
Lab 2: HMM’s and You

ELEN E6884/COMS 86884: Speech Recognition

Due: October 17, 2005 at 12:01am

1 Overview

Hidden Markov Models are a fundamental technology underlying almost all of today’s speech
recognition systems. They are simple and elegant, and yet stunningly powerful. Indeed, they are
often pointed to as evidence ofintelligent designas it is deemed inconceivable that they evolved
spontaneously from simpler probabilistic models such as multinomial or Poisson distributions.

The goal of this assignment is for you, the student, to implement the basic algorithms in an
HMM/GMM-based speech recognition system, including algorithms for both training and decod-
ing. For simplicity, we will use individual Gaussians to model the output distributions of HMM
arcs rather than mixtures of Gaussians, and the HMM’s we use will not contain “skip” arcs (i.e.,
all arcs have output distributions). For this lab, we will be working with isolated digit utterances
(as in Lab 1) as well as continuous digit strings.

The lab consists of the following parts, all of which are required:

• Part 1: Implement the Viterbi algorithm and Gaussian likelihood evaluation — Given a
trained model, write algorithms for finding the most likely word sequence given an utterance.

• Part 2: Implement most of the Forward-Backward algorithm — Write the forward and
backward algorithms needed for training HMM’s, and test them by training the transition
probabilities of an HMM.

• Part 3: Implement Gaussian training within the Forward-Backward algorithm — Add
the updating of observation probabilities to Part 2.

• Part 4: Train a model from scratch, and evaluate it on various digit test sets

All of the files needed for the lab can be found in the directory˜stanchen/e6884/lab2/ .
Before starting the lab, please read the filelab2.txt ; this includes all of the questions you
will have to answer while doing the lab. Questions about the lab can be posted on Courseworks
(https://courseworks.columbia.edu/ ); a discussion topic will be created for each lab.

1

https://courseworks.columbia.edu/


Note: The hyperlinks in this document are enclosed in square brackets; you need an online version
of this document to find out where they point to.

Please make liberal use of the Courseworks discussion group for this lab, as judging from last year,
it’s a toughie.

2 Part 1: Implement the Viterbi algorithm and Gaussian like-
lihood evaluation

In this part, you will be implementing the interesting parts of a simple HMMdecoder, i.e., the
program that computes the most likely word sequence given an utterance. We have pre-trained the
transition and observation probabilities of an HMM on data consisting of isolated digits, and this
is the model you will be decoding with.

2.1 Background

As discussed in the slides for Lecture 5 (10/6), we can use an HMM to model each word in a
vocabulary. For the lab, we use the same HMM topology and parameterization as in the slides.
That is, for each word, we compute how many phonemes its canonical pronunciation has, and use
three times that many states plus a final state. We line up the states linearly, and each (non-final)
state has an arc to itself and to the next state. We place output distributions on arcs (as in the slides)
rather than states (as in the readings), and each output distribution is modeled using a GMM. For
each state, the GMM on each of its outgoing arcs is taken to be the same GMM.

For example, consider the wordTWOwhose canonical pronunciation can be written as the two
phonemesT UW. Its HMM contains2 × 3 = 6 states plus a final state. Intuitively, the GMM
attached to the outgoing arcs of the first state can be thought of as modeling the feature vectors
associated with the first third of the phonemeT, the second state’s GMM models the second third
of a T, etc. The topology of the HMM can be thought of as accommodating one or more feature
vectors representing the first third of aT, followed by one or more feature vectors representing the
second third of aT, etc.

Now, we can use word HMM’s to perform isolated word recognition in the same way that recog-
nition is performed with DTW. Instead of a training example (ortemplate) for each word, we have
a word HMM. Instead of computing an ad hoc distance between each word and the test example,
we compute the probability that each word HMM assigns the test example, and select the word
that assigns the highest probability. We can compute the total probability an HMM assigns to a
sequence of feature vectors efficiently using dynamic programming.

However, this approach doesn’t scale well, and we can do better using an alternate approach.
Instead of scoring each word HMM separately, we can build one big HMM consisting of each
word HMM glued together in parallel, and keep track of which word each part of the big HMM

2



belongs to. Then, we can use the Viterbi algorithm on this big HMM, and do backtracing to recover
the highest scoring path. By seeing which word HMM the best path belongs to, we know what
the best word is. In theory, doing dynamic programming on this big HMM takes about the same
amount of time as the corresponding computation on all of the individual word HMM’s, but this
approach lends itself better to pruning, which can vastly accelerate computation. Furthermore, this
approach can easily be extended beyond isolated word recognition.

For example, consider the case of wanting to recognize continuous digit strings rather than single
digits. We can do this by taking the big HMM we would use for single digits, and simply adding
an arc from the final state back to the start state. The HMM can now accept digit strings consisting
of multiple digits, and we can use the Viterbi algorithm to find the best word sequence in the same
way as we did for isolated digits. In this case, the best path may loop through the machine several
times, producing several words of output. We use the “one big HMM” framework in this lab.

2.2 The Decoder

For this part of the lab, we supply much of a decoder for you, and you have to fill in a couple parts.
Here’s an outline of what the decoder does:

• Load in the big HMM graph to use for decoding.

• For each acoustic signal to decode:

– Use the front end from Lab 1 to produce feature vectors.

– Perform Viterbi on the big HMM with the feature vectors (*).

– Recover the best word sequence via backtracing.

You have to implement the part with the (*); we do everything else. Now, as part of the Viterbi
algorithm, you need to compute a total probability for each arc at each frame, consisting of the
static arc probability multiplied by the probability of the associated GMM generating the fea-
ture vector at that frame. We have thoughtfully provided a function that computes this for you:
get arc log prob() . However, this function calls the functionLprObservR() that eval-
uates the likelihood that a Gaussian assigns to a feature vector, which you must also fill in. We
take care of handling the static arc probabilities and shunting around the acoustic feature vectors
to where they need to go, so you don’t need to deal with this.

2.3 The Big HMM Graph

We store the big HMM in a structure of typeGraphType . We assume states are numbered starting
from 1. To find out the number of states in a graphgraph , you can callgraph.get state count() .
We assume that HMM’s have a single “start” state, which can be found by callinggraph.get start() .

3



To find the outgoing arcs for a state, you can callgraph.get out arcs() . (There is no easy
way to find the incoming arcs for a state, but you don’t need to do this for the lab.) Finally, you
can callgraph.get arc log prob() to find the total (log) probability for an arc at a frame,
i.e., the product of the static arc probability (usually denotedaij) and the observation probability
(usually denotedbij(t) or some such). See the documentation inLab2 DP.C for more details.

Arcs in the HMM are of typeArcType . To find the destination state of an arcarc , callarc.get dest state() .
Under the covers, each arc also has a transition probability index that lets us look up the static arc
probability, an index specifying which GMM is attached to it, and possibly a word label. We attach
a word label to the final arc in each word HMM, so that when we do backtracing, we can figure
out which word HMM’s we pass through. However, you don’t need to directly access any of these
other fields for the lab.

Aside: in addition to having a start state (the state that all legal paths much start in), an HMM can
also have final states, states that legal paths must end in. In our implementation, a graph can have
multiple final states, and each final state can have a “final probability” that is multiplied in when
computing the probability of a path ending there. However, you don’t have to worry about this,
because we supply all of the code dealing with final states.

2.4 The Dynamic Programming Chart

When doing dynamic programming as in any of the three main HMM tasks (likelihood computa-
tion, Viterbi, Forward-Backward), you need to fill in a matrix of values,e.g., forward probabilities
or backtrace pointers or the such. This matrix of values is sometimes referred to as adynamic
programming chart, and the tuple of values you need to compute at each location in the chart is
sometimes called acell of the chart. Appropriately, we define a structure namedChartCell that
can store the values you might possibly need in a cell, and allocate a matrix of cells for you in a
variable nameddpChart for you to fill in for the Viterbi computation.

For Viterbi, you should fill in the memberforwLogProbM (this is a slight misnomer, since a
forward probability is different than a Viterbi probability) and the backtrace pointerbackPtrM
for each cell in the chart.

One thing to note is that instead of storing probabilities or likelihoods directly, we will be stor-
ing log probabilities (basee). This is because if we store probabilities directly, we may cause
numerical underflow. For more information, read Section 9.12 (p. 153) in Holmes!!!We’re not
kidding: if you don’t understand the concepts in section 9.12 before starting, you’re going to
be in a world of pain!! (This can be found on the web site.) For example, we would initialize
forwLogProbM for the start state at frame 0 to the logprob value 0, sinceln 1 = 0. If we want
to set a value to correspond to the probability 0, we would set it to the logprob−∞, or to the
constantzeroLogProbS that we have provided which is pretty close. Hint: you may be tempted
to convert log probabilities into regular probabilities to make things clearer in your mind, but resist
the temptation! The reason we use log probabilities is because converting to a regular probability
may result in an underflow.

4



2.5 What You’re Supposed to Do

To prepare for the exercise, create the relevant subdirectory and copy over the needed files:

mkdir -p ˜/e6884/lab2/
cd ˜/e6884/lab2/
cp ˜stanchen/e6884/lab2/Lab2_AM.C .
cp ˜stanchen/e6884/lab2/Lab2_DP.C .
cp ˜stanchen/e6884/lab2/.mk_chain .

Your job in this part is to fill in the sections between the markersBEGIN LABandENDLAB in two
different functions: the functionViterbiLab2G in Lab2 DP.C implementing the Viterbi algo-
rithm, and the functionLprObservR in Lab2 AM.C implementing Gaussian likelihood evalu-
ation. Read each of these files to see what input and output structures need to be accessed. In
this lab, output distributions will be modeled with single Gaussians, not mixtures of Gaussians. In
addition, we use diagonal-covariance Gaussians, so we need not store a full covariance matrix for
each Gaussian, but only the covariances along the diagonal. Hint: remember that variances areσ2,
notσ!

2.6 Compiling and testing

Your code will be compiled into the program DCDLAB2. To compile this program with your code,
type

smk DcdLab2

in the directory containing your source files (which must also contain the file.mk chain ).

To run this decoder on some utterances representing isolated digits, run

lab2p1a.sh

(This script can be found iñstanchen/pub/exec/ , which should be on your path from Lab
0.) This shell script starts the executable DCDLAB2 located in the current directory with the
appropriate flags. To start up DCDLAB2 in the debugger, add the flag-debug to the above line.

This script takes some HMM’s and GMM’s that we have trained for you, and runs the decoder
using your Viterbi implementation and Gaussian evaluator on ten utterances, each containing a
single digit. The big HMM, ordecoding graph, used in this run consists of an (optional) silence
HMM followed by each digit HMM in parallel followed by another (optional) silence HMM.

The “correct” output of this script can be found in the filep1a.out in ˜stanchen/e6884/lab2/ .
It’s OK if your output doesn’t match exactly, but it should be very, very close. In particular, look

5



to see if the logprob for each utterance matches (i.e., the basic Viterbi algorithm and Gaussian eval
are correct) and the output word sequence matches (i.e., the back pointers are correct).

To help with debugging, we have provided the filelab2p1a.debug which contains portions of
the DP chart for the first utterance when runninglab2p1a.sh . You should try to match these
forwLogProbM values. Another hint: for frame 0 in the first utterance, the Gaussian associated
with the outgoing arcs of state 1 should return a log prob of 20.273.

The instructions inlab2.txt will ask you to run the scriptlab2p1b.sh , which does the same
thing aslab2p1a.sh except on a different test set.

3 Part 2: Implement most of the Forward-Backward algorithm

3.1 The Plan

For this part and the next part of the lab, we’ll be making you implement the Forward-Backward
algorithm for HMM/GMM training, but we’ll have you do it in stages, to hopefully make it easier.

That is, in order to do meaningful decoding as in Part 1, we need to have trained HMM and GMM
parameters. In particular, we need to select the following parameters: HMM arc probabilities, and
Gaussian means and variances. To be specific, our decoding vocabulary consists of twelve words
(ONEto NINE, ZERO, OH, and silence) consisting of a total of 34 phonemes. We use 3 HMM states
for each phoneme (not including final states), giving us 102 states total. Each of these states has
two outgoing arcs that we need to assign probabilities to, and a Gaussian that we need to estimate.

To see the transition probabilities and Gaussian parameters used in Part 1, look at the filesp1.tprobs
andp1.oprobs in ˜stanchen/e6884/lab2/ . The file p1.tprobs holds the outgoing
transition probabilities for each of the 102 states, the self-loop probability followed by the exit
probability. The mapping from words to state indices is arbitrary,e.g., the wordEIGHT is as-
signed states 0 through 5, and the silence word is assigned states 99 to 101. (See p. 156 of the
Holmes to see how to interpret transition probabilities.) In the filep1.oprobs , look for the
<gaussians > line. After that line, alternating means and variances are listed for the Gaussian
associated with each state’s outgoing arcs.

Now, we can use the Forward-Backward algorithm to estimate these parameters. For example,
we can initialize all parameters arbitrarily (e.g., 0.5 transition probabilities, 0 means, 1 variances).
Then, we can iterate over our training data, reestimating our parameters after each iteration such
that the likelihood our model assigns to the training data is guaranteed to increase (or at least not
decrease) over the last iteration.

What we do in each iteration is the following:

• Initialize all counts to 0.

• Loop through each utterance in the training data:

6



– Use a front end to produce feature vectors.

– Create an HMM by splicing together the word HMM’s for each word in the reference
transcript for the utterance.

– Run Forward-Backward on this HMM and the acoustic feature vectors to update the
counts.

• Use the counts to reestimate our parameters.

To get more details on exactly what counts to take or why this algorithm does something reason-
able, you’ll have to do the readings for once in your life.

Now, the Forward-Backward algorithm can be decomposed into two parts: computing the posterior
probabilities of each arca at each framet, usually denoted something likeγ(a, t); and using
theseγ(a, t) values to update the counts you need to update. In Part 2 of the lab, we’ll have
you do theγ(a, t) computation, and we’ll supply the code that uses theγ(a, t) values to update
transition counts and probabilities. (Updating transition probabilities is quite simple; just sum and
normalize.) In Part 3 of the lab, we’ll have you write the code for updating Gaussian counts, and
the code to use these counts to update Gaussian means and variances.

3.2 What You’re Supposed to Do

In this part, you will be implementing the forward and backward passes of the Forward-Backward
algorithm to calculate the posterior probability of each transition at each frame, but not the statistics
collection and reestimation parts of the FB algorithm. Your job in this part is to fill in the function
ForwardBackwardLab2G in Lab2 DP.C.

For this lab, you will only need to calculate the posterior counts ofarcsand notstates, since both
transition probabilities and observations are located on arcs in this lab. Again, this convention
agrees with the slides from Lecture 4, but not the readings, so be careful. More precisely, you need
to calculate the valuesct(trij|X) (which are another name for theγ(a, t) values) (see slide 58,
say, of lecture 4); the argumentsfrm andposteriorCount passed tograph.add count()
should be the valuest andct(trij|X), respectively.Note: the functiongraph.add count()
expects aregularprobability, not alog probability!

More specifically, you need to write code that fills in the forward (log) probabilityforwLogProbM
for each cell in the dynamic programming chart. Then, we provide code to compute the to-
tal (log) probability of the utterance, and code that initializes the backward (log) probability
backLogProbM for each state for the last frame in the chart. Then, you need to fill in code
that does the rest of the backward algorithm, and that computes the posterior counts. You must
call the routinegraph.add count() with these posterior counts, which forwards these counts
to do transition count updating. Hint: read section 9.12.2 (p. 154) of the Holmes in the assigned
readings. (Pedantic note: posterior counts below 0.001 are not forwarded for efficiency’s sake.)

Your code will be compiled into the training program TRAINLAB2. To compile this program with
your code, type

7



smk TrainLab2

To run this trainer on some utterances representing isolated digits, run

lab2p2a.sh

This script just collect counts for training HMM transition probabilities over ten single digit utter-
ances and outputs them to the filep2a.counts . That is, for each arc trij, p2a.counts will
contain the sum ofct(trij|X) over each framet of each utteranceX in the training data. The “cor-
rect” output can be found in the filep2a.counts in ˜stanchen/e6884/lab2/ . Again, it’s
OK if your output doesn’t match exactly, but it should be very, very close. Notice that some of the
counts are zero, because not all words in the vocabulary occur in this small training set.

To help with debugging, we have provided the filelab2p2a.debug which contains portions of
the DP chart for the first utterance when runninglab2p2a.sh .

Once you think you have this part working, run the script

lab2p2b.sh

This script reestimates transition probabilities on the data (while keeping observation probabilities
unchanged), performing twenty iterations of the forward-backward algorithm and outputting the
average logprob/frame (as computed in the forward algorithm) at each iteration. The training set
is the same ten single digit utterances as before. If your implementation of the FB algorithm is
correct, this logprob should always be (weakly) increasing and should look like it’s converging.
This script will output trained transition probabilities to the filep2b.tprobs .

Finally, decode some (isolated digit) test data with these trained transition probabilities (and the
originaluntrainedobservation probabilities) by running the script

lab2p2c.sh

4 Part 3: Implement Gaussian training within the Forward-
Backward algorithm

In this part of the lab, you will implement the statistics collection needed for reestimating a Gaus-
sian distribution as well as the actual reestimation algorithm. This will involve filling in the func-
tionsUpdateCountsRefR andReestimateS in Lab2 AM.C.

More specifically, at the beginning of each iteration through the training data, all of the Gaussian
counts will be initialized to zero. Then, for each utterance, all of your calls tograph.add count()
during FB will now pass these posterior counts toUpdateCountsRefR to let you update Gaus-
sian statistics. At the end of each iteration through the training data, the routineReestimateS

8



will be called for each Gaussian to let you reestimate these parameters from the counts you col-
lected. As far as where to find the update equations, you can look at equations (9.50) and (9.51)
on p. 152 of Holmes or equations (8.55) and (8.56) on p. 396 of HAH. Hint: remember to use the
newmean when reestimating the variance. Hint: remember that we are using diagonal-covariance
Gaussians, so you only need to reestimate covariances along the diagonal of the covariance matrix.

Your code will be compiled into the training program TRAINLAB2. To compile this program with
your code, type

smk TrainLab2

To run this trainer on some utterances representing isolated digits, run

lab2p3a.sh

This script just collects counts for training HMM observation probabilities from the same mini-
training set as before, reestimates Gaussian parameters, and outputs them to the filep3a.oprobs .
The “correct” output can be found in the filep3a.oprobs in ˜stanchen/e6884/lab2/ ;
only look at the counts after the line “<gaussians >”. Again, it’s OK if your output doesn’t
match exactly, but it should be quite close.

Once you think you have this part working, run the script

lab2p3b.sh

This script reestimates observation probabilities on the training set (while leaving transition prob-
abilities unchanged), performing twenty iterations of the forward-backward algorithm and out-
putting the average logprob/frame (as computed in the forward algorithm) at each iteration. If your
implementation of Gaussian reestimation is correct, this logprob should always be increasing and
should look like it’s converging. This script will output trained Gaussian parameters to the file
p3b.oprobs . (Debugging hint: things should still converge if you update only means and not
variances; by commenting out your variance update, you can see if your mean update looks like
it’s working.)

Decode the same test data as in the last part with this trained observation model (anduntrained
transition model) by running the script

lab2p3c.sh

By comparing the word-error rate found here with that found in the corresponding run in the last
part, we can see the relative importance of transition and observation probabilities. (BTW, these
error rates will be very poor since the training set is very small; there are some digits that it does
not contain an instance of.)

For further evidence, run the script:

9



lab2p3d.sh

This script starts with the observation model inp3b.oprobs and trains both the observation and
transition probabilities on the given training set for five iterations, creating the filesp3d.oprobs
andp3d.tprobs . It then decodes the same test set as before with these new models.

5 Part 4: Train a model from scratch, and evaluate it on vari-
ous digit test sets

In this section, we run our trainer/decoder on some larger data sets and look at continuous digit
data (consisting of multiple connected digits per utterance) in addition to isolated digits.

First, let us see how our HMM/GMM system compares to the DTW system we developed in Lab
1 on isolated digits. We created a test set consisting of 11 isolated digits from each of 56 test
speakers, and ran DTW using a single template for each digit from a pool of 56 training speakers
(using a different training speaker for each test speaker). This yielded an error rate of 18.8%.

Run the following script:

lab2p4a.sh

This first trains a model on 100 isolated digit utterances (with five iterations of FB), and then
decodes the same test set as above; then, trains a model on 300 utterances and decodes; then, trains
a model on 1000 utterances and decodes. See how the word-error rate varies according to training
set size. The trained models are saved in various files beginning with the prefixlab2p4a .

Next, run the following script:

lab2p4b.sh

This takes the 300-utterance model output bylab2p4a.sh and decodes connected digit string
data (rather than isolated digits) with this model. It also trains a model on 300 connected digit
sequences and decodes the same test set.

6 What is to be handed in

Make a copy of the ASCII filelab2.txt from the directorỹstanchen/e6884/lab2/ . Fill
in all of the fields in this file and E-mail the contents of the file tostanchen@watson.ibm.com .
(Please paste this file into the main body of the E-mail;i.e., don’t include this file as an attachment.)

10


	Overview
	Part 1: Implement the Viterbi algorithm and Gaussian likelihood evaluation
	Background
	The Decoder
	The Big HMM Graph
	The Dynamic Programming Chart
	What You're Supposed to Do
	Compiling and testing

	Part 2: Implement most of the Forward-Backward algorithm
	The Plan
	What You're Supposed to Do

	Part 3: Implement Gaussian training within the Forward-Backward algorithm
	Part 4: Train a model from scratch, and evaluate it on various digit test sets
	What is to be handed in

