Recent Advances of Compact Hashing for Large-Scale Visual Search

Shih-Fu Chang
Columbia University
January 2015

Joint work with Sanjiv Kumar (Google), Wei Liu, Jun Wang (IBM Research), Junfeng He (Facebook) Felix Yu, Guangnan Ye, Dong Liu (Columbia U)
Large-Scale Similarity Search

- Need for image search, document retrieval, biology data matching, network construction, ...
- Scale up to billions or trillions of samples

Image, document, DNA sequence ...

Query

Database
The Explosive Data Growth
-- 1.8B photos uploaded/shared per day

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005 – 2014 YTD

How to find photos... not all are tagged!

Visual Search Example

141 Results

Searched over 8,463 billion images in 0.008 seconds.

for file: http://content.sportslogos.net/logos/35/882/full/2671.gif

- These results expire in 72 hours. Why?
- Share a success story!
- TinEye is free to use for non-commercial purposes.
Columbia NewsRover System

linking video over 100+ channels (10 millions images per hour)
Fine-Grained Visual Match

- Image patches (e.g., SIFT, SURF) often used in image search: invariant to geometric and photometric transformations
- Scale grows up to billions or trillions

Slide: David Lowe
Estimate the Complexity

• 500 image patches per photo
 – Feature size ~128 K Bytes
• Database
 – 5 billions patches for 10 million images
 – Finding matched patches becomes challenging
• Also hard to do this over mobile devices ...
1. Take a picture
2. Send image or features
3. Send via mobile networks
4. Visual matching with database images
5. Send results back

Mobile Visual Search
Challenges of MVS

1. Take a picture
2. Image feature extraction
3. Send via mobile networks
4. Visual matching with database images
5. Send results back

Limited power/memory/speed
Limited bandwidth
Fast response (< 1 second)

Peta-scale Database
Needs of Fast Scalable Search

• Fast index code generation
 – Minimize online query processing time

• Avoid $O(N)$ complexity of exhaustive approach
 – Sublinear or constant search complexity over database
 – Efficient storage
Traditional Indexing: K-D Tree

- Popular Public Source VLFeat, FLANN
- Threshold in max variance or random dimension at each node
- Search: best-fit-branch-first, backtrack when needed
- Search time cost: $O(c \cdot \log n)$
- But backtrack prohibitive when dimension is high (Curse of dimensionality)
- Another issue: exponential storage
Product Quantization

Jegou, Douze, Schmid, PAMI 2011

divide to m subvectors

$\text{feature dimensions (D)}$

$k^{1/m}$ clusters in each subspace

- Avoid exponential codebook size by product of subspace codebooks
- Efficient storage, only $mk^{1/m}$ codewords (3,000, $m=3$, $k=1$ billion)
- Exhaustive scan of codewords possible

$$d(q, w_i) \equiv d(q, w_i^1) + d(q, w_i^2) + d(q, w_i^3)$$

- Drawback: high query processing cost
Hash Table based Search

$H = [h_1, \ldots, h_r]$

- Projection based hashing is very fast
- $O(1)$ search time by table lookup
- Optional step to include items in Hamming neighborhoods
Locality-Sensitive Hashing

[Indyk and Motwani 1998] [Datar et al. 2004]

hash function

\[h(x) = \text{sgn}(w^\top x + b) \]

random

\[P \{ H(x) = H(y) \} = l \cdot \left[1 - \frac{\cos^{-1} x^\top y}{\pi} \right]^K \]

• collision probability proportional to original similarity
 \(l \): # hash tables, \(K \): hash bits per table
Multi-Table Hashing

• Longer table increases precision but degrades recall

• Common practice: multi-table hashing

• Union of multi-table results increases precision and keeps recall

• But the number of hash bits 2X: bad for mobile
Beyond Point-to-Point Search

- Diverse Data: feature vectors, graphs, subspace, manifolds, dictionaries, etc.
- Search: range search, graph search, point-to-subspace, manifold to manifold, etc.
Locality-Sensitive Hashing for Subspace

(Wang et al, ICCV ‘13)

Generate K random lines, each producing a hash bit:

\[h_{l,\theta_0} = \begin{cases}
0, & \text{dist}_G(l, L) > \theta_0 \\
1, & \text{dist}_G(l, L) \leq \theta_0
\end{cases} \]

- Preserve locality sensitivity, derive probability of Approximate NN
- Matching by hash table look-up \((O(1)\) complexity)
- Fast index code generation
Subspace Hashing over Face Set Database

- Treat image set of the same person as a subspace
- 60 hash bits per subspace
- Given a single image or image set as query, find the right subspace

Multi-PIE data: 750,000 face images of 337 people under pose-illumination-expression variations
So far, these are random projections...
Focus: Learning-Based Hashing

Unsupervised Hashing
- SH ‘08, KLSH ‘09,
- AGH ’10, PCAH, ITQ ’11,
- DGH ‘14

Semi-Supervised Hashing
- SSH ‘10, WeaklySH ‘10

Supervised Hashing
- RBM ‘09, BRE ‘10,
- MLH ’11, LDAH ’11,
- ITQ ’11, KSH ’12, PHC’13,
- VH’14

Fit data distribution and structure

Explore additional information
A Very Simple Form of Unsupervised Learning

• Find PCA bases as hash projection functions
• Maximize variance (discrimination) in each hash bit

• Rotate projections to minimize quantization errors (Gong&Lazebnik ’11)
Data-dependent vs. Random Hashing

- 580K tiny images

PCA-ITQ, Gong&Lazebnik, CVPR 11

(b) Recall precision curve@64 bits.

- PCA-random rotation
- PCA-ITQ optimal alignment
Find Additional Structures in Data

- Images are not random in the feature space
 - Explore (nonlinear) Structures

- Such structures are useful for
 - visualization, retrieval, label propagation
Tool: Sparse Graphs

- Build sparse graphs with **local** connectivity
- Use it to find approximate NN and propagate labels
Active Research: Constructing Sparse Graphs

\[
\text{max}_P \sum_{ij} P_{ij} W_{ij} \\
\text{s.t. } \sum_j P_{ij} = b, P_{ii} = 0, P_{ij} = P_{ji}, \forall i, j \in 1, \ldots, n
\]

(Huang and Jebara, AISTATS 2007)
(Jebara, Wang, and Chang, ICML 2009)
Graph Laplacian

Graph Laplacian \(\Delta = D - W \), and \(L = D^{-1/2} \Delta D^{-1/2} \)

smoothness of function \(f \) over graph

\[
< f, Lf > = f^T Lf = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \left\| \frac{f(x_i)}{\sqrt{D_{ii}}} - \frac{f(x_j)}{\sqrt{D_{jj}}} \right\|^2
\]
Graph Hashing

\[< h, Lh > = h^T Lh = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} \| h(x_i) - h(x_j) \|^2 \]

- Eigenvectors of Laplacian \(L \) give smooth functions over points
- Can be used to discover structures approximately

Example:
Graph (12K points)

1\(^{st}\) Eigenvector
(sign: blue: +1, red: -1)

2\(^{nd}\) Eigenvector

3\(^{rd}\) Eigenvector

Hash code: [1, 1, 1]

- Locality Sensitivity over the Graph Structure
Challenge: Scale Up to Large Graph

- When graph size is large (million – billion)
 - Hard to construct/store graph \((kN^2) \)
 - Hard to compute eigenvectors \((N^3) \)
- Also lacks a fast function to generate index code for novel data
Idea: Low-rank anchor graph

- Use anchor points to “abstract” the graph structure
- Compute data-to-anchor similarity: sparse local embedding
 \[Z \in \mathbb{R}^{n \times m}, \quad m \ll n \]
- Data-to-data similarity \(W = \) inner product in the embedded space

\[
W_{ij} = \sum_{k=1}^{m} Z_{ik}Z_{jk} = Z_iZ_j^\top \min_k \| x_i - \sum_{k\in\{i\}} Z_{ik}u_k \|_2^2 \quad \text{s.t.} \quad \sum_k Z_{ik} = 1, \quad Z_{ik} \geq 0
\]

(Liu, He, Chang, ICML10)
Probabilistic Intuition

• Affinity between samples i and j, W_{ij} = probability of two-step Markov random walk

$$W = Z \Lambda^{-1} Z^\top,$$ where $\Lambda = \text{diag}(1^\top Z)$.

AnchorGraph: sparse, positive semi-definite
Anchor Graph

\[W = Z \Lambda^{-1} Z^\top, \text{ where } \Lambda = \text{diag}(1^\top Z). \]

- Affinity matrix \(W \) is sparse, positive semi-definite, and low rank
- Eigenvectors of graph Laplacian can be solved efficiently over low-rank matrix \(O(m^2n) \)
 \[E = \{e_1, \ldots, e_K\} \in R^{m \times K} \]
- Fast hash function for new data: \(\text{sgn}(Z(x)E) \)
Example of Anchor Graph Hashing

Original Graph (12K points)

• Approximate well the exact eigenvectors of the original graph
YouTube Face Dataset

Wolf et al. CVPR’11. 370K face images from 340 people, 3.8K images from 38 people as queries.

Correct: faces from the same person.

\[
F\text{-measure} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

SH = Spectral Hashing
AGH = Anchor Graph Hashing
DGH = Discrete Graph Hashing
Recent work: Direct Graph Hashing

(Liu, Mu, Kumar, Chang, NIPS14)

- Instead of finding eigenvectors and quantize, directly find binary hash codes
- **direct discrete optimization**

\[
\min_H \sum_{i,j=1}^{n} \|H_i - H_j\|^2 W_{ij} \\
\text{s.t. } H \in \{1, -1\}^{n \times r} \quad \text{(balanced)} \\
1^\top H = 0 \\
H^\top H = nI_{r \times r} \quad \text{(orthogonal)} \\
W : \text{graph adjacency matrix}
\]
Direct Graph Hashing Framework

Anchor Graph Laplacian $L = I - A$
relax to a mixed formulation, and learn by alternate maximization

$$\min_B \ tr(B^T LB) + \frac{\rho}{2} \text{dist}^2(B, \Omega)$$

s.t. $B \in \{1, -1\}^{n \times r}$

where

$$\Omega = \{ Y \in \mathbb{R}^{n \times r} \mid \mathbf{1}^\top Y = 0, Y^\top Y = n\mathbf{I}_{r \times r} \},$$
$$\text{dist}(B, \Omega) = \min_{Y \in \Omega} \|B - Y\|_F.$$

- Generate nearly balanced and uncorrelated
 (controlled by the parameter ρ) hash codes B.
YouTube Face Dataset

Wolf et al. CVPR’11. 370K face images from 340 people, 3.8K images from 38 people as queries.

Correct: faces from the same person.

\[
F\text{-measure} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
\]

SH = Spectral Hashing
AGH = Anchor Graph Hashing
DGH = Discrete Graph Hashing
Preserve Manifold Structure in Hash codes

Irie, Li, Wu, Chang, CVPR ‘14

1. Capture locally linear structures
2. Preserve locally linear structures in Hamming space

\[
\min_{w_i} \lambda \|s_i^T w_i\|_1 + \frac{1}{2} \|x_i - \sum_{j \in \mathcal{N}_E(x_i)} w_{ij} x_j\|^2
\]

\[
s_i = (s_{i1}, \ldots, s_{in})^T, \quad s_{ij} = \frac{\|x_i - x_j\|}{\sum_{j \in \mathcal{N}_E(x_i)} \|x_i - x_j\|}
\]

\[
\min_{y_1, \ldots, y_n \in \mathcal{H}} \sum_i \|y_i - \sum_j w_{ij} y_j\|^2
\]
Experiments: Locally Linear hash

Up to 6-7X performance gain
Over Yale face dataset
Extend Anchor Idea to Kernel Hashing

Kernel:
can be any nonlinear kernel, RBF, Gaussian, etc.

\[H_l \text{ hash bits} \]
\[
\begin{pmatrix}
1 & -1 & 1 \\
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & 1 & -1
\end{pmatrix}
\]

\[K_l \text{ kernel matrix} \]

Learn optimal projection over anchors
\[\begin{pmatrix} a_1 & A & a_r \end{pmatrix} \]

\[= \text{sgn} \]

\[m \text{ anchors} \]
Supervised Learning: Explore Additional Side Information

E.g., Binary Supervision

Group M: same class /person

Group C: dissimilar

Binary Relations:

\[S_{ij} = \begin{cases}
1 & : (x_i, x_j) \in M \\
-1 & : (x_i, x_j) \in C \\
0 & : otherwise.
\end{cases} \]
Kernel Supervised Hashing

\[H_l = \begin{bmatrix} H(x_1) \\ \vdots \\ H(x_l) \end{bmatrix} = \begin{bmatrix} h_1(x_1), \ldots, h_r(x_1) \\ \vdots \\ h_1(x_l), \ldots, h_r(x_l) \end{bmatrix} \]

\[\min_{H_l \in \{1, -1\}^{l \times r}} Q = \| \frac{1}{r} H_l H_l^T - S \|^2_F, \]

S: supervised Information

Liu, et al CVPR'12
1M Tiny Image Dataset

2K query images + 1M database images. 5K (0.5%) pseudo-labeled positives are used for the supervised label matrix S.

KLSH (unsupervised) and KSH (supervised) use the same RBF kernel.
Comparison: Hash vs. Tree indexing

Photo Tourism Patch set (103,000 samples) 512-dim SIFT feature
Back to Visual Search Applications

1. Take a picture
2. Send image or features
3. Send via mobile networks
4. Visual matching with database images
5. Send results back
Mobile Visual Search using Bags of Hash Bits (BoHB)

- Fast Hashing
- Compact Code
- Search Large DB

Diagram:
- Extracting Local Feature
- Hashing
- Display
- Extracting Boundaries
- Feature Matching with Hash Bits
- Geometry Verification With Hash Bits
- Search Results
- Boundary Reranking
- Query data

Mobile

Server
Columbia MVS System:
Bags of Hash Bits and Boundary features

Server:
- 400,000 product images crawled from Amazon, eBay and Zappos
- Hundreds of categories; shoes, clothes, electrical devices, groceries, kitchen supplies, movies, etc.

Speed
- Feature extraction: ~1s
- Transmission: 80 bits/feature, 1KB/im
- Server Search: ~0.4s
- Download/display: 1-2s

video demo (50'')
Extension to 3D Model Search

Application: 3D printing, Robotics, etc.
Object Proposal
- RGBD Superpixel Merge, SVM Ranker

3D Database
- ~3000 CAD models over 10 categories
Other Hashing Forms
Spherical Hashing

• linear projection -> spherical partitioning

\[h_k(x) = \begin{cases}
-1 & \text{when } d(p_k, x) > t_k \\
+1 & \text{when } d(p_k, x) \leq t_k
\end{cases} \]

• Asymmetrical hash bits: tighter regions for +1

• Learning: find optimal spheres (center, radius) in the space
Spherical Hashing Performance

• 1 Million Images: GIST 384-D features
Point-to-Hyperplane Search

Find points closest to the hyperplane

point query

nearest neighbor

normal vector

hyperplane query

\mathbf{w}
• Choose the sample closet to the SVM classifier hyperplane and ask human annotator
Hashing Principle: Point-to-Hyperplane Angle

\[\min D \Rightarrow \min \alpha \]

\[D(x, P_w) = \frac{|w^T x|}{\|w\|} \]

The ideal neighbors \(\perp w \)
Bilinear Hashing

Bilinear-Hyperplane Hash (BH-Hash)

\[h^B(z) = \text{sgn}(u^\top zz^\top v), \text{ i.i.d. } u, v \sim \mathcal{N}(0, I_{d\times d}). \]

2 random projection vectors

- **bilinear** hash bit: +1 for || points, -1 for \perp points
A Single Bit of Bilinear Hash

\[h^B(w) = \text{sgn}(u^Tww^Tv) = \text{sgn}(u^Tw) \text{sgn}(v^Tw) = 1 \cdot 1 = 1 \]

\[h^B(x_1) = \text{sgn}(u^Tx_1) \text{sgn}(v^Tx_1) = 1 \cdot 1 = 1 \]

\[h^B(x_2) = \text{sgn}(u^Tx_2) \text{sgn}(v^Tx_2) = -1 \cdot 1 = -1 \]
Locality Sensitivity

\[
\Pr [h^B(w) \neq h^B(x)] = \frac{1}{2} - \frac{2(\theta_{x,w} - \frac{\pi}{2})^2}{\pi^2} = \frac{1}{2} - \frac{2\alpha_{x,w}^2}{\pi^2}
\]

highest collision probability for active hashing
Active SVM Learning with Hyperplane Hashing

- SVM Learning over 1 million data points
 - actively select the most decisive training point in each iteration

(a) Learning curves

Mean average precision (MAP)

Active learning iteration #
Summary and Open Issues

• Locality Sensitive Compact Hashing
 – Applications in large-scale search, active learning, etc.

• Properties
 – Locality Sensitive
 – Fast code generation
 – Compact size: 20-64 bits per point
 – Efficient search: \(O(1)\) or sublinear cost

• Novel formulations
 – Graph hash, Kernel hash, Hyperplane hash, spherical

• Open Issues
 – Adaptive learning given new data
 – Incorporate high-order relations (e.g., spatio-temporal)
 – Hashing for heterogeneous multimodal features
Selected References

(Hashing with Graphs)

(Iterative Quantization)

(Manifold Hashing)

(Supervised Kernel Hash)

(Hash Based Mobile Product Search)
- J. He, T. Lin, J. Feng, X. Liu, S.-F. Chang, Mobile Product Search with Bag of Hash Bits and Boundary Reranking, CVPR 2012

(Semi-Supervised Hash)

(Circular Hashing)