
Lab 1: My First Front End

ELEN E6884/COMS 86884: Speech Recognition

Due: September 30, 2005 at 6pm

1 Overview

The goal of this assignment is for you, the student, to write a basic ASR front end and to evaluate
it using a dynamic-time warping recognition system. It is meant to help you understand what basic
signal processing steps are used in ASR, and why they are taken.

The lab consists of the following parts:

• Part 0: Familiarization with the data (Required) — Listen to a few utterances in the data
set, until you believe you are processing actual speech signals.

• Part 1: Write a front end (Required) — Write a complete mel-frequency cepstral coeffi-
cient (MFCC) front end, except for the FFT, which will be provided.

• Part 2: Implement dynamic time warping (Optional) — Write a function that implements
DTW.

• Part 3: Evaluate different front ends using a DTW recognizer (Required)— Run ex-
periments on the TIDIGITS data set comparing the performance of different portions of the
front end you implemented.

• Part 4: Try to beat the MFCC front end (Optional) — Try to develop a modification to
the given MFCC front end (or do something completely different) to get better performance.
The student achieving the best performance on a test set (that will not be released until after
the assignment is due) will be awarded some sort of crappy prize.

All of the files needed for the lab can be found in the directory˜stanchen/e6884/lab1/ .
Before starting the lab, please read the filelab1.txt ; this includes all of the questions you
will have to answer while doing the lab. Questions about the lab can be posted on Courseworks
(https://courseworks.columbia.edu/); a discussion topic will be created for each lab.
Note: The hyperlinks in this document are enclosed in square brackets; you need an online version
of this document to find out where they point to.

1

https://courseworks.columbia.edu/

-

6

0

1

0 fmaxmel frequency

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��D

D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

D
D
D
D
D
D
DD

Figure 1: Mel binning

2 Part 0: Familiarization with the data (Required)

The data to be used in this lab is the TIDIGITS corpus, a standard ASR data set consisting of
clean recordings of about 300 speakers reading digit sequences. In this lab, we are doing isolated
digit recognition, so we will use only the utterances consisting of a single digit: each speaker was
required to say each of the 11 digits (onethroughnine, zero, andoh) by itself two times.

For this part of the exercise, just listen to a few samples of the data. Here is one sample for each
digit; click on the links to listen to each sample: [Sample 1], [Sample 2], [Sample 3], [Sample 4],
[Sample 5], [Sample 6], [Sample 7], [Sample 8], [Sample 9], [Sample 10], and [Sample 11].

3 Part 1: Write a front end (Required)

In this part of the exercise, you will be writing an MFCC front end, except for the FFT which will
be provided for you. (Pre-emphasis and adding deltas will be ignored.) To make things easier for
you and to make it convenient to run experiments with different portions of the front end, we have
written a whole slew of glue code for you. All you have to do is complete the code in three functions
implementing three different parts of an MFCC. In a later part of the lab, the signal processing
algorithms you implement here will be used in a primitive speech recognizer to evaluate the relative
efficacy of different signal processing schemes.Note: There may be differences between the
equations given here and the corresponding equations in the slides for the lectures. For the lab, use
the versions of the equations given here!! (There is no one “correct” version of MFCC’s; different
sites have implemented different variations.)

To prepare for the exercise, create the relevant subdirectory and copy over the needed files:

mkdir -p ˜/e6884/lab1/
cd ˜/e6884/lab1/
cp ˜stanchen/e6884/lab1/Lab1_FE.C .
cp ˜stanchen/e6884/lab1/.mk_chain .

2

http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp1.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp2.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp3.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp4.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp5.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp6.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp7.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp8.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp9.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp10.wav
http://www.ee.columbia.edu/~stanchen/e6884/lab1/samp11.wav

Your job will be to fill in the sections between the markersBEGIN LAB andENDLAB in three
different functions. ReadLab1 FE.C to see what input and output structures need to be accessed.

Computing MFCC’s consists of the following steps: windowing, FFT, mel binning (and log), and
DCT. The three different functions to be written correspond to these steps minus the FFT. Each
function should take a matrix of values (representing the feature values output by the last signal
processing module) and produce a new matrix of values. In the case of windowing, the input is a
vector of waveform samples rather than a matrix of feature values.

3.1 Algorithms To Implement

3.1.1 Windowing

The first function to be completed takes a sequence of raw waveform samples for an utterance and
performs windowing, returning a 2-D array containing the windowed samples for each frame.

That is, before we begin frequency analysis we want to chop the waveform into overlappingwin-
dowsof samples, so that we can perform short-time frequency analysis on each window. For ex-
ample, we might choose a window width of 256 samples with a shift of 100 samples. In this case,
the first frame/window would contain samples 0 to 255; the second frame/window would contain
samples 100 to 355; etc. In terms of the code, the values for the first frame would be written in the
locationsoutBuf[0][0..255] , the values for the second frame inoutBuf[1][0..255] ,
etc. In the lab, the total number of output frames has been computed for you (i.e., outFrames).

Both rectangular and Hamming windowing should be supported. In rectangular windowing, sam-
ple values are unchanged. For Hamming windowing, the values in each frame/window should be
modified by a Hamming window. Recall that for samples{si, i = 0, . . . , N −1}, the samples{Si}
after being Hammed are:

Si =
(
0.54 − 0.46 cos

2πi

N − 1

)
si

3.1.2 Mel binning

The second function to be completed should implement mel binning. Preceding this step, an FFT
will have been performed for each frame on windowed samples{si, i = 0, . . . , N − 1}, producing
an array{Si, i = 0, . . . , N − 1} of the same size. The real and imaginary parts of the FFT value
for frequency i

NT
(in Hz) will be held inS2i andS2i+1, respectively, whereT is the sampling

period for the original signal. In terms of the code, for framefrm this corresponds to the locations
inBuf[frm][2*i] and inBuf[frm][2*i+1] . The variablesamplePeriod holds the
value ofT (in seconds). For each frame, the magnitude of the (complex) value for each frequency
should be binned according to the diagram in Figure 1. (The number of bins in the diagram should
not be taken literally; just the shapes of the bins.) The number of bins to use is held inoutDim .

3

More precisely, the bins should be uniformly spaced inmelfrequency space, where

Mel(f) = 1127 ln(1 +
f

700
)

The bins should be perfectly triangular (inmel frequency space!), with the right corner of each bin
being directly under the center of the next, as in the diagram. The left corner of the left-most bin
should be at mel frequency 0, and the right corner of the right-most bin should be at mel frequency
fmax = Mel(1

2T
). To decide the weight with which each FFT magnitude should be added to each

bin, take the value of the curve corresponding to the given bin at the given frequency mapped to
mel frequency space. That is, the output values{Si} (before the logarithm) should be

Si =
∑
f

|X(f)| Hi(Mel(f))

whereX(f) is the output of the FFT at frequencyf , f ranges over the set of frequencies evaluated
in the FFT, andHi(fmel) is the height of theith bin at frequencyfmel in Figure 1 (where the left-
most bin is the 0th bin). (Note that we arenot squaring|X(f)| in the previous equation, as is
sometimes done.)

If this all seems very confusing, it’s not as bad as it seems. Basically, you just have to imple-
ment the previous equation for each frame. For a framefrm , the {Si} are the output values
outBuf[frm][i] and the{Xf} are the input valuesinBuf[frm][i] , where you have to
translate from indicesi into frequenciesf as described earlier in this section, and combine the real
and imaginary parts for each frequency when computing|Xf |. The Mel function is given above.
The trickiest part is figuring out the windowing functionHi(). For help, check out equation (6.141)
on page 317 of HAH in the assigned readings. (Don’t use the filter centersf [m] suggested in the
text as they do things differently. Instead, figure them out by studying Figure 1.)

3.1.3 Discrete Cosine Transform

The third function to be completed should implement the discrete cosine transform. For input
values{si, i = 0, . . . , N − 1}, the output values{Sj, j = 0, . . . ,M − 1} are:

Sj =

√
2

N

N−1∑
i=0

si cos

(
π(j + 1)

N
(i + 0.5)

)

whereM is the number of cepstral coefficients that you want to keep (i.e., the valueoutDim).
This transform should be applied to the feature values for each frame.

3.2 Compiling and testing

Your front end code will be compiled into the program FETOOL, which is a tool that takes a
waveform, applies a sequence of signal processing modules to it, and prints out the resulting feature
vectors. To compile this program with your front end code, type

4

smk FETool

in the directory containing your source file (which must also contain the file.mk chain). If
successful, this will create the executable FETOOL in the current directory.

To print out feature values for a sample utterance after applying only your windowing module
(with Hamming on), type

lab1p1win.sh

(This script can be found iñstanchen/pub/exec/ , which should be on your path from
Lab 0.) This shell script starts the executable FETOOL located in the current directory with the
appropriate flags. To start up FETOOL in the debugger, add the flag-debug to the above line. The
“correct” output can be found in the filep1win.out in ˜stanchen/e6884/lab1/ . Don’t
sweat it if you don’t match the “correct” answer exactly for every step; just try to get reasonably
close so the word-error rate numbers that you will calculate later are sensible. For reference, the
original waveform can be found inp1wave.out .

To print out feature values after applying the windowing, FFT, and mel-binning (w/log) modules,
type

lab1p1bin.sh

To print out feature values after everything (i.e., MFCC features), type

lab1p1all.sh

The correct outputs can be found inp1bin.out andp1all.out , respectively. (The correct
output after just windowing and FFT can be found inp1fft.out .)

4 Part 2: Implement dynamic time warping (Optional)

In this optional exercise, you have the opportunity to implement dynamic-time warping. You may
implement any variation you would like, but we advocate the version championed in the Sakoe and
Chiba paper: symmetric DTW withP = 1. The distance measure used is Euclidean distance, and
the distance calculation will be provided for you.

For this exercise, copy the fileLab1 DTW.Hto the same directory as above. Read this file for
instructions on what to do; look for the markersBEGIN LAB andENDLAB.

Your DTW code (as well as front end code) will be compiled into the program DCDDTW, which
is a tool that does DTW speech recognition given a set of templates. To compile this program using
your code, type

5

smk DcdDTW

For a description of what this program does, see the next section.

To test your code, you can use the script

lab1p2.sh

This will run the version of DCDDTW in the current directory on a simple digits data set consist-
ing of 11 training templates from a single speaker and 11 test utterances from the same speaker.
The -debug flag is supported as before, and the correct output can be found inp2.out in
˜stanchen/e6884/lab1/ . Note that the correct output will not be useful for those of you
who implement alternate versions of DTW.

5 Part 3: Evaluate different front ends (Required)

In this part, you will evaluate different portions of the front end you wrote in Part 1 to see how
much each technique affects speech recognition performance. In addition, you will do runs on dif-
ferent test sets to see the difference in difficulties of various testing conditions (speaker-dependent,
speaker-independent, etc.).

You will need to be in the directorỹ/e6884/lab1/ ; all of the scripts will run the version of
the program DCDDTW in the current directory. If you haven’t done this already, type

smk DcdDTW

to compile this program with your front end code. This program is an (albeit primitive) speech
recognizer, which is also known as adecoder. We supply it with a training example (ortemplate)
for each word that we would potentially like to recognize. To recognize a new utterance, it uses
dynamic time warping to find the closest training example and returns the class of that training
example.

When using DTW to compare an utterance with a training example, both waveforms are processed
using the given signal processing modules, and DTW is performed on the resulting feature vectors.
Thus, the quality of the signal processing will greatly affect the accuracy of decoding; the more
salient the features that are extracted, the better performance should be. Given a set of templates,
a list of signal processing modules to apply, and a set of waveforms to recognize, the program
DCDDTW loops through each test utterance in turn and performs DTW to select which word it
thinks it is. At the end of the run, it outputs the overall error rate.

The test set used in this part consists of 11 utterances (one of each digit) from each of 10 speakers.
While this test set is not large enough to reveal statistically significant differences between some
of the contrast conditions, we did not want to use a larger test set so the runs will be quick and it

6

should be large enough to give you the basic idea. For each test speaker, templates from a different
training speaker are used. In the first set of experiments, the training and test speaker in each run
are the same. Each script performs ten different runs of DCDDTW (using different training and
test speakers) and averages the results.

First, let’s see how much each processing step in the front end matters. Run each of the following
scripts:

script description
lab1p3win.sh windowing alone
lab1p3fft.sh windowing+FFT
lab1p3mel.sh windowing+FFT+mel-bin (w/o log)
lab1p3mellog.sh windowing+FFT+mel-bin (w/ log)
lab1p3dct.sh windowing+FFT+mel-bin+DCT
lab1p3noham.sh windowing+FFT+mel-bin+DCT (w/o Hamming)

Remember to keep track of the results, since you will need to fill in these numbers inlab1.txt .
The first two scripts are quite slow (since the output features are of high dimension), so be patient.
In case you are wondering what the accuracy of running DTW on raw (time-domain) waveforms
are for this test set, it is 89.1% (accuracy, not error rate). You can run this for yourself if you figure
out how, but this run took about 12 hours.

Now, let’s see what happens if we relax the constraint that for each test speaker, we use DTW
templates from the same speaker (i.e., we no longer do speaker-dependent recognition). Run each
of the following scripts (all use the full MFCC front end):

script relation between test and template speaker
lab1p3sd.sh same
lab1p3dgd.sh same gender and part of US
lab1p3gd.sh same gender
lab1p3si.sh none (i.e., speaker-independent recognition)

6 Part 4: Try to beat the MFCC front end (Optional)

In this optional exercise, you have the opportunity to improve on your MFCC front end. To get
started, type the commands:

mkdir -p ˜/e6884/lab1ec/
cd ˜/e6884/lab1ec/
cp ˜stanchen/e6884/lab1/.mk_chain .

7

Copy over yourLab1 FE.C from Part 1, and alsoLab1 DTW.Hfrom Part 2 if you have one and
like it. If you want to add additional parameters to your front end and have figured out how to do
this, then you can also grab a copy ofLab1 FE.H from ˜stanchen/e6884/lab1/ .

For this exercise, you will need to compile DCDDTW like so:

smk DcdDTW

We have provided two development sets for optimizing your front ends, a mini-test set consisting
of ˜100 utterances and a larger test set consisting of ˜1000 utterances. To run the DCDDTW in the
current directory on these test sets, run

lab1p4small.sh
lab1p4large.sh

for the small and large test sets, respectively. These scripts are set up to use the full MFCC pipeline
(windowing + FFT + melbin w/ log + DCT), and you can change what signal processing is done
by modifying the modules you developed in Part 1 of the lab. If the algorithms you would like to
implement cannot be realized within this framework (e.g., you don’t want to do an FFT), please
contact one of the professors and we can tell you how to do this.

The task is set up to be speaker-independent: the speaker used to provide the templates for a test
set may have no relation to the speaker of that test set.

The evaluation test set we will use to determine which front end wins the “Best Front End” award
will not be released until after this assignment is due, to prevent the temptation of developing
techniques that may only work well on the development test sets. This is consistent with the
evaluation paradigm used in government-sponsored speech recognition competitions, the primary
ones being the [NIST Spoken Language Technology Evaluations].

7 What is to be handed in

Make a copy of the ASCII filelab1.txt from the directorỹstanchen/e6884/lab1/ . Fill
in all of the fields in this file and E-mail the contents of the file tostanchen@watson.ibm.com .
(Please paste this file into the main body of the E-mail;i.e., don’t include this file as an attachment.)

For the written questions (e.g., “What did you learn in this part?”), answers of a sentence or two
in length are sufficient. Our answers for the written questions (as well as any interesting answers
provided by you, the students) will be presented at a future lecture if deemed enlightening.

8

http://www.nist.gov/speech/tests/index.htm

	Overview
	Part 0: Familiarization with the data (Required)
	Part 1: Write a front end (Required)
	Algorithms To Implement
	Windowing
	Mel binning
	Discrete Cosine Transform

	Compiling and testing

	Part 2: Implement dynamic time warping (Optional)
	Part 3: Evaluate different front ends (Required)
	Part 4: Try to beat the MFCC front end (Optional)
	What is to be handed in

