Optimal Video Adaptation and Skimming Using a Utility-Based Framework

Shih-Fu Chang

Digital Video and Multimedia Lab ADVENT University-Industry Consortium Columbia University Sept. 9th 2002 http://www.ee.columbia.edu/dvmm

The Need for Video Adaptation

Heterogeneous users, networks, and terminals

Content analysis to assist video adaptation decision

Adaptation in 3-tier architecture

Prior works

- Active proxy dynamic distillers
 [Fox, Brewer, et al 96]
 - Datatype-specific distillation
 - intermediate proxy low end-to-end latency
 - network/application interface separation
- Video manipulations done at the global level
 - Resolution, frame rate, color depth

Prior Works

- InfoPyramid, Universal Tuner [Smith, Li, Mohand 99]
 - Content adaptation with various fidelity and modality
 - Translation and transcoding
- Transcoding focused on images
- Allowable operators are optimized at the global level
 - Resolution, bit rate, color depth, modality substitute

- Video contains rich multi-level elements and structures
- User/network conditions may change rapidly

Framework for Micro-level Adaptation

A Utility-Based Framework

Entity:

- A set of video data with consistency constraints on certain attributes
- Basic data unit undergoing adaptation

Examples:

- Program, Shot, Scene
- Frame, Object, Region
- Syntactic or semantic elements, e.g., anchors, scoring segments
- Synchronous multimedia entities, e.g., dialog, talking face, explosion

Multiple Degrees of Freedom for Adaptation

Signal level

- change of bit rate, frame rate, resolution, color depth, SNR
- Time
 - Condensation by uniform time scaling, content-based filtering (selection/dropping)
- Modality conversion
 - Key frame shows, video posters, spatial summaries

Key Issues

- Given an entity, what are allowable adaptations in a specific environment?
 - frames droppable from MPEG, shots removable in a scene
- Measurement and modeling of resources and utilities
- How to combine different types of resources and utilities?
 - Power, display, memory, CPU, bandwidth, and user time
 - SNR, Subjective quality and comprehension
- Description schemes of ARU spaces
 - E.g., N shots with binary selection \rightarrow N(N-1) points
 - **E.g.**, 4 frame rates, 2 resolutions \rightarrow 8 adaptation points
 - How about multi-level entity, multi-dimension R/U

Case 1: Video Skim Generation

(with H. Sundaram 2001)

Original scene → condensed clip (video skims)

- understanding? (U)
- 4. A Resource Constrained Utility Maximization Problem

S.-F. Chang, Columbia U.

Original-1

Original-news

30% Skim

17% Skim

How to Construct Computable Utility Model?

- How much time is required for generic comprehension (who, what, where, when)?
- Is comprehension time related to the computable spatio-temporal complexity of the shot ?
- Explore Viewer Perceptual Model from Film Theory
- The presence of detail robs a shot of its screen time [Sharff 1982].

Measuring Comprehension Time

Represent the shot by its key-frame

- A shot is selected at random [3600 shots]
- The subject was asked to *correctly* answer four questions in minimum time:
 - Who ?
 - What ?
 - When ?
 - Where ?

"Why" was not asked

Utility Function

Plot of average time vs. complexity shows two bounds $U_b(c) = 2.40c + 1.11$ $L_b(c) = 0.61c + 0.68$

Utility function between the bounds

$$S(t,c) = \beta c (1-c) \bullet (1-\exp(-\alpha t))$$

$$U(\vec{t}, \vec{c}, \phi) = \frac{1}{N_{\phi}} \sum_{i:\phi(i)=1} S(t_i, c_i)$$

t: duration, c: complexity $\phi(i)$: selection indicator sequence

Factors affecting comprehension

The comprehension time is influenced by many factors:

- Visual complexity
- The viewer task (active vs. passive)
- Prior knowledge of the viewer

So far, we only focus on visual complexity since it is measurable.

Rich Structure: Considering syntax

The specific arrangement of shots so as to bring out their mutual relationship. [sharff 82].

- Minimum number of shots in a scene
- The particular ordering of the shots (cut)
- The specific duration of the shots, to direct viewer attention
- Changing the scale of the shots

Film makers think in terms of phrases of shots and not individual shots → choose the right entity for adaptation

The progressive phrase

"Two well chosen shots will create expectations of the development of narrative; the third well-chosen shot will resolve those expectations." [sharff 82].

Hence, a phrase (a group of shots) must at least have three shots.

Maximal shot removal: eliminate all the dark shots.

Structure (dialog)

"Depicting a conversation between *m* people requires 3*m* shots." [sharff 82].

Hence, a dialog must at least have six shots

Maximal adaptation: eliminate all the dark shots.

Tied Audio-Video Constraint

- Tied segments:
 - Include all significant
 - Audio and video boundaries are fully synchronized
 - Cannot be condensed or de-synchronized
 - Allow viewers to "catch up" when viewing skims
- Untied segments:
 - Audio-video can be dropped, condensed, reduced
 - Audio-video segments do not have to synchronize

Utility Framework for Skim Generation [Chang, IWDC 02]

S.-F. Chang, Columbia U.

Case 2: Utility-Based MPEG-4 Video Transcoding

(with J. Kim and Y. Wang)

- Original bit rate \rightarrow reduced rate (resource change)
- Adaptation Space: FD: frame dropping, CD: coefficient dropping, and combinations

Utility Ranking Description: {(R_i, Rank(A_i), U_i, Consistency-Flag), i = 1,2, ...}

MPEG-4 Fine-Grained Scalability

 Adaptation Space: Temporal frame rate and SNR bit planes

Utility Function of Subjective Spatio-Temporal Preference (w. R. Kumar and M. van der Schaar)

- SNR is inadequate for measuring utility
- We conduct study where users chose preferred framerate at different bit-rates
- As the bit-rate goes up, people prefer better framerates
- Preference varies with video category
 - High-motion videos (Stefan, Coastguard) require a higher frame rate

S.-F. Chang, Columbia U.

Utility Model Guided FGS

- When more bit rate available, increase SNR quality and fix temporal rate to a predetermined bitrate
- Then improve temporal quality
- Further improve SNR quality at the new framerate
- And so on....

(B) SNR quality of enhanced-scheme

FGS+ Scheme

Solve the issue of determining optimal rate for motion prediction reference

Performance

- Improvement over FGS varies from 0.19 dB to 1.28 dB
- At low bit-rates simple videos benefit (Coastguard)
- At high bit-rates complex videos benefit (Mobile)

Content-based utility classification and prediction

Bocheck and Chang 2000 S.-F. Chang, Columbia U.

Case: Live Sports Filtering and Adaptive Streaming

With D. Zhong and R Kumar, 2000

Real-time alert or streaming

- By Player
- By Time
 Set your Own

- Time sensitive interest
 - Need of real-time processes
- Time compressibility
 - Room for adaptation
- Temporal structure and production rules
 - content analysis feasibility

Utility Adaptive Video Streaming

- Model utility based on content "importance" vs. "non-importance"
- Utility-based adaptive rate allocation

Conclusions

A generalized conceptual framework for

- Modeling relationships among content entities, adaptation processes, utility, and resources
- Formulating optimization tasks, e.g.,
 - Time condensed skims
 - Modeling spatio-temporal utility preference
 - Content-adaptive streaming
- Several remaining issues
 - utility model, high-dimensional representation, search