
Lab 3: Language Modeling Fever

ELEN E6884/COMS 86884: Speech Recognition

Due: November 7, 2005 at 12:01am

0 Overview

The goal of this assignment is for you, the student, to implement basic algorithms forn-gram
language modeling. This lab will involve countingn-grams and doing basicn-gram smoothing.
For this lab, we will be working withSwitchboarddata. The Switchboard corpus is a collection
of recordings of telephone conversations; participants were told to have a discussion on one of
seventy topics (e.g., pollution, gun control).

The lab consists of the following parts, all of which are required:

• Part 1: Implement n-gram counting — Given some text, collect the counts of alln-grams
needed in building a trigram language model.

• Part 2: Implement “ +δ” smoothing — Write code to compute LM probabilities for a
trigram model smoothed with “+δ” smoothing.

• Part 3: Implement Witten-Bell smoothing — Write code to compute LM probabilities for
a trigram model smoothed with Witten-Bell smoothing.

• Part 4: Evaluate variousn-gram models on the task ofN -best list rescoring— See how
n-gram order and smoothing affects WER when doingN -best list rescoring for Switchboard.

All of the files needed for the lab can be found in the directory˜stanchen/e6884/lab3/ .
Before starting the lab, please read the filelab3.txt ; this includes all of the questions you
will have to answer while doing the lab. Questions about the lab can be posted on Courseworks
(https://courseworks.columbia.edu/); a discussion topic will be created for each lab.
Note: The hyperlinks in this document are enclosed in square brackets; you need an online version
of this document to find out where they point to.

1

https://courseworks.columbia.edu/

1 Part 1: Implement n-gram counting

1.1 The Big Picture

For this lab, we will be compiling the code you write into the program EVAL LML AB3. Here is an
outline of what this program does:

• training phase

– reset alln-gram counts to 0

– for each sentence in the training data

∗ updaten-gram counts (A)

• evaluation phase

– for each sentence to be evaluated

∗ for eachn-gram in the sentence
· call smoothing routine to evaluate probability ofn-gram given training counts

(B)

– compute overall perplexity of evaluation data fromn-gram probabilities

In the first part of the lab, you’ll be writing the code that does step (A). In the next two parts of the
lab, you’ll be writing step (B) for two different smoothing algorithms.

1.2 This Part

In this part, you will be writing code to collect all of then-gram counts needed in building a trigram
model given some text. For example, consider trying to compute the probability of the wordKING

following the wordsOF THE. The maximum likelihood estimate of this trigram probability is:

PMLE(KING | OF THE) =
count(OF THE KING)∑

w count(OF THE w)
=

count(OF THE KING)

counthist(OF THE)

Thus, to compute this probability we need to collect the count of the trigramOF THE KING in the
training data as well as the count of the bigram historyOF THE. (Thehistory is whatever words in
the past we are conditioning on.) When buildingsmoothedtrigram LM’s, we also need to compute
bigram and unigram probabilities and thus also need to collect the relevant counts for these lower-
order distributions.

Before we continue, let us clarify some terminology. Consider the maximum likelihood estimate
for the bigram probability of the wordTHE following OF:

PMLE(THE | OF) =
count(OF THE)∑

w count(OF w)
=

count(OF THE)

counthist(OF)

2

Notice the termcount(OF THE) in this equation and the termcounthist(OF THE) in the last equation.
We refer to the former count as a regular bigram count and the latter count as a bigramhistory
count. While these two counts will be the same for most pairs of words, they won’t be the same
for all pairs and so we distinguish between the two. Specifically, the history count is used for
normalization, and so is defined as

counthist(OF THE) ≡
∑
w

count(OF THE w)

A related point that is worth mentioning is that it is useful to have the concept of a0-gramhistory.
Just as we use unigram history counts in computing bigram probabilities, we use 0-gram history
counts in computing unigram probabilities. We use the notation counthist(ε) to denote the 0-gram
history count, and it is defined similarly as above,i.e.,

counthist(ε) ≡
∑
w

count(w)

In practice, instead of working directly with strings when collecting counts, all words are first
converted to a unique integer index;e.g., the wordsOF, THE, andKING might be encoded as the
integers 1, 2, and 3, respectively. In this lab, the words in the training data have been converted to
integers for you. To see the mapping from words to integers, check out the filevocab.map in the
directory˜stanchen/e6884/lab3/ . As mentioned in lecture, in practice it is much easier to
fix the set of words that the LM assigns (nonzero) probabilities to beforehand (rather than allowing
any possible word spelling); this set of words is called thevocabulary. When encountering a
word outside the vocabulary, one typically maps this word to a distinguished word, theunknown
token, which we call<UNK> in this lab. The unknown token is treated like any other word in the
vocabulary, and the probability assigned to predicting the unknown token (in some context) can
be interpreted as the sum of the probabilities of predicting any word not in the vocabulary (in that
context).

To prepare for the exercise, create the relevant subdirectory and copy over the needed files:

mkdir -p ˜/e6884/lab3/
cd ˜/e6884/lab3/
cp ˜stanchen/e6884/lab3/Lab3_LM.C .
cp ˜stanchen/e6884/lab3/.mk_chain .

Your job in this part is to fill in the sections between the markersBEGIN LABandENDLAB in the
functioncount sentence() in the fileLab3 LM.C. Read this file to see what input and output
structures need to be accessed. This routine corresponds to step (A) in the pseudocode listed in
Section 1.1. In this function, you will be passed a sentence (expressed as an array of integer word
indices) and will need to update all relevant regularn-gram counts (trigram, bigram, and unigram)
and all relevant historyn-gram counts (bigram, unigram, and 0-gram). All of these counts will be
initialized to zero for you.

3

In addition, for Witten-Bell smoothing (to be implemented in Part 3), you will also need to compute
how many unique words follow each bigram/unigram/0-gram history. We refer to this as a “1+”
count, since this is the number of words with one or more counts following a history.

It is a little tricky to figure out exactly whichn-grams to count in a sentence, namely at the sentence
begins and ends. For more details, refer to slide 39 (entitled “Technical Details: Sentence Begin
and Ends”) in the week 5 language modeling slides. The trigram counts to update correspond one-
to-one to the trigram probabilities used in computing the trigram probability of a sentence. Bigram
history counts can be defined in terms of trigram counts using the equation described earlier. How
to do counting for lower-order models is defined analogously.

1.3 Compiling and testing

Your code will be compiled into the program EVAL LML AB3, which constructs ann-gram lan-
guage model from training data and then uses this LM to evaluate the probability and perplexity of
some test data. To compile this program with your code, type

smk EvalLMLab3

in the directory containing your source files (which must also contain the file.mk chain).

To run this program (training on 100 Switchboard sentences and evaluating on 10 other sentences),
run

lab3p1a.sh

(This script can be found iñstanchen/pub/exec/ , which should be on your path from Lab
0.) This shell script starts the executable EVAL LML AB3 located in the current directory with the
appropriate flags. To start up EVAL LML AB3 in the debugger, add the flag-debug to the above
line. The “correct” output can be found in the filep1a.out in ˜stanchen/e6884/lab3/ ;
your output should match the correct output exactly. For each trigram being evaluated in the eval-
uation set, the program is set up to output all of the relevant training counts for that trigram. (The
count following the labelhist types is the “1+” count.) The final cross-entropy/perplexity
output will be bogus, since the code for computing LM probabilities won’t be filled in until later
in the lab. To see the training text used by this script, check out the fileminitrain.txt in the
directory˜stanchen/e6884/lab3/ .

The instructions inlab3.txt will ask you to run the scriptlab3p1b.sh , which does the same
thing aslab3p1a.sh except on a different 10-sentence test set.

4

2 Part 2: Implement “ +δ” smoothing

In this part, you will write code to compute LM probabilities for a trigram model smoothed with
“+δ” smoothing. This is just like “add-one” smoothing in the readings, except instead of adding
one count to each trigram, we will addδ counts to each trigram for some smallδ (e.g., δ = 0.0001
in this lab). This is just about the simplest smoothing algorithm around, and this can actually work
acceptably in some situations (though not in large-vocabulary ASR). To estimate the probability of
a trigramP+δ(wi|wi−2wi−1) with this smoothing, we take

P+δ(wi|wi−2wi−1) =
c(wi−2wi−1wi) + δ

ch(wi−2wi−1) + δ × |V |

where|V | is the size of the vocabulary. (Note: in the above equation and the rest of the document,
we abbreviate count(·) asc(·) and counthist(·) asch(·).)
Your job in this part is to fill in the functionget prob plus delta() . This function should
return the valueP+δ(wi|wi−2wi−1) given a trigramwi−2wi−1wi. You will be provided with the
count of the trigram as well as the count of the bigram history (which you computed for Part 1),
in addition to the vocabulary size. This routine corresponds to step (B) in the pseudocode listed in
Section 1.1.

Your code will again be compiled into the program EVAL LML AB3. To compile this program with
your code, type

smk EvalLMLab3

To run this program on the same Switchboard training and test set used in Part 1, run

lab3p2a.sh

The “correct” output can be found in the filep2a.out in ˜stanchen/e6884/lab3/ . Again,
you should be able to match this output just about exactly. In this script, the program is set up to
print the smoothed probability you compute as well as the trigram and bigram history count for
each trigram in the evaluation data.

The instructions inlab3.txt will ask you to run the scriptlab3p2b.sh , which does the same
thing aslab3p2a.sh except on a different test set.

3 Part 3: Implement Witten-Bell smoothing

Witten-Bell smoothing is this smoothing algorithm that was invented by some dude named Moffat,
but dudes named Witten and Bell have generally gotten credit for it. It is significant in the field of
text compression and is relatively easy to implement, and that’s good enough for us.

5

Here’s a rough motivation for this smoothing algorithm: One of the central problems in smoothing
is how to estimate the probability ofn-grams with zero count. For example, let’s say we’re building
a bigram model and the bigramwi−1wi has zero count, soPMLE(wi|wi−1) = 0. According to the
Good-Turing estimate, the total mass of counts belonging to things with zero count in a distribution
is the number of things with exactly one count. In other words, the probability mass assigned to
the backoff distribution should be aroundN1(wi−1)

ch(wi−1)
, whereN1(wi−1) is the number of wordsw′

following wi−1 exactly once in the training data (i.e., the number of bigramswi−1w
′ with exactly

one count). This suggests the following smoothing algorithm

PWB(wi|wi−1)
?
= λPMLE(wi|wi−1) +

N1(wi−1)

ch(wi−1)
Pbackoff(wi)

whereλ is set to some value so that this probability distribution sums to 1, andPbackoff(wi) is some
unigram distribution that we can backoff to.

However,N1(wi−1) is kind of a finicky value;e.g., it can be zero even for distributions with lots
of counts. Thus, we replace it withN1+(wi−1), the number of words followingwi−1 at least once
(rather than exactly once), and we fiddle with some of the other terms. Long story short, we get

PWB(wi|wi−1) =
ch(wi−1)

ch(wi−1) + N1+(wi−1)
PMLE(wi|wi−1) +

N1+(wi−1)

ch(wi−1) + N1+(wi−1)
Pbackoff(wi)

For the backoff distribution, we can use an analogous equation:

Pbackoff(wi) = PWB(wi) =
ch(ε)

ch(ε) + N1+(ε)
PMLE(wi) +

N1+(ε)

ch(ε) + N1+(ε)

1

|V |

The termch(ε) is the 0-gram history count defined earlier, andN1+(ε) is the number of different
words with at least one count. For the backoff distribution for the unigram model, we use the
uniform distributionPunif(wi) = 1

|V | . Trigram models are defined analogously.

If a particular distribution has no history counts, then just use the backoff distribution directly. For
example, if when computingPWB(wi|wi−1) you find that the history countch(wi−1) is zero, then
just takePWB(wi|wi−1) = PWB(wi). Intuitively, if a historyh has no counts, the MLE distribution
PMLE(w|h) is not meaningful and should be ignored.

Your job in this part is to fill in the functionget prob witten bell() . This function should
return the valuePWB(wi|wi−2wi−1) given a trigramwi−2wi−1wi. You will be provided with all of
the relevant counts (which you computed for Part 1). Again, this routine corresponds to step (B)
in the pseudocode listed in Section 1.1.

Your code will again be compiled into the program EVAL LML AB3. To compile this program with
your code, type

smk EvalLMLab3

To run this program with the same training and test set as before, run

6

lab3p3a.sh

The “correct” output can be found in the filep3a.out in ˜stanchen/e6884/lab3/ . Again,
you should be able to match the values in this output just about exactly. This script is set up to
print the smoothed probability you compute for each trigram in the test set. The filep3a.out
also contains the results of some intermediate computations that may help you with debugging, but
which you do not need to replicate.

The instructions inlab3.txt will ask you to run the scriptlab3p3b.sh , which does the same
thing aslab3p3a.sh except on a different test set.

4 Part 4: Evaluate various n-gram models on the task ofN -
best list rescoring

In this section, we use the code you wrote in the earlier parts of this lab to build various language
models on the full original Switchboard training set (about 3 million words). We will investigate
hown-gram order (i.e., the value ofn) and smoothing affect WER’s using the paradigm ofN-best
list rescoring.

In ASR, it is sometimes convenient to do recognition in a two-pass process. In the first pass, we
may use a relatively small LM (to simplify the decoding process) and for each utterance output
the N best-scoring hypotheses, whereN is typically around 100 or larger. Then, we can use a
more complex LM to replace the LM scores for these hypotheses (retaining the acoustic scores)
to compute a new best-scoring hypothesis for each utterance. To see an exampleN -best list, see
the file ˜stanchen/e6884/lab3/nbest.txt . The correct transcript for this utterance is
DARN; each line contains a hypothesis word sequence and an acoustic logprob at the end (i.e.,
log P (x|ω)).

To give a little more detail, recall the fundamental equation of speech recognition

class(x) ≈ arg max
ω

P (ω)αP (x|ω) = arg max
ω

[α log P (ω) + log P (x|ω)]

wherex is the acoustic feature vector,ω is a word sequence, andα is the language model weight.
In N -best list rescoring, for each hypothesesω in anN -best list, we computelog P (ω) for our new
language model and combine it with the acoustic model scorelog P (x|ω) computed earlier. Then,
we compute the above argmax over the hypotheses in theN -best list to produce a new best-scoring
hypothesis.

For this part of the lab, we have created 100-best lists for each of 100 utterances of a Switchboard
test set, and we will calculate the WER over these utterances when rescoring using various lan-
guage models. Because the LM used in creating the 100-best lists prevents really bad hypotheses
(from an LM perspective) from making it onto the lists, WER differences between good and bad
LM’s will be muted when doingN -best list rescoring as compared to when using the LM’s directly

7

in one-pass decoding. However,N -best list rescoring is very easy and cheap to do so we use it
here.

First, let us see how WER compares between unigram, bigram, and trigram models. Run the
following scripts:

lab3p4.1.sh
lab3p4.2.sh
lab3p4.3.sh

These scripts call EVAL LML AB3 to build unigram, bigram, and trigram models, respectively, on
the full Switchboard corpus and then doN -best list rescoring on the test set. In particular, these
scripts create a data set consisting of all of the hypotheses in theN -best lists for each utterance.
Then, EVAL LML AB3 is run using this data set as its evaluation set, which produces the total
LM probability for each hypothesis. We combine these LM scores with the acoustic model scores
already in theN -best lists to compute a new highest-scoring hypothesis for each utterance, and then
compute the WER of these hypotheses. (To get your code to return bigram or unigram probabilities,
we just zero out the counts for all trigrams or bigrams+trigrams, respectively.)

Now, let us see how smoothing affects WER. Run the following scripts:

lab3p4.mle.sh
lab3p4.delta.sh
lab3p4.wb.sh

These doN -best list rescoring with trigram models with different smoothing. For the MLE trigram
model, we assign a small nonzero floor probability to trigram probabilities that have an MLE of
zero. (This will make some conditional distributions sum to slightly more than 1, but we don’t care
in N -best list rescoring.)

Finally, let us see how training data size affects WER (with Witten-Bell trigram models). Instead
of using the full Switchboard corpus as the LM training set, we use subsets of different sizes. Run
the following scripts:

lab3p4.2000.sh
lab3p4.20000.sh
lab3p4.200000.sh

The number in the script name is the number of sentences in the training set; there are about 13
words per sentence on average.

8

5 What is to be handed in

Make a copy of the ASCII filelab3.txt from the directorỹstanchen/e6884/lab3/ . Fill
in all of the fields in this file and E-mail the contents of the file tostanchen@watson.ibm.com .
(Please paste this file into the main body of the E-mail;i.e., don’t include this file as an attachment.)

Incidentally, if you find that your forehead is becoming warm as you do this assignment, do not be
alarmed: you probably havelanguage modeling fever. It should recede by itself within a day, but
if it does not, go see a doctor and tell them that you have language modeling fever; they’ll know
what to do.

9

	Overview
	Part 1: Implement n-gram counting
	The Big Picture
	This Part
	Compiling and testing

	Part 2: Implement ``+'' smoothing
	Part 3: Implement Witten-Bell smoothing
	Part 4: Evaluate various n-gram models on the task of N-best list rescoring
	What is to be handed in

