

Pattern Mining in Large-Scale Image and Video Sources

Prof. Shih-Fu Chang

Digital Video and Multimedia Lab Columbia University July 21, 2004 http://www.ee.columbia.edu/dvmm

Joint work

- Lexing Xie, Lyndon Kennedy (Columbia U.)
- Ajay Divakaren and Huifan Sun (MERL)
- Supported in part by
 - MERL
 - ARDA VACE phase II IBM-Columbia Semantrix Project

. Temporal Patterns Everywhere ...

 There are interesting patterns indicating useful information in different domains.

S.-F. Chang, Columbia U.

Example Patterns in Video

Columbia University

Patterns Across News Sources

Example Marines Extend Duty

CNN News

Chinese News

Story/event often re-occur within or across channels

Semantic thread reconstruction (IBM-CU ARDA VACE II project)

S.-F. Chang, Columbia U.

Grand) Challenges for Pattern Mining

There are many patterns in video at different levels.

- How do we discover them (semi)-automatically?
- Do they correspond to any semantic meanings?
- What are the underlying features/structures of each pattern?
- Which patterns are more promising for developing classifiers?
- Why do these matter?
 - Unsupervised discovery of a large number of patterns → discover interesting, meaningful concepts & events
 - \rightarrow help define normal states and novelty
 - Scalability to new content and domains

Challenge: Unsupervised Pattern Discovery

- Given a new domain/corpus, discover patterns automatically
 - E.g., News, consumer, surveillance, and personal life log
- Technical Issues:
 - Find appropriate spatio-temporal statistical models
 - Locate segments that fit such models

Issues

- What's the adequate class of models?
- How to determine model structures?
- What are "good" features?

VS.

Finding the right class of models ... Lessons from prior work supervised + unsupervised

Many video temporal patterns are characterized by *Dynamics* and *Features*

- Distinctive patterns are characterized by state-dependent transitions and features.
- Like speech recognition, HMM and variants may serve as promising candidates.

Supervised HMM models are effective for parsing structures in sports video

- Sports video (4 test clips, 15~25 min., various countries)
- Cross Validation

	Test set	Training Set			
		Argentina	KoreaA	KoreaB	Espana
	Argentina	87.2%	82.5%	82.5%	80.6%
	KoreaA	78.1%	84.3%	84.3%	79.8%
A Maderia	KoreaB	79.9%	85.3%	85.3%	89.6%
hi.	Espana	79.9%	89.6%	89.6%	81.7%

- Avg. Play-Break Classification Rate: 83.5% vs. 60% of blind guessing
- Boundary timing accuracy: 62% within 3 seconds
- The good classification provides preliminary evidence supporting HMM model and the A-V features <u>Demo</u>

Applying HMM to unsupervised

 With straightforward structures: multi-path left-right HMM

[Clarkson et al '99]

- Long ambulatory videos captured with wearable device
- Color histogram and MFCC features at 10Hz
- Cross-correlation coefficients 0.7~0.9 between ground-truth and likelihood sequences.

[Naphade et al '02]

- Films and talk shows
- Color and edge histogram, MFCC and energy features at 30Hz
- discover recurrent patterns of explosion and applause

S.-F. Chang, Columbia U.

Pattern Mining Using Hierarchical HMM (Xie et al '02)

Intuitive Representation for Video Patterns

- Patterns occur at different levels following different transition models
- States in each level may correspond to different semantic concepts

[Fine, Singer, Tishby '98] [K. Murphy, '01] [Xie et al '02]

- Flexible control structure (bottom-up control with exit state)
- Extensible to multiple levels and distributions

Hierarchical HMM

- Efficient inference technique available
 - Complexity O(D·T·Q^{α D}), α =1.5 to 2
- Application in unsupervised discovery has not been explored
 - Questions: how to find right model structures and feature sets?

S.-F. Chang, Columbia U.

The Need for Model Selection soccer news talk show

Different domains have different descriptive complexities.

S.-F. Chang, Columbia U.

Model Selection with RJ-MCMC

: Which Features Shall We Use?

S.-F. Chang, Columbia U.

Columbia University

[Koller,Sahami'96] [Zhu et.al.'97] [Xing, Jordan'01] [Ellis, Bilmes'00]... **Issues of Feature Selection** Goal: To identify a good subset of observations in order to improve model generalization and reduce computation. X^1 Target χ2 concept Y **χ**3 **X**⁴ Criteria: (1) find the feature-feature or feature-concept relevance (2) eliminate any redundancy Unique problems for temporal sequence mining: No target concept Unsupervised

Temporal

sequence

Temporal samples not i.i.d.

defined a priori

Results: on Sports Videos

videos baseball

features

visual: dominant color ratio, camera translation motion audio: energies, zero-crossing rate, spectral rolloff

patterns

HHMM top-level label sequence

 $q^*_{1:T}$

vs. play/break?

• A Simple Test: Mining Baseball Videos

Unsupervised Mining not less Effective than Supervised Learning

Fixed features {DCR, MI}, MPEG-7 Korean Soccer video

Model	Supervised?	Model Selection	Correspondence w.	Play/Break
HHMM	N	Y		75.2±1.3%
HHMM	N	N		75.0±1.2%
HMM	Y	N		75.5±1.8%
LR-HHMM	N	N		73.1±1.1%
K-Means	N	N		64.0±10.%

Automatic selection of both model and features

Test clip	Feature Set	# "events"	Correspondence w. Play/Break
Korea	DCR,Mx	2~4	75.2%
Spain	DCR,Volume	2~3	74.8%
Baseball	DCR,Mx	2	82.3%

* DCR='dominant-color-ratio', MI='motion-intensity', Mx='horizontal-camera-pan'

S.-F. Chang, Columbia U.

HHMM seems promising in finding statistical temporal patterns.

- But how to find the meanings of the patterns?
- Approach → fuse the metadata streams when available.

- The problem
- Unsupervised pattern discovery with HHMM
- Finding meaningful patterns
 - With text association
 - By multi-modal fusion
- Summary

Towards Meaningful Patterns

- Manual association feasible only if meanings are *few* and *known*.
- Metadata come to the rescue.

S.-F. Chang, Columbia U.

Columbia University

Associating Patterns with Text videos news AV features and concepts Words (ASR/VOCR)

Co-Occurrence of HHMM Labels & Words

"*correlation*" between HHMM labels and words \rightarrow co-occurrence counts.

Refining the Co-occurrence Statistics

Translation between AV Tokens & Words

The problem: Co-occurrence "un-smoothing". know: C(q, w); seek: t(w|q), t(q|w).

Solve with EM [Brown'93]

 $L_q^t(q,w)$ (assume q's are ind.)

olumbia University

S.-F. Chang, Columbia U.

- 44 half-hour videos, ABC/CNN
- 12 visual concepts for each shot [IBM-TREC'03] (weather, people, sports, non-studio, nature-vegetation, outdoors, news-subject-face, female speech, airplane, vehicle, building, road)
- ASR transcript
- HHMM on concept confidence scores
 - 10 models from hierarchical clustering in feature selection, size automatically determined
 - Co-occurrence with story boundaries

[Xie et al. ICIP'04]

Columbia University in the City of New York

Example Correspondences

HHMM label	Visual Concept	Words	Topic groundtruth
(6,3)	people, non-studio- setting	storm, rain, forecast, flood, coast, el, nino, administer, water, cost, weather, protect, starr, north, plane,	El-nino Storm '98 (recall 80%)
(9,1)	indoor, news subject-face, building	jury, judge, clinton, preside, politics, saddam, lawyer, accuse, independent, monica, charge,	Clinton-lones (Recall 45%, Precision 15%) Iraqi-weapon (Recall 25%, Precision 15%)
(m, q): model # m state # q state # q	Obtained with SVM classifiers [IBM'03]	Lexicon obtained by shallow parsing of keywords from speech recognition output.	

Can't we find such patterns using conventional clustering? (HHMM vs. K-means comparison)

$L^c(q,w)$

tokens w = 001-155

HHMM: more meaningful associations, less randomness.

L=

- strong 1+ correlation
- independent 1

- The problem
- Unsupervised pattern discovery with HHMM
- Finding meaningful patterns
 - With text association
 - By multi-modal fusion
- Summary

- Versatile
- Multi-modal
- Meaningful
- Knowledge-adaptive

- Potential Problems:
 - Words ≠ meanings
- Temporal correspondence between words and pattern labels may not exist.

- Instead, both the pattern labels and words jointly support some hidden semantic states.
- A multi-modal data fusion problem [AVSR, multi-modal interaction]
- Aiming at recovering the semantics [TDT 1998-2004]

Multi-modal Fusion for Produced Videos

Extracting High-level Concepts from Text – pLSA

- Use data-driven analysis to find concept association and latent semantic topics
- Use the syntactic story structures of video to define co-occurrence
- Use graphics model statistical inferencing to discover latent semantics
 - Not just counting occurrences

Some semantic clusters from text pLSA

"financial"

dow nasdaq industrial average wall jones gain trade

••• •••

"olympics"

gold olympics

"iraq"

... ...

saddam iraq baghdad weapon hussein strike secure

"investigation"

jury lewinski starr grand accusation sexual independent water monica investigation president

"weather"

temperature rain coast snow el heavy northern storm forecast tornado pressure east florida nino qulf weather ••• •••

"bad" clusters

cancer increase secure temperature texas accusation chance nasdaq pressure center

••• •••

... ...

cancer africa temperature movie coast center heavy research rain strike

••• •••

Experiments

• News videos [TRECVID2003]

- ABC, CNN : 30 min x 151 clips
- Training/testing on same channels

modality	feature elements	granularity	bottom- level model
audio	pitch, pause, audio-class	.5 sec	
color	histogram (15-d)	1 sec	
motion	camera translation (2-d)	1 sec	וויוחח
visual	22 concepts	every shot	
text	ASR word-stems tf-idf	every story	PLSA

Fusion Results Evaluated by Text TDT Topics & Metrics

http://www.nist.gov/speech/tests/tdt/

• "NIST TDT research develops algorithms for discovering and threading together topically related material in streams of data such as newswire and broadcast news in both English and Mandarin Chinese. "

• Current TDT use text or ASR only.

TDT Tasks

- 1. Story Segmentation Detect changes between topically cohesive sections
- 2. <u>Topic Tracking</u> Keep track of stories similar to a set of example stories
- 3. Topic Detection Build clusters of stories that discuss the same topic
- 4. First Story Detection Detect if a story is the first story of a new, unknown topic
- 5. Link Detection Detect whether or not two stories are topically linked

Linking Multi-Source Videos, Web Pages

S.-F. Chang, Columbia U.

Columbia University

Evaluate the MM patterns against TDT topics

Example: Cluster #28 → Correspond to "Dollars & Sense, CNN" (demo)

Unique audio-visual + text terms + temporal transition

- AV concepts: graphics, music, anchor speech, subject etc
- textual terms: financial
- temporal structure: statistical consistence but variation allowed

Example: Sports

Consistent audio-visual (color, motion, graphics), words, and temporal

place on earth 💌 🏧	THE & PROVIDENCE AND ADDRESS OF ADDRESS
19980621_CNN 1246.74,109.28 [] that i have to go out and plai that i have been plai i have to	
19980628_CNN 1302.70,40.21 [] michael collin the man to beat effort to ground of the cat like the n. f. l. senior golf	
19980628_CNN scienc fiction 1470.07.143.14 science fiction (川英 4), 圖 露 上 范 4) 11 fun	
SF. Chal	

DIGITAL VIDEO MULTIME

Example: Advertisements

(<u>demo</u>)

Columbia University in the City of New York

- Patterns abound in multimedia data
- Mining facilitates auto discovery of salient or novel concepts → scalability
- Current results shown in
 - Multi-level temporal patterns mining through HHMM
 - Fusion between pattern labels and ASR metadata
- Challenging Issues
 - Mining of patterns of different types or complex patterns at higher levels
 - Detection of alerts and novel events
 - Evaluation \rightarrow Redefine TDT for Multimedia TDT?
 - Visualization

Acknowledgements

DVMM Group http://www.ee.columbia.edu/dvmm W. Hsu, H. Sundaram, D-Q Zhang IBM TRECVID Team: J. R. Smith, C.-Y. Lin, M. Naphade, A. Natsev, B. Tseng, G. Iyengar, H. Nock, et al.

References

- [1] L. Xie, S.-F. Chang, A. Divakaran, and H. Sun, "Unsupervised discovery of multilevel statistical video structures using hierarchical hidden Markov models," in *Interational Conference on Multimedia and Expo (ICME)*, (Baltimore, MD), July 2003.
- [2] L. Xie, L. Kennedy, S.-F. Chang, C.-Y. Lin, A. Divakaran, and H. Sun, "Discover meaningful multimedia patterns with audio-visual concepts and associated text," in *Interational Conference on Image Processing (ICIP)*, October 2004.
- [3] L. Xie, S.-F. Chang, A. Divakaran, and H. Sun, *Unsupervised Mining of Statistical Temporal Structures in Video*, ch. 10. Kluwer Academic Publishers, 2003.
- [4] L. Xie, P. Xu, S.-F. Chang, A. Divakaran, and H. Sun, "Structure analysis of soccer video with domain knowledge and hidden markov models," *Pattern Recogn. Lett.*, vol. 25, no. 7, pp. 767–775, 2004.

References

- [1] B. Clarkson and A. Pentland, "Unsupervised clustering of ambulatory audio and video," in *International Conference on Acoustic, Speech and Signal Processing (ICASSP)*, 1999.
- [2] M. Naphade and T. Huang, "Discovering recurrent events in video using unsupervised methods," in *Proc. Intl. Conf. Image Processing*, (Rochester, NY), 2002.
- [3] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton, "Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment," *Science*, vol. 8, no. 262, pp. 208–14, October 1993.
- [4] S. Fine, Y. Singer, and N. Tishby, "The hierarchical hidden Markov model: Analysis and applications," *Machine Learning*, vol. 32, no. 1, pp. 41–62, 1998.
- [5] A. Iyengar, M. S. Squillante, and L. Zhang, "Analysis and characterization of large-scale web server access patterns and performance," *World Wide Web*, vol. 2, no. 1-2, pp. 85–100, 1999.
- [6] P. Duygulu, K. Barnard, N. de Freitas, and D. A. Forsyth, "Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary," in *ECCV*, 2002.
- [7] P. Duygulu and H. Wactlar, "Associating video frames with text," in *Multimedia Information Retrieval Workshop, in conjuction with SIGIR 2003*, (Toronto, Canada), August 2003.
- [8] N. Oliver, E. Horvitz, and A. Garg, "Layered representations for learning and inferring office activity from multiple sensory channels," in *Proceedings of Int. Conf. on Multimodal Interfaces* (ICMI'02), (Pittsburgh, PA), October 2002.

S.-F. Chang, Columbia U.

