [%
]

            

            

            

SNR = 10 dB

SNR = 30 dB

SNR = 60 dB

MATCHED
TRAINING-TESTING

MISMATCHED
TRAINING-TESTING

Both cases: DWT visual features – connected digits recognition (Potamianos et al., 1998).
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Video degradation effects – Cont.
Unconstrained visual environments remain challenging, as they pose 
difficulties to robust visual feature extraction.

EXAMPLE: Recall our three “increasingly-difficult” domains: Studio, office, and 
automobile environments (multiple-speakers, connected digits – Potamianos et al., 2003).

Face detection accuracy decreases:                     Word error rate increases:
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III. Audio-visual fusion for ASR.

Audio-visual ASR:
Two observation streams. Audio,                                   Visual:
Streams assumed to be at same rate – e.g., 100 Hz. In our system,
We aim at non-catastrophic fusion: 

Main points in audio-visual fusion for ASR:
Type of fusion:

Combine audio and visual info at the feature level (feature fusion).
Combine audio and visual classifier scores (decision fusion).
Could envision a combination of both approaches (hybrid fusion).

Decision level combination:
Early (frame, HMM state level).
Intermediate integration (phone level – coupled, product HMMs).
Late integration (sentence level – discriminative model combination).

Confidence estimation in decision fusion:
Fixed (global).
Adaptive (local).

Fusion algorithmic performance / experimental results.
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III.A. Feature fusion in AV-ASR.

Feature fusion: Uses a single classifier (i.e.. of the same type as the audio-only 
and visual-only classifiers – e.g., single-stream HMM) to model the concatenated
audio-visual features, or any transformation of them.
Examples:

Feature concatenation (also known as direct identification).
Hierarchical discriminant features: LDA/MLLT on concatenated features (HiLDA).
Dominant and motor recording (transformation of one or both feature streams).
Bimodal enhancement of audio features (discussed in Section V).

HiLDA fusion advantages:
Second LDA learns 
audio-visual correlation.
Achieves discriminant
dimensionality reduction.
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Feature fusion in AV-ASR – Cont.
AV-ASR results: Multiple subjects (50), connected-digits (Potamianos et al., 2003). 

Discriminant feature fusion 
is superior – results in
an effective SNR gain
of 6 dB SNR.
Additive babble noise 
is considered at various
SNRs.
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III.B. Decision fusion in AV-ASR.

Decision fusion: Combines two separate classifiers (audio-, visual-only) to 
provide a joint audio-visual score. Typical example is the multi-stream HMM.
The multi-stream HMM (MS-HMM):

Combination at the frame (HMM state) level.
Class-conditional (        ) observation score:

Equivalent to log-likelihood linear combination (product rule in classifier fusion).
Exponents (weights) capture stream reliability:
MSHMM parameters:
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Decision fusion in AV-ASR - Cont.
Multi-stream HMM parameter estimation:

Parameters            can be obtained by ML estimation using the EM algorithm.
Separate estimation (separate E,M steps at each modality):

Joint estimation (joint E step, M steps factor per modality):

Parameters    can be obtained discriminatively – as discussed in Section IV.D.
MS-HMM transition probabilities:

Scores are dominated by observation likelihoods.
One can set:
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Decision fusion in AV-ASR - Cont.

AV-ASR results:
Recall the connected-
digit ASR paradigm. 

MSHMM-based decision 
fusion is superior to 
feature fusion.

Joint model training is 
superior to separate
stream training.

Effective SNR gain: 
7.5 dB SNR.
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III.C. Asynchronous integration

Intermediate integration combines stream scores at a coarser unit level than HMM 
states, such as phones. This allows state-asynchrony between the two streams, within 
each phone.
Integration model is equivalent to the product HMM (Varga and Moore, 1990).

Product HMM has “composite” (audio-visual) states:
Thus, state space becomes larger, e.g., |C|x|C| for a 2-stream model.
Class-conditional observation probalities can follow the MS-HMM paradigm, i.e.:
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Intermediate integration - Cont.

Product HMM – Cont.:
If properly tied, the observation probabilities have same number of parameters 
as state-synchronous MS-HMM.
Transition probabilities may be more. Three possible models. The miiddle is 
known as the coupled HMM.
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Asynchrony; Intermediate integration - Cont.
AV-ASR results:

Recall the connected-
digit ASR paradigm. 

Product HMM fusion
is superior to state-
synchronous fusion.

Effective SNR gain: 
10 dB SNR.
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III.D. Stream reliability modeling
We revisit the MS-HMM framework, to discuss weight (exponent) estimation.
Recall the MS-HMM observation score (assume 2 streams):

Stream exponents model reliability (information content) of each stream.
We can consider:

Global weights: Assumes that audio and visual conditions do not change, thus 
global stream weights properly model the reliability of each stream for all available 
data. Allows for state-dependent weights.
Adaptive weights at a local level (utterance or frame): Assumes that the 
environment varies locally (more practical). Requires stream reliability estimation at 
a local level, and mapping of such reliabilities to exponents.
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III.D.1. Global stream weighting.

Stream weights cannot be obtained by maximum-likelihood estimation, as:

where Ls,c,F denotes the training set log-likelihood contribution due to the s-
modality, c-state (obtained by forced-alignment F).
Instead, one needs to discriminatively estimate the exponents:

Directly minimize WER on a held-out set – using brute force grid search. 
Minimize a function of the misrecognition error by utilizing the generalized 
probabilistic descent algorithm (GPD).

Example of exponent convergence 
(GPD based estimation)
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III.D.2. Adaptive stream weighting.
In practice, stream reliability varies locally, due to audio and visual input degradations 
(e.g., acoustic noise bursts, face tracking failures, etc.).
Adaptive weighting can capture such variations, by using:

Estimate of the environment and/or input stream reliabilities.
Mapping such estimates to stream exponents.

Stream reliability indicators:
Acoustic signal based: SNR, voicing index.
Visual processing: Face tracking confidence.
Classifier based reliability indicators (either stream):

Consider N-best most likely classes for observing os,t , 

N-best log-likelihood difference:

N-best log-likelih. dispersion:
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Adaptive stream weighting – Cont.

Stream reliability 
indicators and 
exponents vs. SNR 

Then estimate 
exponents as:

Weights wi are 
estimated using MCL or 
MCE on basis of frame 
error (Garg et al., 2003).

14

1, ] ) ( exp  1 [  −
=∑−+= ii itA dwλ



Dec 1, 2005 44

III.E. Summary of AV-ASR experiments.
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Summary of AV-ASR results 
for connected-digit recog.

Multi-speaker training/testing.
50 subjects, 10 hrs of data.
Additive noise at various SNRs.
Two training/testing scenarios: 

Matched (same noise in 
training and testing).
Mismatched (trained in 
clean, tested in noisy).

10 dB effective SNR gain for 
both, using product HMM.
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Summary of AV-ASR experiments - Cont.
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Summary of AV-ASR 
results for large-vocabulary 
continuous speech(LVCSR).
Speaker-independent 
training (239 subj.) testing 
(25 subj.).
40 hrs of data.
10,400-word vocabulary.
3-gram LM.
Additive noise at various 
SNRs.
Matched training/testing.
8 dB effective SNR gain
using hybrid fusion.
Product HMM did not help.
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Summary of AV-ASR experiments - Cont.
AV-ASR in challenging domains:

Office and automobile environments (challenging) vs. studio data (ideal).
Feature fusion hurts in challenging domains (clean audio).
Relative improvements due to visual information diminish in challenging domains.
Results reported in WER, %.
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IV. Other audio-visual speech applications.

Next generation of speech-based human-
computer-interfaces require natural 
interaction & perceptual intelligence, i.e.:

A. Speech synthesis (AV Text-To-Speech).
B. Detection of who is speaking (speaker 

recognition).
C. What is being spoken (ASR/enhancement).
D. Where is the active speaker (speech event 

detection).
E. How can the audio-visual interaction be 

segmented, labeled, and retrieved? (mining).
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IV.A. Audio-Visual Speech Synthesis

What is it:
Automatic generation of voice and facial animation from arbitrary text (AV-TTS).
Automatic generation of facial animation from arbitrary speech.

Applications:
Tools for the hearing impaired.
Spoken and multimodal agent-based user interfaces.
Educational aids.
Entertainment.
Video conferencing.

Benefits:
Improved speech intelligibility.
Improved naturalness of HCI.
Less bandwidth.
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AV-TTS – Two approaches.

Model-based:
Face is modeled as a 3D object.
Control parameters deform it using

Geometric;
Articulatory;
Muscular models.

Sample based (Photo-realistic).
Video segments of a speaker are: 

Acquired 
Processed
Concatenated 

Viterbi search for best mouth sequence
(Cosatto and Graf, 2000).
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IV.B. Audio-visual speaker recognition

Two important problems are speaker verification (authentication) and identification
Speaker verification:

Verify claimed identity based on audio-visual observations O
A two-class problem; True claimant vs. impostor (general population).
Based on:

Speaker identification:
Obtain speaker identity within a closed set of known subjects C based on 
observations O :

Multi-modal systems better than single-modality!
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IV.B.1. Single-modality speaker recognition

Audio-only: Traditional acoustic features are used, such as LPC, MFCCs (Section II).

Visual-labial: Mouth region visual features can be used, such as lip contour geometric and 
shape features, or appearance based features. 

visual-labial features: shape (S),  intensity (I), shape and intensity (SI)  (Luettin et al., 1996):
ID-error:  TD: S: 27.1, I: 10.4, SI: 8.3 %

TI: S: 16.7,  I:  4.2, SI: 2.1 %

Visual-face (face recognition): Features can be characterized as:
Shape vs. appearance based:

Shape based: Active shape models, vector of facial feature geometry, profile histograms, 
dynamic link architecture, elastic graphs, Gabor filter jets.
Appearance based: LDA (“Fisher-faces”), PCA (“eigen-faces”), other image projections.

Global vs. local/hierarchical:
Global: Single feature vector is classified 

(e.g., single PCA representation of entire face)
Local/hierarchical: Multiple feature 
vectors are classified (each representing
local information, possibly organized in a 
hierarchy) and classification results are 
cumulated (e.g., embedded HMMs).

1-D HMM

1-D HMM
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IV.B.2. Multi-modal speaker recognition

Fusion of two or three single-modality speaker-recognition systems

Examples:

Audio + visual-labial (Chaudhari et al., 2003 ->):
ID-error:  A: 2.01, V: 10.95, AV: 0.40 %
VER-EER: A:1.71, V: 1.52, AV: 1.04 %

Audio + face (Chu et al., 2003):
ID-error: A: 28.4, F: 28.8, AF: 9.12 %

Audio + visual + face (Dieckmann et al., 1997):
ID-error: A: 10.4, V: 11.0, F: 18.7, AVF: 7.0 %
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IV.C. Bimodal enhancement of audio

Main idea:
Recall that the audio and visual features 
are correlated. E.g., for 60-dim audio 
features (oAt) and 41-dim visual (oVt):
Thus, one can hope to exploit visual input 
to restore acoustic information from the 
video and the corrupted audio signal.

Enhancement can occur in the:
Signal space (based on LPC audio feats.).
Audio feature space (discussed here).

Main techniques:
Linear (min. mean square error est.).
Non-linear (neural nets., CDCN).

Result: Better than audio-only methods.
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IV.C.1. Linear bimodal audio enhancement.
Paradigm:
Training on noisy AV features

Seek linear transform P, s.t:

Can estimate P by minimizing the mean square error (MSE) between
Problem separates per audio feature dimension (i=1,…,dA):

Solved by dA systems of Yule-Walker equatiions:
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Linear bimodal audio enhancement – Cont.

Examples of audio feature estimation using bimodal enhancement (additive speech 
babble noise at 4 dB SNR): Not perfect, but better than noisy features, and helps ASR!
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Linear bimodal audio enhancement – Cont.
Linear enhancement and ASR (digits task – automobile noise):

Audio-based enhancement is inferior to bimodal one.
For mismatched HMMs at low SNR, AV-enhanced features outperform AV-HiLDA feature fusion.
After HMM retraining, HiLDA becomes superior.
Linear enhancement creates within-class feature correlation - MLLT can help.
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IV.D. Audio-visual speaker detection
Applications/problems:

Audio-visual speaker tracking in 3D-space (e.g., meeting 
rooms). Signals are available from microphone arrays and video 
cameras. Three approaches:
Audio-guided active camera (Wang and Brandstein, 1999).
Vision-guided microphone arrays (Bub, Hunke, and Waibel, 1995).
Joint audio-visual tracking (Zotkin, Duraiswami, and Davis, 2002).
Audio-visual synchrony in video: Which (if any) face in the 
video corresponds to the audio track? Useful in broadcast video.
Joint audio-visual speech activity can be quantified by mutual 
information of the audio and visual observations (Nock, Iyengar, 
and Neti, 2000):

Speech intent detection: User pose, proximity, and visual 
speech activity indicate speaker intent for HCI. Visual channel 
improves robustness compared to audio-only system 
(De Cuetos and Neti, 2000).
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V. Summary / Discussion

We discussed and presented:

The need to augment the acoustic speech with the visual modality in HCI.

How to extract and represent visual speech information.

How to combine the two modalities within the HMM based statistical ASR framework.

Additional examples of how to utilize the visual modality in HCI; for example, speech 

synthesis, speaker authentication, identification, and localization, speech enhancement.

Experimental results demonstrating its significant benefit to many of these areas.
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Summary / Discussion – Cont.
Much progress has been accomplished in including visual speech in HCI. Still 
however, visual speech is not in wide-spread use in main-stream HCI, due to:

Visual signal processing lack-of-robustness to typical, challenging HCI environments.
Cost for high-quality video capture, storage, and processing.

However, with the explosion of camera miniaturization and hardware speed, as 
well as the associated drastic cost reduction, we believe that audio-visual 
speech is becoming ready for targeted applications !

The field is clearly multi-disciplinary, presenting many research and 
development opportunities and challenges.

THANK YOU FOR YOUR ATTENTION ! 
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