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Outline of Today’s Lecture

■ Administrivia
■ Robustness Review
■ PMC
■ Adaptation
■ Linear Discriminant Analysis
■ Maximum Mutual Information Training
■ ROVER
■ Consensus Decoding
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Administrivia

■ main feedback from last lecture
● pace a little slow?

■ Lab 3 not graded yet, will be handed back next week
■ Lab 4 out, due Sunday after next
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Robustness Review

■ Transformation of data to match new environment
■ Multi-style training
■ Cepstral Mean Removal
■ Spectral Subtraction
■ Codeword-Dependent Cepstral Normalization
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Parallel Model Combination - Basic Idea

Idea: Incorporate model of noise directly into our GMM-based
HMMs.

If our observations were just the FFT outputs this would be
straightforward. In such a case, the corrupted version of our signal
x with noise n is just:

y = x + n

If x ∼ N(µx, σ
2
x) and n ∼ N(µn, σ2

n) then y ∼ N(µx + µn, σ2
x + σ2

n)

But our observations are cepstral parameters - extremely
nonlinear transformations of the space in which the noise is
additive. What do we do?

IBM ELEN E6884: Advanced Speech Recognition 4



Parallel Model Combination - One Dimensional
Case

Let’s just look at the one-dimensional case. Let X = lnx,N =
lnn.

Let us say X ∼ N(µX, σ2
X) and N ∼ N(µN , σ2

N).

If X is a Gaussian random variable with mean µ and variance σ2

then x = eX follows the lognormal distribution:

p(x) =
1

xσ
√

2π
exp(−(lnx− µ)2

2σ2
)

The mean of this distribution can be shown to be

E(x) =
∫

xp(x)dx = exp(µ + σ2/2)
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and the variance

E((x− E(x))2) =
∫

(x− E(x))2p(x)dx = µ2(exp(σ2)− 1)
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Parallel Model Combination - Lognormal
Approximation

Let us now assume that in the linear domain

y = x + n

then the distribution of y will correspond to the distribution of a
sum of two lognormal variables x and n.

Unfortunately, although the sum of two Gaussian variables is a
Gaussian, the sum of two lognormal variables is not lognormal.

As good engineers, we will promptly ignore this fact and act as if
y DOES have a lognormal distribution (!).

If x and n are uncorrelated, we can write:

µy = µx + µn
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σ2
y = σ2

x + σ2
n

In such a case, Y = ln y is Gaussian and the mean and variance
are given by:

µY = ln µy −
1
2

ln

[
σ2

y

µ2
y

+ 1

]

σ2
Y = ln

[
σ2

y

µ2
y

+ 1

]

The matrix and vector forms of the modified means and variances,
similar to the unidimensional forms above, can be found in HAH
pg. 533
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Parallel Model Combination - Performance

From “PMC for Speech Recognition in Convolutional and Additive
Noise” by Mark Gales and Steve Young, (modified by Martin
Russell) TR-154 Cambridge U. 1993.
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Maximum A Posteriori Parameter Estimation -
Basic Idea

Another way to achieve robustness is to take a fully trained HMM
system, a small amount of data from a new domain, and combine
the information from the old and new systems together. To put
everything on a sound framework, we will utilize the parameters
of the fully-trained HMM system as prior information.

In Maximum Likelihood Estimation (Lecture 3) we try to pick a set
of parameters θ̂ that maximize the likelihood of the data:

θ̂ = arg max
θ

L(ON
1 |θ)

In Maximum A Posterior Estimation we assume there is some
prior probability distribution on θ, p(θ) and we try to pick θ̂ to
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maximize the a posteriori probability of θ given the observations:

θ̂ = arg max
θ

p(θ|ON
1 )

= arg max
θ

L(ON
1 |θ)p(θ)
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Maximum A Posteriori Parameter Estimation -
Conjugate Priors

What form should we use for p(θ)? To simplify later calculations,
we try to use an expression so that L(ON

1 |θ)p(θ) has the same
functional form as L(ON

1 |θ). This type of form for the prior is called
a conjugate prior.

In the case of a univariate Gaussian we are trying to estimate µ

and σ. Let r = 1/σ2. An appropriate conjugate prior is:

p(θ) = p(µ, r) ∝ r(α−1)/2exp(−τr

2
(µ− µp)2)exp(−(σ2

pr/2)

where µp and σ2
p are prior estimates/knowledge of the mean and

variance from some initial set of training data. Note how ugly the
functional forms get even for a relatively simple case!
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Maximum A Posteriori Parameter Estimation -
Univariate Gaussian Case

Without torturing you with the math, we can plug in the conjugate
prior expression and compute µ and r to maximize the a posteriori
probability. We get

µ̂ =
N

N + τ
µO +

τ

N + τ
µp

where µO is the mean of the data computed using the ML
procedure.

σ̂2 =
N

N + α− 1
σ2

O +
τ(µO − µ̂)2 + σ2

p

N + α− 1

τ is a balancing parameters that can be tuned to optimize
performance on different test domains.
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Maximum Likelihood Linear Regression - Basic
Idea

In MAP, the different HMM Gaussians are free to move in any
direction. In Maximum Likelihood Linear Regression the means
of the Gaussians are constrained to only move according to an
affine transformation (Ax + b).
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MLLR for Univariate GMMs

We can write the likelihood of a string of observations ON
1 =

O1, O2, . . . , ON from a Gaussian Mixture Model as:

L(ON
1 ) =

N∏
t=1

K∑
k=1

pk√
2πσk

e
−(Ot−µk)2

2σ2
k

It is usually more convenient to deal with the log likelihood

L(ON
1 ) =

N∑
t=1

ln

 K∑
k=1

pk√
2πσk

e
−(Ot−µk)2

2σ2
k


Let us now say we want to transform all the means of the
Gaussian by aµk + b. It is convenient to define w as above,
and to the augmented mean vector µk as the column vector
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corresponding to (µk, 1). In such a case we can write the overall
likelihood as

L(ON
1 ) =

N∑
t=1

ln

 K∑
k=1

pk√
2πσk

e
−

(Ot−µT
k w)2

2σ2
k


To maximize the likelihood of this expression we take the
derivative with respect to w and solve the resultant linear
equations. In actual speech recognition systems, the
observations are vectors, not scalars, so the transform to be
estimated is of the form

Aµ + b

where A is a matrix and b is a vector. The resultant MLLR
equations are somewhat more complex but follow the same basic
form. We refer you to the readings for the actual formulas.
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MLLR - Additional Considerations

Since the typical parameter vector being processed is 39
dimensional (13 cepstral parameters, and the associated deltas
and double-deltas) the number of matrix parameters to be
estimated is roughly 1600. As a rule of thumb, if one frame of data
gives you enough information to estimate one parameter, then we
need at least 16 seconds of speech to estimate a full 39x39 MLLR
matrix.
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MLLR - Multiple Transforms

A single MLLR transform for all of speech is very restrictive.
Multiple transforms can be created by grouping HMM states into
larger classes, for example, at the phone level. Sometimes these
classes can be arranged hierarchically, in the form of a tree. The
number of speech frames at each node in the tree is examined,
and if there are enough frames at a node, a separate transform is
estimated for all the phones at the node.
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MLLR - Performance
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MLLR and MAP - Performance

IBM ELEN E6884: Advanced Speech Recognition 20



Linear Discriminant Analysis

A way to achieve robustness is to extract features that
emphasize sound discriminability and ignore irrelevant sources of
information. LDA tries to achieve this via a linear transform of the
feature data.

If the main sources of class variation lie along the coordinate
axes there is no need to do anything even if assuming a diagonal
covariance matrix (as in most HMM models):
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Principle Component Analysis-Motivation

If the main sources of class variation lie along the main source
of variation we may want to rotate the coordinate axis (if using
diagonal covariances):
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Linear Discriminant Analysis - Motivation

If the main sources of class variation do NOT lie along the main
source of variation we need to find the best directions:
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Linear Discriminant Analysis - Derivation

Let us say we have vectors corresponding to c classes of data.
We can define a set of covariance matrices as

Si =
∑
x∈Di

(x−mi)(x−mi)T

where mi is the mean of class i. In this case we can define
the within-class covariance (essentially the average covariance
across the classes relative to the mean of each class) as just:

SW =
c∑

i=1

Si
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Another useful covariance matrix is the between class covariance
matrix, defined as

SB =
c∑

i=1

(mi −m)(mi −m)T
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We would like to determine a set of projection directions V
such that the classes c are maximally discriminable in the new
coordinate space given by

x̃ = Vx
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A reasonable measure of discriminability is the ratio of the
volumes represented by the covariance matrices. Since the
determinant of a matrix is a measure of the corresponding volume,
we can use the ratio of determinants as a measure:

J =
|SB|
|SW |

So we want to find a set of directions that maximize this
expression. In the new space, we can write the above expression
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as:

S̃B =
c∑

i=1

(m̃i − m̃)(m̃i − m̃)T

=
c∑

i=1

V(mi −m)(mi −m)TVT

= VSBVT

and similarly for SW so the discriminability measure becomes

J(V) =
|VSBVT |
|VSWVT

|

With a little bit of manipulation, it turns out that the solution are
the eigenvectors of the matrix

S−1
W SB
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which can be generated by most common mathematical
packages.
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Linear Discriminant Analysis in Speech
Recognition

■ Speech recognition training data are aligned against the
underlying words using the Viterbi alignment algorithm
described in Lecture 4.

■ Using this alignment, each cepstral vector is tagged with a
different phone or sub-phone. For English this typically results
in a set of 156 (52x3) classes.

■ For each time t the cepstral vector xt is spliced together with
N/2 vectors on the left and right to form a “supervector” of
N cepstral vectors. (N is typically 5-9 frames.) Call this
“supervector” yt.
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■ The LDA procedure is applied to the supervectors yt.
■ The top M directions (usually 40-60) are chosen and the

supervectors yt are projected into this lower dimensional space.
■ The recognition system is retrained on these lower dimensional

vectors.
■ Performance improvements of 10%-15% are typical.
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Main Problem with Maximum Likelihood
Estimation

The true distribution of speech is (probably) not generated by an
HMM, at least not of the type we are currently using. (How might
we demonstrate this?)

Therefore, the optimality of the ML estimate is not guaranteed and
the parameters estimated may not result in the lowest error rates.

A reasonable criterion is rather than maximizing the likelihood of
the data given the model, we try to maximize the a posteriori
probability of the model given the data (Why?):

θMAP = arg max
θ

pθ(S|O)

IBM ELEN E6884: Advanced Speech Recognition 32



MMI Estimation

Let’s look at the previous equation in more detail. It is more
convenient to look at the problem as maximizing the logarithm
of the a posteriori probability across all the sentences:

θMMI = arg max
θ

∑
i

log pθ(Si|Oi)

= arg max
θ

∑
i

log
pθ(Oi|Si)p(Si)

pθ(Oi)

= arg max
θ

∑
i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|Sj

i )p(Sj
i )

where Sj
i refers to the jth possible sentence hypothesis given a

set of acoustic observations Oi
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MMI Training Algorithm

A big breakthrough in the MMI area occured when it was shown
that a forward-backward-like algorithm existed for MMI training [2].
The derivation is complex but the resulting esitmation formulas are
surprisingly simple. We will just give the results for the estimation
of the means in a Gaussian HMM framework.

The MMI objective function is

∑
i

log
pθ(Oi|Si)p(Si)∑
j pθ(Oi|Sj

i )p(Sj
i )

We can view this as comprising two terms, the numerator, and the
denominator. We can increase the objective function in two ways:

■ Increase the contribution from the numerator term
■ Decrease the contribution from the denominator term
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Basic idea:

■ Collect estimation counts from both the numerator and
denominator terms

■ Increase the objective function by subtracting the denominator
counts from the numerator counts.

More specifically, let:

θnum
mk =

∑
i,t

Oi(t)γnum
mki (t)

θden
mk =

∑
i,t

Oi(t)γden
mki(t)

where γnum
mki (t) are the counts for state k, mixture component

m, computed from running the forward-backward algorithm on
the “correct” sentence Si and γden

mki(t) are the counts computed
across all the sentence hypotheses corresponding to Si The MMI
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estimate for µmk is:

µkm =
θnum

mk − θden
mk + Dmkµ

′
mk

γnum
mk − γden

mk + Dmk

The factor Dmk is chose large enough to avoid problems with
negative count differences. Notice that ignoring the denominator
counts results in the normal mean estimate. A similar expression
exists for variance estimation.
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Computing the Denominator Counts

The major component of the MMI calculation is the computation of
the denominator counts. Theoretically, we must compute counts
for every possible sentence hypotheis. How can we reduce the
amount of computation?

1. From the previous lectures, realize that the set of sentence
hypotheses are just captured by a large HMM for the entire
sentence:
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Counts can be collected on this HMM the same way counts are
collected on the HMM representing the sentence corresponding
to the correct path.

2. Use a ML decoder to generate a “reasonable” number of
sentence hypotheses and then use FST operations such as
determinization and minimization to compactify this into an HMM
graph (lattice).

3. Do not regenerate the lattice after every MMI iteration.
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Other Computational Issues

Because we ignore correlation, the likelihood of the data tends
to be dominated by a very small number of lattice paths (Why?).
To increase the number of confusable paths, the likelihoods are
scaled with an exponential constant:

∑
i

log
pθ(Oi|Si)κp(Si)κ∑
j pθ(Oi|Sj

i )κp(Sj
i )κ

For similar reasons, a weaker language model (unigram) is
used to generate the denominator lattice. This also simplifies
denominator lattice generation.
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Results

Note that results hold up on a variety of other tasks as well.
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ROVER - Recognizer Output Voting Error
Reduction[1]

ROVER is a technique for combining recognizers together to
improve recognition accuracy. The concept came from the
following set of observations about 7 years ago:

■ Compare errors of recognizers from two different sites
■ Error rate performance similar - 44.9% vs 45.1%
■ Out of 5919 total errors, 738 are errors for only recognizer A

and 755 for only recognizer B
■ Suggests that some sort of voting process across recognizers

might reduce the overall error rate
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ROVER - Basic Architecture

■ Systems may come from multiple sites
■ Can be a single site with different processing schemes
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ROVER - Text String Alignment Process
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ROVER - Example
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ROVER - Form Confusion Sets
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ROVER - Vote

■ Main Idea: for each confusion set, take word with highest
frequency

SYS1 SYS2 SYS3 SYS4 SYS5 ROVER
44.9 45.1 48.7 48.9 50.2 39.7

■ Improvement very impressive - as large as any significant
algorithm advance.
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ROVER - Example

■ Error not guaranteed to be reduced.
■ Sensitive to initial choice of base system used for alignment -

typically take the best system.
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ROVER - As a Function of Number of Systems [2]

■ Alphabetical: take systems in alphabetical order.
■ Curves ordered by error rate.
■ Note error actually goes up slightly with 9 systems
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ROVER - Types of Systems to Combine

■ ML and MMI
■ Varying amount of acoustic context in pronunciation models

(Triphone, Quinphone)
■ Different lexicons
■ Different signal processing schemes (MFCC, PLP)
■ Anything else you can think of!

Rover provides an excellent way to achieve cross-site collaboration
and synergy in a relatively painless fashion.
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Consensus Decoding[1] - Introduction

Problem

■ Standard SR evaluation procedure is word-based
■ Standard hypothesis scoring functions are sentence-based

Goal

■ Explicitly minimize word error metric:

Ŵ = arg min
W

EP (R|A)[WE (W,R)] = arg min
W

∑
R

P (R|A)WE (W,R)

■ For each candidate word, sum the word posteriors and pick the
word with the highest posterior probability.
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Consensus Decoding - Motivation

■ Original work was done off N-best lists
■ Lattices much more compact and have lower oracle error rates
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Obtaining the Consensus Hypothesis

Input:

SIL

SIL

SIL

SIL

SIL
SIL

VEAL

VERY

HAVE

HAVE

HAVE

MOVE

MOVE

HAVE

VERY

VERY

VERY

VERY

VERY

VEAL

I
I

I

FINE

OFTEN

OFTEN

FINE

IT

IT
FAST

Output:
(0.45)

(0.55)MOVE

HAVEI

-
VEAL 

VERY

FINE

OFTEN

FAST

(0.39)IT

(0.61)-
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Consensus Decoding on Broadcast News

Word Error Rate (%)
Avg F0 F1 F2 F3 F4 F5 FX

C- 16.5 8.3 18.6 27.9 26.2 10.7 22.4 23.7
C+ 16.0 8.5 18.1 26.1 25.8 10.5 18.8 22.5

Word Error Rate (%)
Avg F0 F1 F2 F3 F4 F5 FX

C- 14.0 8.6 15.8 19.4 15.3 16.0 5.7 44.8
C+ 13.6 8.5 15.7 18.6 14.6 15.3 5.7 41.1
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System Combination Using Confusion Networks

If we have multiple systems, we can combine the concept of
ROVER with confusion networks as follows:

■ Use the same process as ROVER to align confusion networks
■ Take the overall confusion network and add the posterior

probabilities for each word.
■ For each confusion set, pick the word with the highest summed

posteriors.
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System Combination Using Confusion Networks
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Results of Confusion-Network-Based System
Combination
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COURSE FEEDBACK

■ Was this lecture mostly clear or unclear? What was the
muddiest topic?

■ Other feedback (pace, content, atmosphere)?
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