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Performance Characterization of Video-Shot-Change Detection Methods
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Abstract—A number of automated shot-change detection detection may also react to significant object and camera motion
methods for indexing a video sequence to facilitate browsing unless global motion-compensation is performed. Identifying
and retrieval have been proposed in recent years. Many of these gyt changes and indexing the video sequence will facilitate the

methods use color histograms or features computed from block fast b . d retrieval of sub fint t to th
motion or compression parameters to compute frame differences. ast browsing and retrieval of subsequences of interest 1o the

It is important to evaluate and characterize their performance so US€r. Shot changes may occur in a variety of wayss where
as to deliver a single set of algorithms that may be used by other a frame from one shot is followed by a frame from a different
researchers for indexing video databases. We present the resultsshot, orgradual transitionssuch as cross-dissolves, fade-ins,
of a performance e\(aluatlon and characterlzatlon_of a number of fade-outs, and various graphical editing effects (wipes, pins),
shot-change detection methods that use color histograms, block . . LN
motion matching, or MPEG compressed data. which may also be accorded varying semantlc significance (g.g.,
a fade-out to black, followed by a fade-in, is often used by film
directors or editors to indicate the passage of time or a change of
location). Thus, it is important to be able to detect these events
distinctly.
. INTRODUCTION Previous researchers [2]-[5] have employed color histograms
NUMBER of initiatives have been undertaken which aint© temporally segment color video sequences. The difference
to include digital video content in a digital library accesbetween the histograms of consecutive frames is computed and
sible over a data network. The interface to this content is mea®fge frame differences are marked as possible shot changes. A
to allow browsing and searching of the video. Given the terfmber of methods to compare two histograms are possible,
porally linear and data-intensive nature of digital video, colrominently: absolute difference between corresponding bins
pled with the bandwidth constraints of the network, tempor&p0ssibly with a color similarity matrix [6] or without [7]), his-
segmentation of any video sequence stored in the video ddfgram intersection [8], and chi-squan€’f comparison [2]. We
base has been generally accepted to be a necessary first Stga/ﬁﬁtigate the efficacy of these different measures for cut detec-
the creation of the interface [1]. Shot-change detection is tHen and the effect of color space representation on the perfor-
process of identifying changes in the scene content of a vid@gnce of histogram-based shot detection.
sequence so that alternate representations may be derived fotnce stored digital video is likely to be compressed, other
the purposes of browsing and retrieval, e.g., keyframes mayrgéearchers have proposed a number of algorithms that perform
extracted from a distinct shot to represent it. An example ofS@0t-change detection directly on transform coded MPEG com-
keyframe representation for a 10 000-frame sequence is shdissed video [9]-[19]. Future versions of the MPEG standard
in Fig. 1. Such video storyboards can be obtained by a shot-@&€ likely to use higher (object) level “semantic” compression,
tection process running on stored or live incoming video usiﬁBUS. easing the task of indexing thg video. Until these standards
the methods described later in this paper. This representat®g implemented, the discrete cosine transform (DCT) MPEG
can be used as a video summary, to browse the content of #gndards are likely to dominate, and thus, performing shot de-

whole sequence, and if desired, to quickly pick the shots of ifgction on MPEG video acquires importance. We evaluate these
terest and view them. algorithms on the basis of their performance on detecting cuts

The definition of a shot change is difficult to make. Pro@nd gradual transitions. We also characterize their performance

nounced object or camera motions may change the content\ih respect to robustness 'Fo changes in the specific encoder
the view frame drastically. To be consistent, we defishatto US€d and the compressed bitrate.

be a sequence of frames that was (or appears to be) continuousfyinally, a number of algorithms have been proposed that per-
captured from the same camera. Ideally, a shot can encomgQ&8 motion analysis or optical-flow computation to determine

pans, tilts, or zooms; in reality, algorithms for shot-chang&'0t changes. Three algorithms that perform block motion
matching are included in our evaluation. The MPEG techniques

also use the block motion prediction information contained
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Fig. 1. An example of a keyframe-based browsing and viewing representation for a sports video sequence.

evaluate them and characterize their performance on a commoi) equalized simple differencing after histogram equaliza-
data set. This is the primary motivation for the research de- tion;
scribed in this paper. 4) intersection;

The outline of the paper is as follows. In Section I, we review 5) chi-square.

previous work on performance evaluation of shot—segmentati(?ﬂe last two methods are described later in this paper. The
algorithms. Section Ill describes our ground-truthed datasiﬂbment—invariant difference was computed as Fadistance

and experimental protocol. A description of the ShOt'Ch"’m%‘i‘étween a 3-element vector formed of invariants computed
detection algorithms that were implemented is presentedﬂBm normalized central moments. Segmentation based on

Section IV. Section V discusses the automatic thresholding ., (e changes used the method of Aigrain and Joly [24]
methods we employed. Results of our evaluation are prese assigns certain ranges of corresponding pixel changes
in Section VI. The results of characterizing selected MPEg

i . : o being caused by camera cuts (128-255 for 8-bit pixels) or
algorithms in terms of their sensitivity to data, parameter, ar&isolves and fades (7-40). The edge-based algorithm is that of
encoder changes are presented in Section VII.

. : Section VZibinet al. [25], where disappearance of old edge pixels and
contains a summary and conclusions. appearance of new edge pixels far from each other indicate a
shot transition.

Il. PREVIOUS WORK Their data set consisted of two news broadcasts, a training
video and a feature movie. These were digitized from NTSC at
Ahangeret al. [20] surveyed the field of video indexing 1215 frames/s in Intel Indeo format, with a total of 2.5 h of
without evaluating or characterizing particular algorithmssigeo with 1141 cuts.
Boreczkyet al. [21] compared five different indexing algo-  our work differs from these previous studies in that for our
rithms: global histograms, region histograms, global histograrRgstogram comparisons we used color histograms in multiple
using twin-comparison thresholding, motion-compensatg@|or spaces and investigated the effect of different color space
pixel difference (similar to [22] which we also evaluate)yepresentations. Further, color histograms are often computed as
and DCT-coefficient difference, with respect to shot-changsther three one-dimensional (1-D) histograms or as one three-
detection. The histograms were grayscale histograms. Th@ifensional (3-D) histogram. We evaluated the effect of such
data set COI’]SiSted Of 233 min Of mOtiOH-JPEG Video Of VariOVépresentations and exp||c|t|y used |Oca| thresho'ding and Ob_
types digitized in 320x 240 resolution at 30 frames/s. Someained operating characteristic curves. We observe that the eval-
manual tuning was done to find suitable ranges of thresholds{gtion process itself is parameterized, and explicitly state our
generate the operating curves. parameters. Unlike either study, we evaluated and characterized
Dailianaset al. [23] compared algorithms based on hisypEG algorithms, since compressed-domain methods have be-
togram differencing, moment invariants, pixel-value changesome dominant in this field. Both of these studies used human
and edge detection. The histogram differencing methods th&iyservers to determine the ground truth, and the latter study

studied were: noted that this creation of ground truth involves ambiguity in the
1) simple bin-to-bin histogram differencing without nor-presence of shot changes and that differences between observers
malization; occur. We present some experimental results that indicate the

2) weightedred, green, and blue histogram differences amnditions under which unbiased human ground truthing is most
assigned different weights; effective.
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I1l. D ATABASE GENERATION AND EXPERIMENTAL PROTOCOL TABLE |
DESCRIPTION OF THESEQUENCES IN THE

To evaluate the performance of the shot-change detection DATASET
algorithms, we captured a.database of wdep sequences and Sequence | Length [ No. of | No. of gradual
generated the corresponding ground-truth information. We (s) cuts transitions
captured video at 30 frames/s at 640480 resolution and training 1922080 igg 1358

H . news

stored in M-JPEG format. The video sequences were ground sports news | 1200 | 201 3
truthed, with respect to temporal segmentation by human Sitcom 1200 316 13

volunteers using a software program that allowed them to view
the sequences and mark the frames at which they COI']S"dezfledorkstation that played the sequence at the desired speed in
a shot change to have occurred. We have developed a tgo .

: . window on the monitor and allowed mouse clicks to record
which can automatically generate ground-truthed sequences

of arbitrary length and complexity by splicing such manual ot changes. The results of this experiment clearly showed that

round-truthed sequences at known shot-chanae points We achieved the best guality and most consistent results when
9 eq gep .. _subjects were allowed to mark the scene changes at half speed
Although for this research all ground-truth data was obtainé N )
by experienced human ina frame-by-frame in tion ita} ter viewing the sequence once at full speed. Frame-differ-
in){er pfinetce k\l/Jvh aths ruifi 9 aib(IE- fy;la vel rsltpecr ? ' reﬁce ranking was too subjective and too time consuming. The

1eresting to ask whether it s possivie for fay VOIUNIEErS 10 Prog | oo rg produced highly inconsistent results. For half-speed
vide ground truth s_|mply by watching video. This WOUld allow arking, the average delay time was about 10 frames. It ranged
large amounts of video to be ground truthed relatively cheap Yom about 7-20 and was fairly consistent for a given subject.

But there are a number of issues to consider. Creation of tFﬁis delay would need to be factored into the evaluation process

ground-truth data is a subjective process. Different human suab—a parameter tf. (see Section I1I-C ),

jects may mark the same sequence very differently. A SUb!ecSIThese preliminary results tentatively indicate the conditions
may mark the same sequence differently on successive view-

. . : - under which lay volunteers may be used to generate ground-
ings. Also, having access to semantic content, humans will tend . .

: tr fh data for video segmentation.
to mark many more shot changes on a given sequence than wi
be detected by any algorithm using purely visual informatiofy pataset

Our goal was to produce a data set and corresponding groun% datab isted of th listed in Table I. A
truth which would be usable for evaluating various algorithms ur database consisted of the sequences fisted in Table I.

and would be as consistent as possible. In order to establish® l Of_959 cuts and_262 gfad“a' transitions was present in these
\pproximately 76 min of video. The sequences were converted

optimum experimental conditions under which human volurf . .
teers perform their best, a preliminary study of human grou 2 MPEG-1 sequences at 32‘_0240 resolution using software
truthing was carried out. encoders. Th.e. MI?EG enpodmg process often split a_two—frame
gradual transition into a single cut; such gradual transitions were
labeled as cuts in the ground truth.
The sequences were complex with extensive motion and
The purpose of this study was to determine the best waydoaphical effects. All the sequences, with the exception of
allow human subjects to establish a ground truth for temporatlye sitcom, had commercials, some with rapid changes. It is
segmenting video sequences. The parameters of the experinmgeresting to note that the sitcom had the most cuts, despite
and the associated questions to be answered were the followlmaving no commercials. This was caused by a large number
1) Playback SpeedWas full frame rate or some slowerof back and forth camera angle changes, though the number
speed the best at which the subject could be most accurate?f distinct scenes was less than in the other types of sequence.
2) Number of PreviewingsMany subjects might find it There are instances of three cuts in four consecutive frames,
useful to view the sequence one or more times before actuallyts occurring in the middle of a gradual transition, long
performing the segmentation, especially for very active or fastoss-dissolve with object motion, and cuts in only portions of
moving sequences. How many previewings would be best? the frame, etc. An example of a complex transition is shown in
3) Manner of Evaluation:Was it feasible to ask people toFig. 2 The transition shows a 2-frame dissolve followed by a
rank frame differences in order of significance to compare witoom in, computer-generated graphical effects, and a dissolve
the ranking that an algorithm might produce? followed immediately by a 2-frame dissolve. Using a software
4) Response TimeWhat response delay do humans exhibit@rogram for frame accurate video display and event (cut or
This would be useful in mapping the marked ground-truth shgtadual transition begin or end) recording on a workstation,
changes to the shot changes found by an algorithm. Our trainingook an experienced person roughly 5-6 hours to ground
set sequences (see Section I1l-B) were shown to each of ningh 20 min of video. Designing the ground-truthing protocol,
volunteers and they were asked to mark cuts in them. Each valilding tools for ground truthing, and determining appropriate
unteer saw each sequence at a number of combinations of plegnditions for ground truthing accounted for a significant
back speed and number of previewings. The playback frame riction of our research efforts over the past few years.
was either 1.0 (30 frames/s display rate), 0.5 (half frame rate) ofThe training sequence contained diverse types of content
0.25 (quarter frame rate). The number of previewings was eittfiesm news to rock music videos and was used to optimize pa-
0, 1, or 2 (the previewings themselves were at full speed). Tremeters and for learning the parameters for local thresholding.
interface for the volunteers consisted of a program running dine rest of the sequences acted as a testing set.

A. Experimental Study of Human Ground-Truthing
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Fig. 2. Sample transition: frames 11635, 11688, 11725, 11761, 11787, 11800, 11823, and 11825 of a sequence.

C. Evaluation Process Sethi and Patel [26] suggest that false-alarm errors be ig-

The comparison between an algorithm’s output and tfpored entirely. In our view, this is not desirable; under such an
ground truth is based on the numbers of missed detectidfi@luation scheme, an algorithm that reported events at every

(MD’s) and false alarms (FA's), expressed as recall and preéf_ngle frame would outperform a more conservative one. Since

sion shot detection is needed for semantic compression of video, too
many shot changes will lower the efficiency of the representa-
Recall— Detects tion. Even with perfect precision, some t_ypes of_videq sequence
Detects+ M D's have shot changes every few seconds; increasing this with false
o Detects alarms would render the resultant video summary useless for the
Precision=

Detects+ FA.'s end user.



GARGI et al. PERFORMANCE CHARACTERIZATION OF VIDEO-SHOT-CHANGE DETECTION METHODS 5

The evaluation process is also parameterized, in this case by nents with simple integer computations. This space was
how far from a ground-truth point we allow an algorithm de- presented in [29] as a useful space for performing video
tection to be and still be counted as a detection. Defimirig indexing.
be the set of ground-truth events or features in the datapan@s a baseline comparison, we also used the luminance alone
to be the events or features marked by a detection algorithfayY) to verify whether color information was useful in shot-
the evaluation process can be defined as the process of mapgi@nge detection.
fe: m — 7. This mapping process will also, in general, be pa- 2) Frame Difference Measures=our measures of difference
rameterized. The parameter for our evaluation consisted of hetween histograms were studied.
mapping rangé,;, which is the temporal interval withinwhich 1) Bin-to-bin difference (B2B). Given two histogranis
a ground truth and a detected event are matched. This mapping  gnq ho
needs to take place because the detected event frame number
will sometimes not match the ground-truth event frame number fdyav(ha, h2) = L Z |h1[d] — hald]| 1)
exactly. This occurs either because of the difference in interpre- 2N 2
tation of when a video event occurs when multiple choices over
a (small) range are possible, or because of the temporal reso-
lution used in processing sequences or because of the subjec,z—)
tive placement of a ground-truth event. This is especially true of
gradual transitions. In addition, human response time would fur-
ther affect the location of a ground-truth cut if ground truth were
generated by viewing a sequence instead of by frame-by-frame
inspection. 1 (h1[i] — ha[d])?

fdchi - F zz: va

_ 1 (ha[i] — hald])? -
= Z i =0 @

The normalization byV? is necessary for singular cases
as when one histogram consists of exactly one bin and the
other histogram has exactly one pixel in the same bin.
Histogram intersection (INT). As described in [8], the in-
tersection and corresponding frame difference between
two color histograms are

whereN is the number of pixels in a frame.

Chi-square test histogram difference (CHI). The his-
togram bin difference values are normalized to sharpen
the frame differences being computed. The authors in [2]
justify this to “make the evaluation value more strongly

reflect the difference of two frames”

halil 20 (2)
IV. ALOGORTHMS EVALUATED

A. Color-Histogram Algorithms

1) Color Spaces:Histograms were computed in the color
spaces listed below. Equations for color space conversions are
available in [27].

1) RGB: The NTSC red, green, blue space. 3)

2) HSV: The hue, saturation, value space.

3) YIQ: The NTSC transmission standard for encoding tele-
vision pictures.

4) XYZ: A CIE artificial primary system in which all three Z min (hy[i], ho[i])
tristimulus values are always positive. Y represents the

luminance of the color and is the same as the “Y” in the Intersectioghy, hp) = — N )
YIQ model.
5) L*a*b* (LAB): This is a perceptually uniform color fdint(h1, ha) =1 — Intersectiofhy, hz).  (5)

space developed by the C.I.E. to provide a computa-
tionally simple measure of color in agreement with the 4) Average color (AVG). In [30] it is shown that the differ-
Munsell color system. L* approximately represents the ence of average colors of a histogram defined as thé& 3
luminance component while a* correlates with red- vector

ness-greenness and b* correlates with yellow-blueness.

6) L*u*v* (LUV): Another uniform color space that havs[7] = Z hlidels i) 5 =0.1,2 ©)
evolved from the L*a*b* system and became a CIE ‘
standard in 1976. wherej is the color axis (e.g., R, G, or B) anfl, ¢] is
7) Munsell (MTM): The Munsell renotation system also the value of color tristimulug at bin: (for RGB colors,
uses a conceptual breakdown of color into hue, value, and  c[j, ¢§] = ), is a lower bound on the quadratic form

chroma components. Hue can be expressed not only as a histogram distance using a color-similarity matrix. The
number, but also as a name. The Munsell Book of Color ~ frame difference was computed as the square of the av-
realizes this space as a set of color chips laid outin rows  erage frame-color differencés,, — h3,,.
and columns for different hue values. For a given con- 3) Dimensionality: Each of the above histogram difference
stant hue, the chips are intended to be perceived with caneasures (except for AVG which is applied only to 1-D his-
stant brightness in one dimension and constant chrotmgrams) can be applied to 1-, 2-, or 3-D histograms. That is,
in another dimension. This conversion was approximatéide color distribution in a frame may be represented as either
using the method given by Miyahara and Yoshida [28]. three independent 1-D distributions in each of the primaries,
8) Opponentcolor axes (OPP): The RGB space may be cowr a distribution in two dimensions over the two axes that are
verted into an opponent color axis space that approxiet correlated with luminance, or as a distribution over all three
mately separates the luminance and chrominance componensions simultaneously. A 2-D representation neglects the
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luminance component (if one exists) and uses only the chromi-Additionally, breaks in B frames are detected as follows: if
nance components simultaneously (the RGB color space has¥ig.., andVy,,. are the numbers of nonzero forward and back-
2-D representation). The idea behind a 2-D histogram is thaard macroblock prediction vectors used in for a particular B
changes in the brightness of the frame may not be correlafeaime, then a cut is declarediifin ( Niorvw, Npack) < T, i.€., if

with real content change. For example, flash photography miae bidirectional frame prediction favors a particular direction.
momentarily increase the brightness of the recording of a nefygwin-threshold comparison is used to detect gradual transi-
conference. The quantization levels of color space were as ftibns. The total number of parameters needed to specify this al-
lows: for 1-D histograms, 256 bins; for 2-D histograms X186 gorithm is eight.

bins; for 3-D histograms, & 8 x 8 hins. We abbreviate the Algorthim MPEG-B: Variance and prediction statistics
method and histogram dimensionality into a single code suftb]. For cut detection, this approach uses statistics on the
as B2B1D, INT3D, etc. numbers and types of prediction vectors used to encode P and B
frames. For P frames, I¥;,:.» iS the number of intracoded mac-
roblocks, andV,,:.. is the number of intercoded macroblocks
(those for which motion-prediction vectors are available), then

1) Brief Introduction to MPEG Video: A very brief @ high value ofNiyira/Ninter indicates a shot change. For B
overview of the MPEG-1 video format [9] is presented herdl@mes, the ratidVi,ack/Niorw VEctors is used. | frame cuts are
There are three types of temporally interleaved frames in gatected by finding peaks in the difference of frame intensity
MPEG-1 bitstream: 1) | frames, which are encoded usingriance where the variance is computed for the discrete cosine
lossy DCT and lossless entropy coding of the pixel data; 2)(PC) coefficients in | and P frames. An adaptive thresholding
frames, which are motion compensated in the forward directiftethod is used for peak detection: the ratio of peak values to
from | and other P frames (i.e., vectors point from a futur@verage values within a 2-4 GOP size interval is used. Linear
frame to a past frame); and 3) B frames, which are motighssolves are also recognized by using the difference of frame
Compensated in both tempora| directions from | and P framél@_riances. For dissolves, the ideal variance curve is shown to
A group-of-pictures (GOP) refers to the frames between tviz¢ parabolic. Peaks in intensity variance separated by a deep
| frames. Motion compensation is carried out at the resolutiéfPugh indicate a dissolve. This algorithm uses | and P frames
of macroblocks which are 16 16 pixel blocks, and induces fully, and prediction vector statistics from B frames. The total
compression by allowing a target macroblock to be representéiémber of parameters needed to implement this algorithm is
as a vector pointing to a source macroblock in a reference (1%#ven. This algorithm is used in the VideoQ system [33].

P) frame and a residual error (which is itself DCT-encoded). A Algorithm MPEG-C: Motion-prediction statistics [14].
zero prediction vector results if the best matching macroblodifis paper suggests the use of the average error power of
in the reference frame that the encoder can find occupies thacroblock prediction residual error in P-frames. This measure
same position as that of the target macroblock. If the residwygpuld only detect cuts that occur between a P-frame and its
error after motion compensation for a particular macroblodl@st reference frame. However, the method finally proposed
in a B or P frame is still too high, the encoder can choose #ses the ratios of forward, backward and bidirectional motion
intracode that macroblock, i.e., to DCT-encode the pixel valufgediction vector numbers for B frames. It defines the following
directly. A macroblock in a B frame can be forward predictetfame difference measure:

(the prediction vector points to a macroblock in a past frame),

backward predicted (the prediction vector points to a future 1

frame), or bidirectionally predicted (the best matching source ) (Ntorw + Nbidir)  (Nback + Nbidir)

macroblocks in the previous and the next reference frame min < Neotal ’ Neotal )

are averaged). DCT coding is carried on units ok &8 pixel

blocks, giving rise to 64 DCT coefficients per block and 4vhere Ny,q;. is the number of bidirectionally predicted blocks
blocks/macroblock. Pixel values are represented in the YCr@ba B frame [9] andV,..; is the total number of macroblocks.
space and the chrominance components may be spati@dlynedian filter algorithm is used for thresholding. This algo-
subsampled relative to the Y component (the? : Oformat). rithm detects only cuts, uses only B frames, and requires two

2) Description of MPEG Algorithms: parameters.

Algorithm MPEG-A: Correlation of DCT-coefficient vec- Algorithm MPEG-D: DC-frame differences [16]. DC
tors and prediction vector count statistics. Correlation of DCToefficient values for I, P, and B frames are extracted (DC coef-
coefficient vectors was originally defined for JPEG images [3Ticient values for P and B frames are reconstructed as in [34]).
and subsequently modified for the | frames of MPEG sequencHsese values are used to construct a DC-frame sequence, where
[32]. Somea priori subset of 8 8 blocks in the frame is chosen.a DC-frame is a frame consisting of the average intensities
As specified in [31], we chose a small portion of the frame: thre# 8 x 8-blocks of the original frames. Differences between
connected regions on the sides and in the center of the frarnisse DC-frames are then computed. Results are presented for
covering 15% of the frame, were used. Scengriori subset of two metrics: the sum of the absolute DC-frame pixel-to-pixel
the 64 DCT-coefficients for each block is chosen; we chose thdferences, and the bin-to-bin difference between histograms
16 low-frequency components. A vector is formed from thes# the DC-frame pixel luminances. Automatic thresholding is
coefficients of each chosen block. The inner product of two coaehieved by a sliding window technique—a peak is declared
secutive | frames gives the frame similarity. if it is greater than the second largest difference within the

B. MPEG Algorithms
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window by some factor. Gradual transitions are detected bglue are computed as before. The correlation values are sorted
looking for a gradually increasing multiframe difference folinto ascending order. A similarity measure is computed by
lowed by a plateau followed by a decreasing frame differendeking the average of the first values from the sorted list
This algorithm uses |, P, and B frames. There are 11 distinghere s is the number of blocks scaled by a user-specified
parameters that need to be specified for using this algorithmmatching percentage.

Algorithm MPEG-E: Statistical tests on DC coeffi- Algorithm Block-C: This algorithm does not do motion
cients [26]. This computes the histograms of two consecutigempensated matching. Instead, as described in [36], the dif-
DC-frames, applies the? statistical test to these two dis-ferences between corresponding blocks of the two frames are
tributions to determine the probability that they were drawcomputed
from different source distributions and thresholds using a fixed )
value. An improved version of this algorithm [11] computes o+ 02 1 — po 2
row and column histograms, in addition to the overall frame 2 + < 2 )
histogram, and uses decision logic to combine the three event A= ) (7)
decisions into one. These algorithms operate only on | frames. 7172
Our implementation allowed the choice of using only | framesvhereu denotes the mean gray value andenotes the square
I and P frames, or |, P, and B frames. The latter two were foungot of the variance from the frames for the sample areas. The
to give better results, especially in terms of event localizatiolikelihood ratio frame difference is the normalized sum of the
Four parameters were needed to implement it. individual block differences. A block size of 40 40 was used

Algorithm MPEG-F: DC-coefficient histogram differ- g capture large-scale frame content changes.
encing [19]. Unlike the other methods described here, this
method uses the color information present in the bitstream. V. THRESHOLDING
1-D histograms of the luminance Y, and chrominance Cb and _ _ _

Cr DC components of blocks are computed and bin-to-bin Thg MPEG algorithms had asso_c|ated thresholding methqu
differencing is applied to these histograms. Both static afgScrioed by the authors. For the histogram and block matching
locally adaptive thresholds are used for peak finding. Medidf€thods, an automatic thresholding framework was required.
fitered frame-difference values are used to detect gradudl€ firSt question to ask was whether a global threshold would
transitions by looking for a series of medium-high differenc@ork. If the cut an(_d noncut frame dlfference_values were clearly
values, a majority of which need to be above a soft thresho&fparated for all yldeo sequences, then as_lngle global thres_hold
The algorithm needs seven parameters to be specified. would work. Ort_h|sthreshold co_uld be_ set differently depending
3) Parameter Optimization for MPEG Methodhe values on thg type Qf video (commercials, S|tcom,. news, sports, etc.).
of parameters needed for implementation of the algorithms werge distribution of cut and noncut frame difference values for
not always specified in their published descriptions, or only390rithms RGB INT1D and LAB B2B2D over the sitcom se-
range was specified. Further, in some cases, even those that & 1Ce are shown in Fig. 3. For both cases, the two distribu-
specified, resulted in poor performance on our dataset. We al&@'S 0verlap such that no single threshold can be found that will
found that we had to add some parameter variables to impqs@parate these two distributions. Becausg the two distributions
ment an algorithm. A complete simultaneous optimization with'® Normalized by the total number of points and noncuts out-
respect to all the parameters of an algorithm was infeasible. ViMper cuts by alarge factor, the threshold would need to be set
therefore, used the given values or reasonable values for thW§'é| !n'to the noncqt distribution tail before reasonable values of
parameters that were thought to have a range of equally vAlgCiSion are obtained. For example, for the RGB INTID case,
values (e.g., histogram resolution) and for the parameters tAdfireshold of 0.1 gives a recall of 88% and a precision of 50%.
the algorithm(s) proved more sensitive to, we chose optimhil!S Performance may be sufficient for some applications but
values by empirical optimization maximizing a figure of merifurther improvement is desirable. The distribution overlap was
over the training set. The figure of merit used was the prodl}&’e for all the algorlthms. Theref9fe= a global threshold might
of recall and precision. not work well even for video of a single homogeneous type and
in fact a global thresholding method based on k-means clus-
C. Block Matching Methods tering did not perform as well as local thresholding. Dailiagias
Three algorithms which used block matching on uncon‘?—l' use a different approach of a single global threshold in con-

- _cert with a simple filtering algorithm to suppress any difference

pressed v!deo data wer<.a cva Iuated..These were the fOIIOW'n%aIues that were not local maxima [23]. The authors suggest that
Algorithm Block-A: This algorithm [35] detects shot local thresholding might be an alternative.

changes by using a motion smoothness measure. Each chos e therefore investigate local thresholding to see if it can

Igagilfcs I?lr;dtehotla ':é?(tfi;(hfs:rl??:;shfx?hikr)]loaCk%(')S?’(;n S:;:leddo beFter. There are many diff_erent ways of choosing allocally

neighborhood. The value of the correlation coefficient fadaptlvg threshpld.WewouId like tc_) be gpleto evaluate different

the best matc;hing block is computed. The average of th(é‘rg%me-dn‘ferenurllg methods on their ability to §eparate cuts and

correlations represents an interframe si.milarity measure. noneuts locally, m_dependent of the_ _thresho_ldlng method used.
Algorithm Block-B: This algorithm also uses a form ofWe use the following local separability metric

block matching and motion estimation to detect scene changes Cfd— NCfd

[22]. The corresponding motion vector and best correlation Miep = - . (8)
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091 oL :}w o 1 VI. PERFORMANCE COMPARISON
08 5 . R T Hon-outs The histogram methods and Block-C were run on every third
o7 ™ . ... ... ... . frame;Block-Aand Block-B were runon every fifth frame, due
n - to their much greater computational cost. The MPEG algorithms
OBF# o operated on either every frame or on only frames of a certain
2,5l e type (1, P, or B). Any optimization or training was done on por-
8™ n : ' ' tions of the training set, while results are presented for the whole
8 04!t 3 3 : . data set. Some of the algorithms we implemented detected only
B- ' cuts, while some detected gradual transitions as well. We present
I S S results for these video events separately.
0,2m: :
e A. Cut Detection
01 5 . ‘ The evaluation parametét,; was set to three frames for this
LI AP " : — : »  evaluation. Fig. 4 plots performance curves for the LAB-based
0 vz ,,%gme differe[r)lbse o8 ! color-histogram methods. Curves for the other color spaces are
@ very similar. The figure shows that the color-histogram-based
0.6 B ooy TP methods did very well on cut detection with desirable perfor-
] _ | = = Non-cuts mance curves trad_ing off recall against precision. A good op-
05 s : _ : . erating point on this curve would be a 90%-95% recall with
h : : : © 70%—-80% precision.
¥ ' ‘ Table Il presents the performances of the color-histogram al-
O4r v gorithms represented as the precision at recall = 95% (one point
= on the performance curves). From these results and the curves,
gols“: : we can observe the following.
g ' Among the color-histogram-based methods, the histogram in-
1 tersection method is the best. The CHI method did significantly
0.2p b worse than the others. It thus does not appear to be suitable for
' coarse histogram differencing for shot-change detection. The
oib 1 average color of a frame was also insufficient to capture shot in-
: , , formation, being completely inadequate in this application. The
o - e ; - 2-D methods did worse than the combined 1-D or 3-D methods,
% 0.2 0.4 0.6 0.8 1 indicating that luminance is an important feature in shot separa-

Frame difference

tion. There does not appear to be much difference between using
(b)

3-D histograms and three 1-D histograms. The latter are attrac-
tive because of their lower memory and computational cost.
Fig. 3.  Cutand noncut frame difference distributions for (a) RGB INT1D and \\/hjle the choice of color space has less of an impact than
(b) LAB B2B2D for sitcom sequence. the choice of histogram differencing method, the MTM method
was clearly the best. It was also the computationally most in-
whereNC fd is the average noncut fram@fd is the average tensive, involving significantly more floating point computation
cut frame difference, and is the mean standard deviation otthan the other color conversions. The CIE uniform color spaces
both cut and noncut frame differences within a local windowWlLAB and LUV) also did well. To optimize both performance
This is computed at every cut frame and the mean over all @and computational cost, the LAB space is the best compromise.
frames represents the local separability of the frame differencese OPP space performs close to that of the aforementioned
for that algorithm. The window size corresponds to a local terthree and has the advantage of needing only integer computa-
poral neighborhood for video. We empirically choose a smalbns. All color spaces were better than the luminance alone
window of 12 frames so that we can compare a point with vefYYY), indicating that the color content of the video frame does
similar points and not let large-temporal-scale camera motiotharacterize the frame for shot-change detection.
affect cut detection. Computindy/..,, over the testing set, we Table Il presents the performances of the MPEG algorithms.
find that it varies between 2.21 and 2.23 quite uniformly for alhe MPEG algorithms had a number of different parameters
color spaces and methods, except for the YYY space and thieich could be tuned to trade off their recall against their preci-
CHI and AVG methods, which had lower values from 1.99-2.16ion. We present performance curves on the two best algorithms
Block-A, Block-C, and Block-B had values of 2.07, 1.94, anébr the training set. Fig. 5 plots the operating characteristic curve
1.97. These lower values indicate that they do not separate aftslgorithms MPEG-D and MPEG-F computed on sequences
from noncuts as well as the color-histogram methods. encoded by the SGI encoder at 4.15 Mb/s. The tuning parameter
We found window average thresholding to be effective and each case was a thresholding ratio parameter.
robust. The threshold at any frame is formed as a multiple of From the results of Table 1ll, we see that among the MPEG
the local window average and a constant factor algorithms, MPEG-D is clearly the best for cut detection,
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¥} 02 04 06 0.8 1
Precision
Fig. 4. Operating curves for LAB color-histogram algorithms as the local threshold is varied.
TABLE I
CuT DETECTION PERFORMANCE OFHISTOGRAM DIFFERENCINGMETHODS RECALL AT PRECISION= 95%
Color Space Differencing Method
B2BID | B2B2D | B2B3D | CHIID | CHI2D | CHI3D | INTID | INT2D | INT3D | AVG
RGB 60 % 68 % 45 % 145 % 60 % 65 % | 10 %
HSV 65 % 63 % 68 % 63 % 53 % 54 % 61 % 61 % 63% | 15%
YIQ 68 % 37 % 62 % 62 % 23 % 19 % 64 % 50 % 60 % | 14 %
LAB 70 % 51 % 65 % 59 % 2% 50 % 64 % 57 % 63% | 15%
LUV 68 % 37 % 64 % 59 % 29 % 47 % 67 % 19 % 67 % | 14%
MTM 69 % 65 % 68 % 59 % 54 % 55 % 67 % 63 % 0% | 3%
XYZ 60 % 65 % 64 % 7% 57 % 35 % 68 % 68 % 57 % 8 %
OoPP 65 % 34 % 57 % 60 % 34 % 145 % 64 % 50 % 7% | 14%
YYY 55 % 16 % 45 % 6 %
TABLE I The block-matching methods do not do well compared to the
CuUT DETECTION PERFORMANCE OFMPEG ALGORITHMS ONTESTINGSET  gther two classes of algorithms. They also had the disadvantage
Method | Detects | MDs | FAs | Recall | Precision of being computationally intensive. Fig. 6 plots performance
MPEG-A | 932 27 [14820 | 97 % 6 % curves for the block-motion methods.
MPEG-B | 473 | 486 | 3059 | 49 % 13%
MPEG-C | 28 | 673 | 795 | 30% | 26% . .
MPEGD | 754 | 205 T 105 | 9% s B. Gradual Transition Detection
MPEGE | 862 | 97 | 4904 | 90% | 15% Only the MPEG algorithms were used for detection of
MPEG-F | 792 | 167 | 663 | 83 % | 54 %

gradual transitions. The mapping paramei&y; was set to
ten frames for this evaluation. Table IV presents the perfor-

with both high recall and precision. The other algorithms haveances of those algorithms that detected gradual transitions.
markedly lower precision. Algorithm MPEG-A achieves higtAlgorithms MPEG-D and MPEG-F again have the best perfor-
recall at the cost of markedly lower precision. Method MPEG-fance, though none of them does particularly well. Algorithm

also does well.

MPEG-A could not detect any gradual transitions because it

Comparing the color-histogram methods to the MPEG@Gnly uses | frames, which in our sequences were 12 frames
methods, we see that they have comparable precision, but dipart.
color-histogram methods have better recall. A 90% recall rateThe reason for the poor gradual transition-detection perfor-
is probably just about sufficient for a video indexing systenmance of all the algorithms is that the algorithms expect some
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—weeas] @ algorithms also depends on the paramdtgy of the evalua-
095k =~ MPEG-F | : tion mappingf.: large mapping ranges lead to better measured
' performance. A mapping range parameterqf = 10 was
ook used. Smaller values caused performance to drop drastically, il-
lustrating the relatively poor localization of gradual transition
0.85- beginning and end points. The sequences used had many com-
= : plex gradual transitions, that varied in length from a few frames
g a8k to hundreds of frames in length, making accurate detection a
T difficult task. However, these kinds of transitions are typical of
0.751 those used in general video.
or VIl. CHARACTERIZATION OF MPEG ALGORITHMS
0.65- Given their performance and the fact that they operate di-
, : : , ¢ rectly on international-standard compressed video with conse-
0 o s ThE ey s o7 quent benefits in speed and universality, the MPEG algorithms
Precision appear to be the most promising ones for further development.
Fig. 5. Operating curve for algorithms MPEG-D and MPEG-F as thresholl € therefore, carried out a further characterization presented
ratio parameter is varied. elow.
S R b £ : Some of the algorithms (MPEG-A, MPEG-C, MPEG-E) do
L’ not process all I, P, and B frames that are present in the input
081 . stream. An interesting question is whether this significantly
o7l decreases their performance. From Table I, the algorithms
] e that used more data did better. The modification to algorithm
Y R R R o MPEG-E to process all frame types improved its performance
3 significantly over the original. Also, from Table IV and as
Tos5r- mentioned earlier, algorithm MPEG-A is unable to detect
04k any gradual transitions at all because it uses only | frames. In
addition, the algorithms that processed all frames localized
03F the event locations better. Thus, use of all frame types does
—— BIOChA improve performance significantly.
O2F e g:%i-g Also, algorithms used different measures on the different
01 e —— frame types. These different measures had different perfor-

0 0.1 0.2 0.3 04 0.5 08 0.7 08 0.9

Brocisi mances. For example, algorithm MPEG-B’s P frame differences
recision

were much more reliable than its B frame differences.
Fig. 6. Operating curves for block-matching algorithms as the local threshold

is varied. B. Source Effects

TABLE IV The performance of a video-indexing algorithm operating on
GRADUAL TRANSITION DETECTION PERFORMANCE OFMPEG ALcorithms N MPEG stream should, ideally, be independent of the encoder
_ used and the encoding bitrate. We investigated the dependence
I\lﬁfggi BRI R Ll P;)ef%” Precision of the algorithms variations in encoder and bitrate.
MPEGB 75 314 1922 | 26 % R We investigated the dependence of the algorithms on two
MPEG-D 83 182 [ 952 | 31 % 8 % different software encoder implementations. One was the SGI
{\ggg? ;l”g gi? | f;i 17207?7 ﬁ’;‘: software encoder. The second was the University of California
at Berkeleympeg_encode software encoder (UCB). Both
used the same original M-JPEG data, and as far as possible,
sort of ideal curve (a plateau or a parabola) for a gradual trahe same encoding parameters: IPB pattern, motion-prediction
sition, but the actual frame differences are noisy and do negctor resolution, and search window for motion prediction.
follow this ideal pattern, or do not follow it smoothly for theThe IPB pattern was IBBPBBPBBPBB, the vector resolution
entire dissolve. This causes the localization of the transitiovas half-pel, the search window was 32 in all directions. The
to be incorrect (beyond the mapping ranig; of our evalu- quantization scale factors (IQSCALE, PQSCALE, BQSCALE)
ation program), as a single transition is broken into multiplaried to achieve the specified bitrate. Fig. 7 shows the variation
transition detections. Also, the transitions in our dataset oftefi cut and gradual transition-detection performance of algo-
had other effects occurring simultaneously, which caused ttitnm MPEG-D with bitrate for the two encoders for bitrates
actual frame differences to deviate from the theoretical cureé¢ 100, 500 kb/s, and 1.5, 3, and 4.15 Mb/s on the training set.
for a gradual transition. The measured performance of theBee UCB encoder also allowed encoding at 6 and 8 Mb/s. As
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even greater. The MPEG standard does not specify an encoding
Fig. 7. Effect of en_coder on (a) cut and (b) gradual transition deteCtiQﬁethod, 0n|y the syntax of the encoded bitstream. Different
performance of algorithm MPEG-D. . .

encoders may use different error measures when performing

motion compensation (thus leading to different motion vectors)
can be seen, there is a significant difference in the performarared also different quantization tables for the DCT coefficient
of the algorithm on the data from the two encoders. Also, tht®mpression. They may also choose to prefer one direction of
difference is consistent across bitrates and was not attributaptedictive encoding (forward or backward) over another while
to a simple thresholding parameter change. The reason for #hi#l adhering to the standard. Since a number of the algorithms
difference lies in the differing characteristics of the encodense evaluated use heuristics on these values to detect video
For B frames, the Berkeley encoder appears to use intracodewgnts, their performance is thus encoder dependent.
very sparingly and uses forward prediction much more thanFurther results on encoder effects are shown in Table V which
backward or bidirectional prediction. This imbalance caussiows the recall and precision obtained by the two MPEG algo-
the bursty nature of B frame sizes compared to the S@thms running on the testing set encoded at 4.15 Mb/s. Algo-
encoder (Fig. 8). The effect is to delay the coding of framéthm MPEG-F appears to be more robust to encoder changes
changes in B frames until the next reference frame, leadingttan MPEG-D.
a larger eventual frame difference value (Fig. 9 for algorithm The variation of performance with bitrate using the SGI en-
MPEG-D). For the same sequence, the frame difference meaamder is shown in Fig. 10 . The algorithms appear to be some-
and variance for B frames were 24 446 and 27 925 for the S@hat affected by the bitrate of the encoding stream, especially
encoder and 33107 and 32 773 for the UCB encoder. SinceaBlower bitrates, which may be an important consideration for
frames constitute 67% of all frames in our sequences (a typitalv bitrate coding applications.
fraction), this has the observed effect on performance. For algo\We do not present a quantitative comparison of algorithms
rithms that use the statistics of the predicted frames (algorithms the basis of computational cost because the speed of a
MPEG-A, MPEG-B, and MPEG-C), the effect is likely to bealgorithm depends on the frame size (which varied between the
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TABLE V
CuT DETECTION PERFORMANCE OFMPEG ALGORITHMS ON TESTING Fig.10. (a) Cutand (b) gradual transition performance of algorithms MPEG-D
SET USING TWO DIFFERENT ENCODERS and MPEG-F using SGI encoder with varying bitrate.
Method SGI Encoder UCB Encoder
Recall | Precision { Recall | Precision .
MPEGD | 0% 837, 7, R ground-truthed test set. Some conclusions to be drawn from
MPEG.F | 83% | 54 % 84 % 52 % our research follow.

Performance evaluation of algorithms requires a common
dataset, evaluation criteria, and evaluation process. Ground-

uncompressed and the compressed data) and the data access . o L
. . . rutiing video sequences containing complex transitions

method. Qualitatively, the block-matching algorithms were . ) . :
th respect to video events to single frame accuracy is a

. i . [
the most computationally intensive by a large factor, foIIowe\% ! L .

. Challenging task requiring customized software tools. Faster
by the color-histogram methods. The color space conversign

. : rqund-truthing may be obtained at some cost to event location
was the largest factor here, especially those conversions tﬂa& g may

required heavy floating point computations such as LAB, Lugccuracy by using the consensus of multiple humans viewing

and MTM (which was the most intensive). The MPEG metho fs1e video at 15 frames/s with one previewing at 30 frames/s.

were the fastest, running at 15 frames/s on a 200-MHz S%BIAny performance-evaluation process vv_|II be parameterized
workstation. y the method one uses to compare algorithm output to ground

truth, and these parameters should be stated explicitly. The
number of parameters needed for an algorithm’s implementa-
tion may be greater than the number of published parameters.
We have evaluated and characterized the performanceColor-histogram-based shot detection performs sufficiently
of a number of shot-change detection methods using colsell to be used in a video database application at a moderate
histograms, MPEG compression parameter informatioopmputational cost. Histogram intersection in the Munsell
and image block-motion matching, on a sufficiently varie@TM) space had the best performance. Faster computation

VIII. SUMMARY AND CONCLUSION
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at the cost of decreased performance can be obtained Imy
choosing the LAB, LUV, or OPP color spaces. Luminance is an
important feature to characterize video shots; 2-D histogramﬁsl
did not work well.

Threshold selection is critical and local window average
thresholding works well. Block-motion matching algorithms 16]
do not perform as well as color histogram or MPEG—basecg
methods, in addition to being very computationally intensive.
MPEG-based shot-detection algorithms are fast, running ift7]
real time, but do not perform as well as the color-histogranyg;
methods. They are sensitive to changes in the MPEG encoder
used and the encoded bitrate. There is a need to make them
robust to these variations, as well as increase their recall—preéﬁgl
sion performance toward the 90%—70% point.

Complex gradual transitions are difficult to detect and accuf20l
rately locate. The algorithms we tested did not perform satisfac-
torily on complex transitions. Some researchers have proposegh]
using shot detection to aid in characterizing the semantics of a
video (e.g., a feature film). A general-purpose video databaSﬁZ]
system thus needs better performance in this regard.
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