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Abstract—A number of automated shot-change detection
methods for indexing a video sequence to facilitate browsing
and retrieval have been proposed in recent years. Many of these
methods use color histograms or features computed from block
motion or compression parameters to compute frame differences.
It is important to evaluate and characterize their performance so
as to deliver a single set of algorithms that may be used by other
researchers for indexing video databases. We present the results
of a performance evaluation and characterization of a number of
shot-change detection methods that use color histograms, block
motion matching, or MPEG compressed data.

Index Terms—Performance evaluation, shot-change detection,
video databases.

I. INTRODUCTION

A NUMBER of initiatives have been undertaken which aim
to include digital video content in a digital library acces-

sible over a data network. The interface to this content is meant
to allow browsing and searching of the video. Given the tem-
porally linear and data-intensive nature of digital video, cou-
pled with the bandwidth constraints of the network, temporal
segmentation of any video sequence stored in the video data-
base has been generally accepted to be a necessary first step in
the creation of the interface [1]. Shot-change detection is the
process of identifying changes in the scene content of a video
sequence so that alternate representations may be derived for
the purposes of browsing and retrieval, e.g., keyframes may be
extracted from a distinct shot to represent it. An example of a
keyframe representation for a 10 000-frame sequence is shown
in Fig. 1. Such video storyboards can be obtained by a shot-de-
tection process running on stored or live incoming video using
the methods described later in this paper. This representation
can be used as a video summary, to browse the content of the
whole sequence, and if desired, to quickly pick the shots of in-
terest and view them.

The definition of a shot change is difficult to make. Pro-
nounced object or camera motions may change the content of
the view frame drastically. To be consistent, we define ashotto
be a sequence of frames that was (or appears to be) continuously
captured from the same camera. Ideally, a shot can encompass
pans, tilts, or zooms; in reality, algorithms for shot-change
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detection may also react to significant object and camera motion
unless global motion-compensation is performed. Identifying
shot changes and indexing the video sequence will facilitate the
fast browsing and retrieval of subsequences of interest to the
user. Shot changes may occur in a variety of ways:cuts, where
a frame from one shot is followed by a frame from a different
shot, orgradual transitionssuch as cross-dissolves, fade-ins,
fade-outs, and various graphical editing effects (wipes, pins),
which may also be accorded varying semantic significance (e.g.,
a fade-out to black, followed by a fade-in, is often used by film
directors or editors to indicate the passage of time or a change of
location). Thus, it is important to be able to detect these events
distinctly.

Previous researchers [2]–[5] have employed color histograms
to temporally segment color video sequences. The difference
between the histograms of consecutive frames is computed and
large frame differences are marked as possible shot changes. A
number of methods to compare two histograms are possible,
prominently: absolute difference between corresponding bins
(possibly with a color similarity matrix [6] or without [7]), his-
togram intersection [8], and chi-square () comparison [2]. We
investigate the efficacy of these different measures for cut detec-
tion and the effect of color space representation on the perfor-
mance of histogram-based shot detection.

Since stored digital video is likely to be compressed, other
researchers have proposed a number of algorithms that perform
shot-change detection directly on transform coded MPEG com-
pressed video [9]–[19]. Future versions of the MPEG standard
are likely to use higher (object) level “semantic” compression,
thus easing the task of indexing the video. Until these standards
are implemented, the discrete cosine transform (DCT) MPEG
standards are likely to dominate, and thus, performing shot de-
tection on MPEG video acquires importance. We evaluate these
algorithms on the basis of their performance on detecting cuts
and gradual transitions. We also characterize their performance
with respect to robustness to changes in the specific encoder
used and the compressed bitrate.

Finally, a number of algorithms have been proposed that per-
form motion analysis or optical-flow computation to determine
shot changes. Three algorithms that perform block motion
matching are included in our evaluation. The MPEG techniques
also use the block motion prediction information contained
in an MPEG bitstream, but the MPEG encoder assigns block
motion vectors based on compressive value, not on optical flow
consistency.

Although each proposed method described in the literature
was tested to varying degrees by the authors, there is a need to
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Fig. 1. An example of a keyframe-based browsing and viewing representation for a sports video sequence.

evaluate them and characterize their performance on a common
data set. This is the primary motivation for the research de-
scribed in this paper.

The outline of the paper is as follows. In Section II, we review
previous work on performance evaluation of shot-segmentation
algorithms. Section III describes our ground-truthed dataset
and experimental protocol. A description of the shot-change
detection algorithms that were implemented is presented in
Section IV. Section V discusses the automatic thresholding
methods we employed. Results of our evaluation are presented
in Section VI. The results of characterizing selected MPEG
algorithms in terms of their sensitivity to data, parameter, and
encoder changes are presented in Section VII. Section VIII
contains a summary and conclusions.

II. PREVIOUS WORK

Ahangeret al. [20] surveyed the field of video indexing
without evaluating or characterizing particular algorithms.
Boreczky et al. [21] compared five different indexing algo-
rithms: global histograms, region histograms, global histograms
using twin-comparison thresholding, motion-compensated
pixel difference (similar to [22] which we also evaluate),
and DCT-coefficient difference, with respect to shot-change
detection. The histograms were grayscale histograms. Their
data set consisted of 233 min of motion-JPEG video of various
types digitized in 320 240 resolution at 30 frames/s. Some
manual tuning was done to find suitable ranges of thresholds to
generate the operating curves.

Dailianas et al. [23] compared algorithms based on his-
togram differencing, moment invariants, pixel-value changes,
and edge detection. The histogram differencing methods they
studied were:

1) simple: bin-to-bin histogram differencing without nor-
malization;

2) weighted: red, green, and blue histogram differences are
assigned different weights;

3) equalized: simple differencing after histogram equaliza-
tion;

4) intersection;
5) chi-square.

The last two methods are described later in this paper. The
moment-invariant difference was computed as thedistance
between a 3-element vector formed of invariants computed
from normalized central moments. Segmentation based on
pixel-value changes used the method of Aigrain and Joly [24].
This assigns certain ranges of corresponding pixel changes
as being caused by camera cuts (128–255 for 8-bit pixels) or
dissolves and fades (7–40). The edge-based algorithm is that of
Zabih et al. [25], where disappearance of old edge pixels and
appearance of new edge pixels far from each other indicate a
shot transition.

Their data set consisted of two news broadcasts, a training
video and a feature movie. These were digitized from NTSC at
12–15 frames/s in Intel Indeo format, with a total of 2.5 h of
video with 1141 cuts.

Our work differs from these previous studies in that for our
histogram comparisons we used color histograms in multiple
color spaces and investigated the effect of different color space
representations. Further, color histograms are often computed as
either three one-dimensional (1-D) histograms or as one three-
dimensional (3-D) histogram. We evaluated the effect of such
representations and explicitly used local thresholding and ob-
tained operating characteristic curves. We observe that the eval-
uation process itself is parameterized, and explicitly state our
parameters. Unlike either study, we evaluated and characterized
MPEG algorithms, since compressed-domain methods have be-
come dominant in this field. Both of these studies used human
observers to determine the ground truth, and the latter study
noted that this creation of ground truth involves ambiguity in the
presence of shot changes and that differences between observers
occur. We present some experimental results that indicate the
conditions under which unbiased human ground truthing is most
effective.
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III. D ATABASE GENERATION AND EXPERIMENTAL PROTOCOL

To evaluate the performance of the shot-change detection
algorithms, we captured a database of video sequences and
generated the corresponding ground-truth information. We
captured video at 30 frames/s at 640480 resolution and
stored in M-JPEG format. The video sequences were ground
truthed, with respect to temporal segmentation by human
volunteers using a software program that allowed them to view
the sequences and mark the frames at which they considered
a shot change to have occurred. We have developed a tool
which can automatically generate ground-truthed sequences
of arbitrary length and complexity by splicing such manually
ground-truthed sequences at known shot-change points.

Although for this research all ground-truth data was obtained
by experienced humans using frame-by-frame inspection, it is
interesting to ask whether it is possible for lay volunteers to pro-
vide ground truth simply by watching video. This would allow
large amounts of video to be ground truthed relatively cheaply.
But there are a number of issues to consider. Creation of the
ground-truth data is a subjective process. Different human sub-
jects may mark the same sequence very differently. A subject
may mark the same sequence differently on successive view-
ings. Also, having access to semantic content, humans will tend
to mark many more shot changes on a given sequence than will
be detected by any algorithm using purely visual information.
Our goal was to produce a data set and corresponding ground
truth which would be usable for evaluating various algorithms
and would be as consistent as possible. In order to establish the
optimum experimental conditions under which human volun-
teers perform their best, a preliminary study of human ground
truthing was carried out.

A. Experimental Study of Human Ground-Truthing

The purpose of this study was to determine the best way to
allow human subjects to establish a ground truth for temporally
segmenting video sequences. The parameters of the experiment
and the associated questions to be answered were the following.

1) Playback Speed:Was full frame rate or some slower
speed the best at which the subject could be most accurate?

2) Number of Previewings:Many subjects might find it
useful to view the sequence one or more times before actually
performing the segmentation, especially for very active or fast
moving sequences. How many previewings would be best?

3) Manner of Evaluation:Was it feasible to ask people to
rank frame differences in order of significance to compare with
the ranking that an algorithm might produce?

4) Response Time:What response delay do humans exhibit?
This would be useful in mapping the marked ground-truth shot
changes to the shot changes found by an algorithm. Our training
set sequences (see Section III-B) were shown to each of nine
volunteers and they were asked to mark cuts in them. Each vol-
unteer saw each sequence at a number of combinations of play-
back speed and number of previewings. The playback frame rate
was either 1.0 (30 frames/s display rate), 0.5 (half frame rate) or
0.25 (quarter frame rate). The number of previewings was either
0, 1, or 2 (the previewings themselves were at full speed). The
interface for the volunteers consisted of a program running on

TABLE I
DESCRIPTION OF THESEQUENCES IN THE

DATASET

a workstation that played the sequence at the desired speed in
a window on the monitor and allowed mouse clicks to record
shot changes. The results of this experiment clearly showed that
we achieved the best quality and most consistent results when
subjects were allowed to mark the scene changes at half speed
after viewing the sequence once at full speed. Frame-differ-
ence ranking was too subjective and too time consuming. The
volunteers produced highly inconsistent results. For half-speed
marking, the average delay time was about 10 frames. It ranged
from about 7–20 and was fairly consistent for a given subject.
This delay would need to be factored into the evaluation process
as a parameter to (see Section III-C ).

These preliminary results tentatively indicate the conditions
under which lay volunteers may be used to generate ground-
truth data for video segmentation.

B. Dataset

Our database consisted of the sequences listed in Table I. A
total of 959 cuts and 262 gradual transitions was present in these
approximately 76 min of video. The sequences were converted
to MPEG-1 sequences at 320240 resolution using software
encoders. The MPEG encoding process often split a two-frame
gradual transition into a single cut; such gradual transitions were
labeled as cuts in the ground truth.

The sequences were complex with extensive motion and
graphical effects. All the sequences, with the exception of
the sitcom, had commercials, some with rapid changes. It is
interesting to note that the sitcom had the most cuts, despite
having no commercials. This was caused by a large number
of back and forth camera angle changes, though the number
of distinct scenes was less than in the other types of sequence.
There are instances of three cuts in four consecutive frames,
cuts occurring in the middle of a gradual transition, long
cross-dissolve with object motion, and cuts in only portions of
the frame, etc. An example of a complex transition is shown in
Fig. 2 The transition shows a 2-frame dissolve followed by a
zoom in, computer-generated graphical effects, and a dissolve
followed immediately by a 2-frame dissolve. Using a software
program for frame accurate video display and event (cut or
gradual transition begin or end) recording on a workstation,
it took an experienced person roughly 5–6 hours to ground
truth 20 min of video. Designing the ground-truthing protocol,
building tools for ground truthing, and determining appropriate
conditions for ground truthing accounted for a significant
fraction of our research efforts over the past few years.

The training sequence contained diverse types of content
from news to rock music videos and was used to optimize pa-
rameters and for learning the parameters for local thresholding.
The rest of the sequences acted as a testing set.
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Fig. 2. Sample transition: frames 11635, 11688, 11725, 11761, 11787, 11800, 11823, and 11825 of a sequence.

C. Evaluation Process

The comparison between an algorithm’s output and the
ground truth is based on the numbers of missed detections
(MD’s) and false alarms (FA’s), expressed as recall and preci-
sion

Recall
Detects

Detects 's

Precision
Detects

Detects 's

Sethi and Patel [26] suggest that false-alarm errors be ig-
nored entirely. In our view, this is not desirable; under such an
evaluation scheme, an algorithm that reported events at every
single frame would outperform a more conservative one. Since
shot detection is needed for semantic compression of video, too
many shot changes will lower the efficiency of the representa-
tion. Even with perfect precision, some types of video sequence
have shot changes every few seconds; increasing this with false
alarms would render the resultant video summary useless for the
end user.
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The evaluation process is also parameterized, in this case by
how far from a ground-truth point we allow an algorithm de-
tection to be and still be counted as a detection. Definingto
be the set of ground-truth events or features in the data, and
to be the events or features marked by a detection algorithm,
the evaluation process can be defined as the process of mapping

. This mapping process will also, in general, be pa-
rameterized. The parameter for our evaluation consisted of the
mapping range , which is the temporal interval within which
a ground truth and a detected event are matched. This mapping
needs to take place because the detected event frame number
will sometimes not match the ground-truth event frame number
exactly. This occurs either because of the difference in interpre-
tation of when a video event occurs when multiple choices over
a (small) range are possible, or because of the temporal reso-
lution used in processing sequences or because of the subjec-
tive placement of a ground-truth event. This is especially true of
gradual transitions. In addition, human response time would fur-
ther affect the location of a ground-truth cut if ground truth were
generated by viewing a sequence instead of by frame-by-frame
inspection.

IV. A LOGORTHMSEVALUATED

A. Color-Histogram Algorithms

1) Color Spaces:Histograms were computed in the color
spaces listed below. Equations for color space conversions are
available in [27].

1) RGB: The NTSC red, green, blue space.
2) HSV: The hue, saturation, value space.
3) YIQ : The NTSC transmission standard for encoding tele-

vision pictures.
4) XYZ : A CIE artificial primary system in which all three

tristimulus values are always positive. Y represents the
luminance of the color and is the same as the “Y” in the
YIQ model.

5) L*a*b* (LAB): This is a perceptually uniform color
space developed by the C.I.E. to provide a computa-
tionally simple measure of color in agreement with the
Munsell color system. L* approximately represents the
luminance component while a* correlates with red-
ness-greenness and b* correlates with yellow-blueness.

6) L*u*v* (LUV): Another uniform color space that
evolved from the L*a*b* system and became a CIE
standard in 1976.

7) Munsell (MTM): The Munsell renotation system also
uses a conceptual breakdown of color into hue, value, and
chroma components. Hue can be expressed not only as a
number, but also as a name. The Munsell Book of Color
realizes this space as a set of color chips laid out in rows
and columns for different hue values. For a given con-
stant hue, the chips are intended to be perceived with con-
stant brightness in one dimension and constant chroma
in another dimension. This conversion was approximated
using the method given by Miyahara and Yoshida [28].

8) Opponentcolor axes (OPP): The RGB space may be con-
verted into an opponent color axis space that approxi-
mately separates the luminance and chrominance compo-

nents with simple integer computations. This space was
presented in [29] as a useful space for performing video
indexing.

As a baseline comparison, we also used the luminance alone
(YYY) to verify whether color information was useful in shot-
change detection.

2) Frame Difference Measures:Four measures of difference
between histograms were studied.

1) Bin-to-bin difference (B2B). Given two histograms
and

(1)

where is the number of pixels in a frame.
2) Chi-square test histogram difference (CHI). The his-

togram bin difference values are normalized to sharpen
the frame differences being computed. The authors in [2]
justify this to “make the evaluation value more strongly
reflect the difference of two frames”

(2)

(3)

The normalization by is necessary for singular cases
as when one histogram consists of exactly one bin and the
other histogram has exactly one pixel in the same bin.

3) Histogram intersection (INT). As described in [8], the in-
tersection and corresponding frame difference between
two color histograms are

Intersection (4)

Intersection (5)

4) Average color (AVG). In [30] it is shown that the differ-
ence of average colors of a histogram defined as the 31
vector

(6)

where is the color axis (e.g., R, G, or B) and is
the value of color tristimulus at bin (for RGB colors,

), is a lower bound on the quadratic form
histogram distance using a color-similarity matrix. The
frame difference was computed as the square of the av-
erage frame-color differences .

3) Dimensionality: Each of the above histogram difference
measures (except for AVG which is applied only to 1-D his-
tograms) can be applied to 1- , 2- , or 3-D histograms. That is,
the color distribution in a frame may be represented as either
three independent 1-D distributions in each of the primaries,
or a distribution in two dimensions over the two axes that are
not correlated with luminance, or as a distribution over all three
dimensions simultaneously. A 2-D representation neglects the
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luminance component (if one exists) and uses only the chromi-
nance components simultaneously (the RGB color space has no
2-D representation). The idea behind a 2-D histogram is that
changes in the brightness of the frame may not be correlated
with real content change. For example, flash photography may
momentarily increase the brightness of the recording of a news
conference. The quantization levels of color space were as fol-
lows: for 1-D histograms, 256 bins; for 2-D histograms, 1616
bins; for 3-D histograms, 8 8 8 bins. We abbreviate the
method and histogram dimensionality into a single code such
as B2B1D, INT3D, etc.

B. MPEG Algorithms

1) Brief Introduction to MPEG Video: A very brief
overview of the MPEG-1 video format [9] is presented here.
There are three types of temporally interleaved frames in an
MPEG-1 bitstream: 1) I frames, which are encoded using
lossy DCT and lossless entropy coding of the pixel data; 2) P
frames, which are motion compensated in the forward direction
from I and other P frames (i.e., vectors point from a future
frame to a past frame); and 3) B frames, which are motion
compensated in both temporal directions from I and P frames.
A group-of-pictures (GOP) refers to the frames between two
I frames. Motion compensation is carried out at the resolution
of macroblocks which are 16 16 pixel blocks, and induces
compression by allowing a target macroblock to be represented
as a vector pointing to a source macroblock in a reference (I or
P) frame and a residual error (which is itself DCT-encoded). A
zero prediction vector results if the best matching macroblock
in the reference frame that the encoder can find occupies the
same position as that of the target macroblock. If the residual
error after motion compensation for a particular macroblock
in a B or P frame is still too high, the encoder can choose to
intracode that macroblock, i.e., to DCT-encode the pixel values
directly. A macroblock in a B frame can be forward predicted
(the prediction vector points to a macroblock in a past frame),
backward predicted (the prediction vector points to a future
frame), or bidirectionally predicted (the best matching source
macroblocks in the previous and the next reference frame
are averaged). DCT coding is carried on units of 88 pixel
blocks, giving rise to 64 DCT coefficients per block and 4
blocks/macroblock. Pixel values are represented in the YCrCb
space and the chrominance components may be spatially
subsampled relative to the Y component (the4 : 2 : 0format).

2) Description of MPEG Algorithms:
Algorithm MPEG-A: Correlation of DCT-coefficient vec-

tors and prediction vector count statistics. Correlation of DCT-
coefficient vectors was originally defined for JPEG images [31]
and subsequently modified for the I frames of MPEG sequences
[32]. Somea priori subset of 8 8 blocks in the frame is chosen.
As specified in [31], we chose a small portion of the frame: three
connected regions on the sides and in the center of the frame,
covering 15% of the frame, were used. Somea priori subset of
the 64 DCT-coefficients for each block is chosen; we chose the
16 low-frequency components. A vector is formed from these
coefficients of each chosen block. The inner product of two con-
secutive I frames gives the frame similarity.

Additionally, breaks in B frames are detected as follows: if
and are the numbers of nonzero forward and back-

ward macroblock prediction vectors used in for a particular B
frame, then a cut is declared if , i.e., if
the bidirectional frame prediction favors a particular direction.
A twin-threshold comparison is used to detect gradual transi-
tions. The total number of parameters needed to specify this al-
gorithm is eight.

Algorthim MPEG-B: Variance and prediction statistics
[15]. For cut detection, this approach uses statistics on the
numbers and types of prediction vectors used to encode P and B
frames. For P frames, if is the number of intracoded mac-
roblocks, and is the number of intercoded macroblocks
(those for which motion-prediction vectors are available), then
a high value of indicates a shot change. For B
frames, the ratio vectors is used. I frame cuts are
detected by finding peaks in the difference of frame intensity
variance where the variance is computed for the discrete cosine
(DC) coefficients in I and P frames. An adaptive thresholding
method is used for peak detection: the ratio of peak values to
average values within a 2–4 GOP size interval is used. Linear
dissolves are also recognized by using the difference of frame
variances. For dissolves, the ideal variance curve is shown to
be parabolic. Peaks in intensity variance separated by a deep
trough indicate a dissolve. This algorithm uses I and P frames
fully, and prediction vector statistics from B frames. The total
number of parameters needed to implement this algorithm is
seven. This algorithm is used in the VideoQ system [33].

Algorithm MPEG-C: Motion-prediction statistics [14].
This paper suggests the use of the average error power of
macroblock prediction residual error in P-frames. This measure
would only detect cuts that occur between a P-frame and its
past reference frame. However, the method finally proposed
uses the ratios of forward, backward and bidirectional motion
prediction vector numbers for B frames. It defines the following
frame difference measure:

where is the number of bidirectionally predicted blocks
in a B frame [9] and is the total number of macroblocks.
A median filter algorithm is used for thresholding. This algo-
rithm detects only cuts, uses only B frames, and requires two
parameters.

Algorithm MPEG-D: DC-frame differences [16]. DC
coefficient values for I, P, and B frames are extracted (DC coef-
ficient values for P and B frames are reconstructed as in [34]).
These values are used to construct a DC-frame sequence, where
a DC-frame is a frame consisting of the average intensities
of 8 8-blocks of the original frames. Differences between
these DC-frames are then computed. Results are presented for
two metrics: the sum of the absolute DC-frame pixel-to-pixel
differences, and the bin-to-bin difference between histograms
of the DC-frame pixel luminances. Automatic thresholding is
achieved by a sliding window technique—a peak is declared
if it is greater than the second largest difference within the
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window by some factor. Gradual transitions are detected by
looking for a gradually increasing multiframe difference fol-
lowed by a plateau followed by a decreasing frame difference.
This algorithm uses I, P, and B frames. There are 11 distinct
parameters that need to be specified for using this algorithm.

Algorithm MPEG-E: Statistical tests on DC coeffi-
cients [26]. This computes the histograms of two consecutive
DC-frames, applies the statistical test to these two dis-
tributions to determine the probability that they were drawn
from different source distributions and thresholds using a fixed
value. An improved version of this algorithm [11] computes
row and column histograms, in addition to the overall frame
histogram, and uses decision logic to combine the three event
decisions into one. These algorithms operate only on I frames.
Our implementation allowed the choice of using only I frames,
I and P frames, or I, P, and B frames. The latter two were found
to give better results, especially in terms of event localization.
Four parameters were needed to implement it.

Algorithm MPEG-F: DC-coefficient histogram differ-
encing [19]. Unlike the other methods described here, this
method uses the color information present in the bitstream.
1-D histograms of the luminance Y, and chrominance Cb and
Cr DC components of blocks are computed and bin-to-bin
differencing is applied to these histograms. Both static and
locally adaptive thresholds are used for peak finding. Median
filtered frame-difference values are used to detect gradual
transitions by looking for a series of medium-high difference
values, a majority of which need to be above a soft threshold.
The algorithm needs seven parameters to be specified.

3) Parameter Optimization for MPEG Methods:The values
of parameters needed for implementation of the algorithms were
not always specified in their published descriptions, or only a
range was specified. Further, in some cases, even those that were
specified, resulted in poor performance on our dataset. We also
found that we had to add some parameter variables to imple-
ment an algorithm. A complete simultaneous optimization with
respect to all the parameters of an algorithm was infeasible. We,
therefore, used the given values or reasonable values for those
parameters that were thought to have a range of equally valid
values (e.g., histogram resolution) and for the parameters that
the algorithm(s) proved more sensitive to, we chose optimal
values by empirical optimization maximizing a figure of merit
over the training set. The figure of merit used was the product
of recall and precision.

C. Block Matching Methods

Three algorithms which used block matching on uncom-
pressed video data were evaluated. These were the following.

Algorithm Block-A: This algorithm [35] detects shot
changes by using a motion smoothness measure. Each chosen
frame is divided into 8 8 blocks. Each block is matched
to a block in the next chosen frame within a 3030 pixel
neighborhood. The value of the correlation coefficient for
the best matching block is computed. The average of these
correlations represents an interframe similarity measure.

Algorithm Block-B: This algorithm also uses a form of
block matching and motion estimation to detect scene changes
[22]. The corresponding motion vector and best correlation

value are computed as before. The correlation values are sorted
into ascending order. A similarity measure is computed by
taking the average of the first values from the sorted list
where is the number of blocks scaled by a user-specified
matching percentage.

Algorithm Block-C: This algorithm does not do motion
compensated matching. Instead, as described in [36], the dif-
ferences between corresponding blocks of the two frames are
computed

(7)

where denotes the mean gray value anddenotes the square
root of the variance from the frames for the sample areas. The
likelihood ratio frame difference is the normalized sum of the
individual block differences. A block size of 40 40 was used
to capture large-scale frame content changes.

V. THRESHOLDING

The MPEG algorithms had associated thresholding methods
described by the authors. For the histogram and block matching
methods, an automatic thresholding framework was required.
The first question to ask was whether a global threshold would
work. If the cut and noncut frame difference values were clearly
separated for all video sequences, then a single global threshold
would work. Or this threshold could be set differently depending
on the type of video (commercials, sitcom, news, sports, etc.).
The distribution of cut and noncut frame difference values for
algorithms RGB INT1D and LAB B2B2D over the sitcom se-
quence are shown in Fig. 3. For both cases, the two distribu-
tions overlap such that no single threshold can be found that will
separate these two distributions. Because the two distributions
are normalized by the total number of points and noncuts out-
number cuts by a large factor, the threshold would need to be set
well into the noncut distribution tail before reasonable values of
precision are obtained. For example, for the RGB INT1D case,
a threshold of 0.1 gives a recall of 88% and a precision of 50%.
This performance may be sufficient for some applications but
further improvement is desirable. The distribution overlap was
true for all the algorithms. Therefore, a global threshold might
not work well even for video of a single homogeneous type and
in fact a global thresholding method based on k-means clus-
tering did not perform as well as local thresholding. Dailianaset
al. use a different approach of a single global threshold in con-
cert with a simple filtering algorithm to suppress any difference
values that were not local maxima [23]. The authors suggest that
local thresholding might be an alternative.

We therefore investigate local thresholding to see if it can
do better. There are many different ways of choosing a locally
adaptive threshold. We would like to be able to evaluate different
frame-differencing methods on their ability to separate cuts and
noncuts locally, independent of the thresholding method used.
We use the following local separability metric

(8)
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(a)

(b)

Fig. 3. Cut and noncut frame difference distributions for (a) RGB INT1D and
(b) LAB B2B2D for sitcom sequence.

where is the average noncut frame, is the average
cut frame difference, and is the mean standard deviation of
both cut and noncut frame differences within a local window.
This is computed at every cut frame and the mean over all cut
frames represents the local separability of the frame differences
for that algorithm. The window size corresponds to a local tem-
poral neighborhood for video. We empirically choose a small
window of 12 frames so that we can compare a point with very
similar points and not let large-temporal-scale camera motion-
affect cut detection. Computing over the testing set, we
find that it varies between 2.21 and 2.23 quite uniformly for all
color spaces and methods, except for the YYY space and the
CHI and AVG methods, which had lower values from 1.99–2.16.
Block-A, Block-C, and Block-B had values of 2.07, 1.94, and
1.97. These lower values indicate that they do not separate cuts
from noncuts as well as the color-histogram methods.

We found window average thresholding to be effective and
robust. The threshold at any frame is formed as a multiple of
the local window average and a constant factor.

VI. PERFORMANCECOMPARISON

The histogram methods and Block-C were run on every third
frame; Block-A and Block-B were run on every fifth frame, due
to their much greater computational cost. The MPEG algorithms
operated on either every frame or on only frames of a certain
type (I, P, or B). Any optimization or training was done on por-
tions of the training set, while results are presented for the whole
data set. Some of the algorithms we implemented detected only
cuts, while some detected gradual transitions as well. We present
results for these video events separately.

A. Cut Detection

The evaluation parameter was set to three frames for this
evaluation. Fig. 4 plots performance curves for the LAB-based
color-histogram methods. Curves for the other color spaces are
very similar. The figure shows that the color-histogram-based
methods did very well on cut detection with desirable perfor-
mance curves trading off recall against precision. A good op-
erating point on this curve would be a 90%–95% recall with
70%–80% precision.

Table II presents the performances of the color-histogram al-
gorithms represented as the precision at recall = 95% (one point
on the performance curves). From these results and the curves,
we can observe the following.

Among the color-histogram-based methods, the histogram in-
tersection method is the best. The CHI method did significantly
worse than the others. It thus does not appear to be suitable for
coarse histogram differencing for shot-change detection. The
average color of a frame was also insufficient to capture shot in-
formation, being completely inadequate in this application. The
2-D methods did worse than the combined 1-D or 3-D methods,
indicating that luminance is an important feature in shot separa-
tion. There does not appear to be much difference between using
3-D histograms and three 1-D histograms. The latter are attrac-
tive because of their lower memory and computational cost.

While the choice of color space has less of an impact than
the choice of histogram differencing method, the MTM method
was clearly the best. It was also the computationally most in-
tensive, involving significantly more floating point computation
than the other color conversions. The CIE uniform color spaces
(LAB and LUV) also did well. To optimize both performance
and computational cost, the LAB space is the best compromise.
The OPP space performs close to that of the aforementioned
three and has the advantage of needing only integer computa-
tions. All color spaces were better than the luminance alone
(YYY), indicating that the color content of the video frame does
characterize the frame for shot-change detection.

Table III presents the performances of the MPEG algorithms.
The MPEG algorithms had a number of different parameters
which could be tuned to trade off their recall against their preci-
sion. We present performance curves on the two best algorithms
for the training set. Fig. 5 plots the operating characteristic curve
of algorithms MPEG-D and MPEG-F computed on sequences
encoded by the SGI encoder at 4.15 Mb/s. The tuning parameter
in each case was a thresholding ratio parameter.

From the results of Table III, we see that among the MPEG
algorithms, MPEG-D is clearly the best for cut detection,
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Fig. 4. Operating curves for LAB color-histogram algorithms as the local threshold is varied.

TABLE II
CUT DETECTION PERFORMANCE OFHISTOGRAM DIFFERENCINGMETHODS: RECALL AT PRECISION= 95%

TABLE III
CUT DETECTIONPERFORMANCE OFMPEG ALGORITHMS ONTESTINGSET

with both high recall and precision. The other algorithms have
markedly lower precision. Algorithm MPEG-A achieves high
recall at the cost of markedly lower precision. Method MPEG-F
also does well.

Comparing the color-histogram methods to the MPEG
methods, we see that they have comparable precision, but the
color-histogram methods have better recall. A 90% recall rate
is probably just about sufficient for a video indexing system.

The block-matching methods do not do well compared to the
other two classes of algorithms. They also had the disadvantage
of being computationally intensive. Fig. 6 plots performance
curves for the block-motion methods.

B. Gradual Transition Detection

Only the MPEG algorithms were used for detection of
gradual transitions. The mapping parameter was set to
ten frames for this evaluation. Table IV presents the perfor-
mances of those algorithms that detected gradual transitions.
Algorithms MPEG-D and MPEG-F again have the best perfor-
mance, though none of them does particularly well. Algorithm
MPEG-A could not detect any gradual transitions because it
only uses I frames, which in our sequences were 12 frames
apart.

The reason for the poor gradual transition-detection perfor-
mance of all the algorithms is that the algorithms expect some
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Fig. 5. Operating curve for algorithms MPEG-D and MPEG-F as threshold
ratio parameter is varied.

Fig. 6. Operating curves for block-matching algorithms as the local threshold
is varied.

TABLE IV
GRADUAL TRANSITION DETECTIONPERFORMANCE OFMPEG ALGORITHMS

sort of ideal curve (a plateau or a parabola) for a gradual tran-
sition, but the actual frame differences are noisy and do not
follow this ideal pattern, or do not follow it smoothly for the
entire dissolve. This causes the localization of the transition
to be incorrect (beyond the mapping range of our evalu-
ation program), as a single transition is broken into multiple
transition detections. Also, the transitions in our dataset often
had other effects occurring simultaneously, which caused the
actual frame differences to deviate from the theoretical curve
for a gradual transition. The measured performance of these

algorithms also depends on the parameter of the evalua-
tion mapping : large mapping ranges lead to better measured
performance. A mapping range parameter of was
used. Smaller values caused performance to drop drastically, il-
lustrating the relatively poor localization of gradual transition
beginning and end points. The sequences used had many com-
plex gradual transitions, that varied in length from a few frames
to hundreds of frames in length, making accurate detection a
difficult task. However, these kinds of transitions are typical of
those used in general video.

VII. CHARACTERIZATION OF MPEG ALGORITHMS

Given their performance and the fact that they operate di-
rectly on international-standard compressed video with conse-
quent benefits in speed and universality, the MPEG algorithms
appear to be the most promising ones for further development.
We, therefore, carried out a further characterization presented
below.

A. Full Data Use

Some of the algorithms (MPEG-A, MPEG-C, MPEG-E) do
not process all I, P, and B frames that are present in the input
stream. An interesting question is whether this significantly
decreases their performance. From Table III, the algorithms
that used more data did better. The modification to algorithm
MPEG-E to process all frame types improved its performance
significantly over the original. Also, from Table IV and as
mentioned earlier, algorithm MPEG-A is unable to detect
any gradual transitions at all because it uses only I frames. In
addition, the algorithms that processed all frames localized
the event locations better. Thus, use of all frame types does
improve performance significantly.

Also, algorithms used different measures on the different
frame types. These different measures had different perfor-
mances. For example, algorithm MPEG-B’s P frame differences
were much more reliable than its B frame differences.

B. Source Effects

The performance of a video-indexing algorithm operating on
an MPEG stream should, ideally, be independent of the encoder
used and the encoding bitrate. We investigated the dependence
of the algorithms variations in encoder and bitrate.

We investigated the dependence of the algorithms on two
different software encoder implementations. One was the SGI
software encoder. The second was the University of California
at Berkeleympeg_encode software encoder (UCB). Both
used the same original M-JPEG data, and as far as possible,
the same encoding parameters: IPB pattern, motion-prediction
vector resolution, and search window for motion prediction.
The IPB pattern was IBBPBBPBBPBB, the vector resolution
was half-pel, the search window was 32 in all directions. The
quantization scale factors (IQSCALE, PQSCALE, BQSCALE)
varied to achieve the specified bitrate. Fig. 7 shows the variation
of cut and gradual transition-detection performance of algo-
rithm MPEG-D with bitrate for the two encoders for bitrates
of 100, 500 kb/s, and 1.5, 3, and 4.15 Mb/s on the training set.
The UCB encoder also allowed encoding at 6 and 8 Mb/s. As
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(a)

(b)

Fig. 7. Effect of encoder on (a) cut and (b) gradual transition detection
performance of algorithm MPEG-D.

can be seen, there is a significant difference in the performance
of the algorithm on the data from the two encoders. Also, this
difference is consistent across bitrates and was not attributable
to a simple thresholding parameter change. The reason for the
difference lies in the differing characteristics of the encoders.
For B frames, the Berkeley encoder appears to use intracoding
very sparingly and uses forward prediction much more than
backward or bidirectional prediction. This imbalance causes
the bursty nature of B frame sizes compared to the SGI
encoder (Fig. 8). The effect is to delay the coding of frame
changes in B frames until the next reference frame, leading to
a larger eventual frame difference value (Fig. 9 for algorithm
MPEG-D). For the same sequence, the frame difference mean
and variance for B frames were 24 446 and 27 925 for the SGI
encoder and 33 107 and 32 773 for the UCB encoder. Since B
frames constitute 67% of all frames in our sequences (a typical
fraction), this has the observed effect on performance. For algo-
rithms that use the statistics of the predicted frames (algorithms
MPEG-A, MPEG-B, and MPEG-C), the effect is likely to be

(a)

(b)

Fig. 8. Sizes of B frames for a sequence encoded by (a) SGI and (b) UCB
encoders.

even greater. The MPEG standard does not specify an encoding
method, only the syntax of the encoded bitstream. Different
encoders may use different error measures when performing
motion compensation (thus leading to different motion vectors)
and also different quantization tables for the DCT coefficient
compression. They may also choose to prefer one direction of
predictive encoding (forward or backward) over another while
still adhering to the standard. Since a number of the algorithms
we evaluated use heuristics on these values to detect video
events, their performance is thus encoder dependent.

Further results on encoder effects are shown in Table V which
shows the recall and precision obtained by the two MPEG algo-
rithms running on the testing set encoded at 4.15 Mb/s. Algo-
rithm MPEG-F appears to be more robust to encoder changes
than MPEG-D.

The variation of performance with bitrate using the SGI en-
coder is shown in Fig. 10 . The algorithms appear to be some-
what affected by the bitrate of the encoding stream, especially
at lower bitrates, which may be an important consideration for
low bitrate coding applications.

We do not present a quantitative comparison of algorithms
on the basis of computational cost because the speed of a
algorithm depends on the frame size (which varied between the
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(a)

(b)

Fig. 9. Frame difference values at B frames computed by algorithm MPEG-D.

TABLE V
CUT DETECTION PERFORMANCE OFMPEG ALGORITHMS ON TESTING

SET USING TWO DIFFERENTENCODERS

uncompressed and the compressed data) and the data access
method. Qualitatively, the block-matching algorithms were
the most computationally intensive by a large factor, followed
by the color-histogram methods. The color space conversion
was the largest factor here, especially those conversions that
required heavy floating point computations such as LAB, LUV,
and MTM (which was the most intensive). The MPEG methods
were the fastest, running at 15 frames/s on a 200-MHz SGI
workstation.

VIII. SUMMARY AND CONCLUSION

We have evaluated and characterized the performance
of a number of shot-change detection methods using color
histograms, MPEG compression parameter information,
and image block-motion matching, on a sufficiently varied

(a)

(b)

Fig. 10. (a) Cut and (b) gradual transition performance of algorithms MPEG-D
and MPEG-F using SGI encoder with varying bitrate.

ground-truthed test set. Some conclusions to be drawn from
our research follow.

Performance evaluation of algorithms requires a common
dataset, evaluation criteria, and evaluation process. Ground-
truthing video sequences containing complex transitions
with respect to video events to single frame accuracy is a
challenging task requiring customized software tools. Faster
ground-truthing may be obtained at some cost to event location
accuracy by using the consensus of multiple humans viewing
the video at 15 frames/s with one previewing at 30 frames/s.

Any performance-evaluation process will be parameterized
by the method one uses to compare algorithm output to ground
truth, and these parameters should be stated explicitly. The
number of parameters needed for an algorithm’s implementa-
tion may be greater than the number of published parameters.

Color-histogram-based shot detection performs sufficiently
well to be used in a video database application at a moderate
computational cost. Histogram intersection in the Munsell
(MTM) space had the best performance. Faster computation
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at the cost of decreased performance can be obtained by
choosing the LAB, LUV, or OPP color spaces. Luminance is an
important feature to characterize video shots; 2-D histograms
did not work well.

Threshold selection is critical and local window average
thresholding works well. Block-motion matching algorithms
do not perform as well as color histogram or MPEG-based
methods, in addition to being very computationally intensive.
MPEG-based shot-detection algorithms are fast, running in
real time, but do not perform as well as the color-histogram
methods. They are sensitive to changes in the MPEG encoder
used and the encoded bitrate. There is a need to make them
robust to these variations, as well as increase their recall-preci-
sion performance toward the 90%–70% point.

Complex gradual transitions are difficult to detect and accu-
rately locate. The algorithms we tested did not perform satisfac-
torily on complex transitions. Some researchers have proposed
using shot detection to aid in characterizing the semantics of a
video (e.g., a feature film). A general-purpose video database
system thus needs better performance in this regard.
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